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ENERGY DECAY RATE OF THE SOLUTIONS OF A MARINE
RISER EQUATION WITH A VARIABLE COEFFICIENT

MUGE MEYVACI

Abstract. In this work the initial boundary value problem for a fourth order
non linear equation which describes the marine riser is studied :

utt + kuxxxx − [a(x)ux]x + γutx + b(t)ut|ut|p = 0, x ∈ [0, l], t > 0,

Under appropriate conditions on a(x) and b(t), we prove that the energy of
the problem tends to zero as t→∞.

1. INTRODUCTION

We work on the decay properties of solutions to the initial boundary value prob-
lem of the marine riser equation:

utt + kuxxxx − [a(x)ux]x + γutx + b(t)ut|ut|p = 0, x ∈ [0, l], t > 0, (1.1)

u(0, t) = uxx(0, t) = u(l, t) = uxx(l, t) = 0, t > 0, (1.2)
where k, p, γ are given positive numbers, a, b are given functions. This equation
without the variable damping coeffi cient is studied in [1] and [2]. This problem
about the offshore drilling operations which done by a long slender vertical pipe
that is including a drilling string and drilling mud, which is so called Marine riser.
The problem of riser stability, that is the stability of pipes conveying fluid has

caught the attention of many authors (see e.g. [1]-[11]).
Since our equation includes a variable coeffi cient b(t) the techniques used in

above articles is not applicable to our problem. Therefore we adapt the study of
Martinez [8], in this article a new weighted integral inequality method was used to
estimate the decay rate of solutions of the wave equation. This method is originated
a result of Haraux [3] .
In [9], the following simplest equation that can be used in modeling of marine

riser:
utt + uxxxx −Nuxx = 0 x ∈ (0, 1), t > 0,
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under the homogeneous boundary conditions (1.2) is considered. Where N is a
positive number. Lyapunov’s direct method is used in detail.
In [7], the following nonlinear marine riser equation:

mutt + EIuxxxx − (Nux)x + auxt + but |ut| = 0 x ∈ (0, l), t > 0,

under the boundary conditions (1.2) is studied and the stability of zero solution of
this problem is established.
In [11], the initial boundary value problem for the fourth order equation

mutt + (EIuxx)xx + P (t)uxx = 0, x ∈ (0, l), t > 0,

under the boundary conditions (1.2) is considered. The necessary conditions on
P (t) for the stability of solutions are obtained. In [6], the initial boundary value
problem for the marine riser equation:

mutt + kuxxxx − (a(x)ux)x + γutx + but |ut|p = 0 x ∈ (0, l), t > 0,

under the boundary conditions (1.2) is considered. The global asymptotic stability
of solutions and the estimates for the rate of decay of the solutions were obtained.
In [1], the globally asymptotically stability of the zero solution to the problem

for multidimensional marine riser equation:

utt + k∆2u+ a∆u+ ~g.∇ut + but |ut|p = 0, x ∈ Ω, t > 0,

under the initial boundary conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t) =
∂u(x, t)

∂ν
= 0, x ∈ ∂Ω, t > 0,

where Ω ⊂ RN , N ≤ 3 is a bounded domain with suffi ciently smooth boundary
∂Ω, ν is the unit outward normal vector to the boundary, k > 0, p ≥ 1, b > 0 and
a ∈ R are given numbers and ~g = (g1, g2, ..., gN ) ∈ RN , is studied. Furthermore,
continuous dependence of the weak and the strong solutions of the problem on the
coeffi cients a, b and g were proved.
There are many articles devoted to the study of boundary control of initial

boundary value problems for marine riser type equations (see,e.g.[4],[5], [10]). In
what follows, we will use the following notations:

‖u(t)‖ :=

(∫ l

0

u2(x, t)dx

) 1
2

, ‖u(t)‖q :=

(∫ l

0

uq(x, t)dx

) 1
q

.

The proof of our main result will be based on the following pre mentioned Lemma.

Lemma 1.1. (Martinez,[8]) Let E : R+ → R+ be a non increasing function and
φ : R+ → R+ a strictly increasing function of class C1 such that

φ(0) = 0 and φ(t)→∞ as t→∞. (1.3)
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Assume that there exist σ ≥ 0 and ω > 0 such that∫ +∞

S

E(t)1+σφ
′
(t)dt ≤ 1

ω
E(0)σE(S). (1.4)

Then E(t) has the following decay property:

if σ = 0, then E(t) ≤ E(0)e1−ωφ(t),∀t ≥ 0, (1.5)

if σ > 0, then E(t) ≤ E(0)
( 1 + σ

1 + ωσφ(t)

) 1
σ

,∀t ≥ 0. (1.6)

2. Asymptotic behavior

Theorem 2.1. Suppose that b(t) is a nonincreasing function of class C1 on R+

satisfying
∫ t
0
b(s)ds→∞ as t→∞ and there exists a positive number a0 such that

a(x) ≤ a0.

