SOME CESȦRO-TYPE SUMMABILITY SPACES DEFINED BY A MODULUS FUNCTION OF ORDER (α, β)

HACER ŞENGÜL

Abstract

In this article, we introduce strong $w[\theta, f, p]$-summability of order (α, β) for sequences of complex (or real) numbers and give some inclusion relations between the sets of lacunary statistical convergence of order (α, β), strong $w_{\alpha}^{\beta}[\theta, f, p]$-summability and strong $w_{\alpha}^{\beta}(p)$-summability.

1. Introduction

In 1951, Steinhaus [15] and Fast [9] introduced the concept of statistical convergence and later in 1959, Schoenberg [13] reintroduced independently. Caserta et al. [2], Çakallı [3], Connor [8], Çolak [7], Et [4], Fridy [10], Gadjiev and Orhan [5], Kolk [6], Salat [14] and many others investigated some arguments related to this notion.

Çolak [7] studied statistical convergence order α by giving the definition as follows:

We say that the sequence $x=\left(x_{k}\right)$ is statistically convergent of order α to ℓ if there is a complex number ℓ such that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{\alpha}}\left|\left\{k \leq n:\left|x_{k}-\ell\right| \geq \varepsilon\right\}\right|=0
$$

Let $0<\alpha \leq \beta \leq 1$. We define the $(\alpha, \beta)-$ density of the subset E of \mathbb{N} by

$$
\delta_{\alpha}^{\beta}(E)=\lim _{n} \frac{1}{n^{\alpha}}|\{k \leq n: k \in E\}|^{\beta}
$$

provided the limit exists (finite or infinite), where $|\{k \leq n: k \in E\}|^{\beta}$ denotes the β th power of number of elements of E not exceeding n.

If a sequence $x=\left(x_{k}\right)$ satisfies property $P(k)$ for all k except a set of (α, β)-density zero, then we say that x_{k} satisfies $P(k)$ for "almost all k according to β " and we abbreviate this by "a.a.k (α, β) ".

[^0]Throughout this paper w indicate the space of sequences of real number.
Let $0<\beta \leq 1,0<\alpha \leq 1, \alpha \leq \beta$ and $x=\left(x_{k}\right) \in w$. The sequence $x=\left(x_{k}\right)$ is said to be statistically convergent of order (α, β) if there is a complex number L such that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{\alpha}}\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|^{\beta}=0
$$

i.e. for a.a.k($\alpha, \beta)\left|x_{k}-L\right|<\varepsilon$ for every $\varepsilon>0$, in that case a sequence x is said to be statistically convergent of order (α, β), to L. This convergence is indicated by $S_{\alpha}^{\beta}-\lim x_{k}=L([16])$.

By a lacunary sequence we mean an increasing integer sequence $\theta=\left(k_{r}\right)$ such that $h_{r}=\left(k_{r}-k_{r-1}\right) \rightarrow \infty$ as $r \rightarrow \infty$ and $\alpha \in(0,1]$. Throughout this paper the intervals determined by θ will be denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$ and the ratio $\frac{k_{r}}{k_{r-1}}$ will be abbreviated by q_{r}. Lacunary sequence spaces were studied in ([11], [12], [17], [18]).

First of all, the notion of a modulus was given by Nakano [20]. Maddox [25] and Ruckle [28] used a modulus function to construct some sequence spaces. Afterwards different sequence spaces defined by modulus have been studied by Altın [1], Et ([26], [27]), Gaur and Mursaleen [21], Işık [23], Nuray and Savaş [22], Pehlivan and Fisher [29] and everybody else.

We recall that a modulus f is a function from $[0, \infty)$ to $[0, \infty)$ such that
i) $f(x)=0$ if and only if $x=0$,
ii) $f(x+y) \leq f(x)+f(y)$ for $x, y \geq 0$,
iii) f is increasing,
iv) f is continuous from the right at 0 .

It follows that f must be continuous everywhere on $[0, \infty)$.
The following inequality will be used frequently throughout the paper:

$$
\begin{equation*}
\left|a_{k}+b_{k}\right|^{p_{k}} \leq D\left(\left|a_{k}\right|^{p_{k}}+\left|b_{k}\right|^{p_{k}}\right) \tag{1}
\end{equation*}
$$

where $a_{k}, b_{k} \in \mathbb{C}, 0<p_{k} \leq \sup p_{k}=H, D=\max \left(1,2^{H-1}\right)([24])$.

2. Main Results

In this part we will describe the sets of strongly $w_{\alpha}^{\beta}(p)$-summable sequences and strongly $w_{\alpha}^{\beta}[\theta, f, p]$-summable sequences with respect to the modulus function f. We will examine these spaces and we give some inclusion relations between the $S_{\alpha}^{\beta}(\theta)$ - statistical convergent, strong $w_{\alpha}^{\beta}[\theta, f, p]$-summability and strong $w_{\alpha}^{\beta}(p)$-summability.

Definition 1. Let $\theta=\left(k_{r}\right)$ be a lacunary sequence and $0<\alpha \leq \beta \leq 1$ be given. We say that the sequence $x=\left(x_{k}\right)$ is $S_{\alpha}^{\beta}(\theta)$-statistically convergent (or lacunary statistically convergent sequences of order (α, β)) if there is a real number L such
that

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|^{\beta}=0
$$

where $I_{r}=\left(k_{r-1}, k_{r