Then each solution of the problem (1.1)-(1.2) satisfies the following energy decay
property:

E(t) ≤ E(0)

(
p+ 2

2 + ωp
∫ t
0
b(s)ds

) 2
p

, ∀t > 0,

where

ω−1 =
2

θ
max

{
cµ,

(2
3p+2
p pl)

p
2

(p+ 2)(θ(p+ 2))
p
2Eq(0)

,
(p+ 1)(4(d2µ)p+2)

1
p+1

(p+ 2)(θ(p+ 2))
1
p+1E

qβ−p−1
β (0)

}
,

and

θ =
1

2
− cγ2

k
1
2

> 0.

Proof. Suppose that u is a solution to the problem (1.1)-(1.2). Multiplying equation
(1.1) by ut and integrating over (0, l) we get

d

dt
E(t) = −2

∫ l

0

b(t)|ut(x, t)|p+2dx, (2.1)

where

E(t) := ‖ut(t)‖2 + k ‖uxx(t)‖2 +

∫ l

0

a(x)u2x(x, t)dx. (2.2)
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Now, multiplying equation (1.1) by φ′qu and integrating over (0, l) × (S, T ) and
using boundary conditions we get

φ′(t)Eq
∫ l

0

(u(x, t)ut(x, t)) |TSdx−
∫ T

S

φ′(t)Eq(t) ‖ut(t)‖2 dt

−
∫ T

S

∫ l

0

[φ′′(t)Eq(t) + qφ′(t)Eq−1(t)E′(t)]u(x, t)ut(x, t)dxdt

+

∫ T

S

φ′(t)Eq(t)[E(t)− ‖ut(t)‖2]dt+

∫ T

S

φ′(t)Eq(t)

∫ l

0

γu(x, t)utx(x, t)dxdt

+

∫ T

S

φ′(t)Eq(t)

∫ l

0

b(t)u(x, t)|ut(x, t)|p+1dxdt = 0.

So we have∫ T

S

φ′(t)Eq+1(t)dt = −φ′(t)Eq(t)
∫ l

0

(u(x, t)ut(x, t)) |TSdx

+2

∫ T

S

φ′(t)Eq(t) ‖ut(t)‖2 dt−
∫ T

S

φ′(t)Eq(t)

∫ l

0

γu(x, t)utx(x, t)dxdt

+

∫ T

S

∫ l

0

[
φ′′(t)Eq(t) + qφ′(t)Eq(t)E′(t)

]
u(x, t)ut(x, t)dxdt

−
∫ T

S

φ′(t)Eq(t)

∫ l

0

b(t)u(x, t)|ut(x, t)|p+1dxdt. (2.3)

Using Cauchy inequality, Hölder’s inequality, definition of E(t) and φ′(t)µ we get∣∣∣∣∣
∫ l

0

u(x, t)ut(x, t)dx

∣∣∣∣∣ ≤
(∫ l

0

u2(x, t)dx

)(∫ l

0

u2t (x, t)dx

)
≤ cE(t), (2.4)

∣∣∣∣∣φ′(t)Eq
∫ l

0

u(x, t)ut(x, t)dx|TS

∣∣∣∣∣ ≤ cµEq+1(S), (2.5)

2

∫ T

S

φ′(t)Eq(t)||ut(t)||2dt ≤ 2

∫ T

S

φ′(t)Eq(t)l
p
p+2

(∫ l

0

|ut(x, t)|p+2dx
) 2
p+2

dt

≤ p(2ε1)
p+2
p

p+ 2

∫ T

S

(
φ′(t)l

)
E
q(p+2)
p dt+

2

(p+ 2)ε
p+2
2

1

∫ T

S

(
−E′(t)

2
)dt, (2.6)
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∫ T

S

∫ l

0

[φ′′(t)Eq(t) + qφ′(t)Eq−1(t)E′(t)]u(x, t)ut(x, t)dxdt

∣∣∣∣∣
≤
∫ T

S

∣∣φ′′(t)Eq(t) + qφ′(t)Eq−1(t)E′(t)
∣∣ cE(t)dt

≤ qcµ

q + 1
Eq+1(S), (2.7)∣∣∣∣∣

∫ T

S

φ′(t)Eq
∫ l

0

γu(x, t)utx(x, t)dxdt

∣∣∣∣∣ ≤ d1
2

∫ T

S

φ′q+1(t)dt, (2.8)

∣∣∣∣∣
∫ T

S

φ′(t)Eq(t)

∫ l

0

b(t)u(x, t)|ut(x, t)|p+1dxdt
∣∣∣∣∣

≤ (µd2ε2)
p+2

p+ 2

∫ T

S

φ′(t)Eq(q+
1
2 )(p+2)(t)dt+

p+ 1

(p+ 2)ε
p+2
p+1

2

E(S), (2.9)

where

c =
l2

π2k
1
2

, d1 = 1 +
γ2l2

π2k
, d2 =

l
3
2+

1
p+2

πk
1
2 2

p+1
p+2

.

Thanks to Sobolev inequality ‖u(t)‖p+2 ≤ l
1
2+

1
p+2 ‖ux(t)‖ (ref. [6]) and the defini-

tion of E(t) we have

‖u(t)‖p+2 ≤
l
1
2+

1
p+2

π
E(t)

1
2 .

Employing the inequalities 2.5—2.9 and 2.3 we get∫ T

S

φ′(t)Eq+1(t)dt ≤ cµE(0)qE(S) +
pl(2ε1)

p+2
p

p+ 2

∫ T

S

φ′(t)E
q(p+2)

2 dt

+
1

(p+ 2)ε
p+2
2

1

∫ T

S

(−E′(t))dt+
qcµ

q + 1
Eq+1(S) +

d1
2

∫ T

S

φ′(t)Eq+1(t)dt

+
(µd2ε2)

p+2

p+ 2

∫ T

S

φ′(t)E(q+
1
2 )(p+2)(t)dt+

p+ 1

(p+ 2)ε
p+2
p+1

2

E(S),

If we choose q = p
2 we get∫ T

S

φ′(t)Eq+1(t)dt ≤ cµE(0)qE(S) +
pl(2ε1)

p+2
p

p+ 2

∫ T

S

φ′(t)E
q(p+2)
p (t)dt

+
1

(p+ 2)ε
p+2
2

1

∫ T

S

(−E′(t))dt+
qcµ

q + 1
Eq+1(S) +

d1
2

∫ T

S

φ′(t)Eq+1(t)dt

+
(µd2ε2)

p+2

p+ 2

∫ T

S

φ′(t)Eq+1+β(t)dt+
p+ 1

(p+ 2)ε
p+2
p+1

2

E(S),



ENERGY DECAY RATE OF THE SOLUTIONS OF A MARINE RISER EQUATION 291

Here β = p(p+2)
2 . Choosing k > 2l2γ2

π2 we get θ = 1
2 −

cγ2

k
1
2
> 0,

θ

∫ T

S

φ′(t)Eq+1(t)dt ≤ cµE(0)qE(S) +
pl(2ε1)

p+2
p

p+ 2

∫ T

S

φ′(t)E
q(p+2)
p (t)dt

+
1

(p+ 2)ε
p+2
2

1

∫ T

S

(−E′(t))dt+
qcµ

q + 1
Eq(0)E(S)

+
(µd2ε2)

p+2

p+ 2

∫ T

S

φ′(t)Eq+1+β(t)dt+
p+ 1

(p+ 2)ε
p+2
p+1

E(S),

If we choose εp+22 = θ(p+2)
4(d2µ)p+2Eβ(0)

and ε
p+2
p

1 = θ(p+2)

2
3p+2
p pl

we get

θ

2

∫ T

S

φ′(t)Eq+1(t)dt ≤ cµEq(0)E(S) +
qcµ

q + 1
Eq(0)E(S)

+
(2

3p+2
p pl)

p
2

(p+ 2)(θ(p+ 2))
p
2

E(S) +
(p+ 1)(4(d2µ)p+2)

1
p+1E

β
p+1 (0)

(p+ 2)(θ(p+ 2))
1
p+1

E(S),

Thus we obtain ∫ T

S

φ′(t)Eq+1(t)dt ≤ 1

ω
Eq(0)E(S).

Now, using Lemma 1.1 we get

E(t) ≤ E(0)

(
p+ 2

2 + ωp
∫ t
0
b(s)ds

) 2
p

, ∀t > 0,

Here

ω−1 =
2

θ
max

{
cµ,

(2
3p+2
p pl)

p
2

(p+ 2)(θ(p+ 2))
p
2Eq(0)

,
(p+ 1)(4(d2µ)p+2)

1
p+1

(p+ 2)(θ(p+ 2))
1
p+1E

qβ−p−1
β (0)

}
.
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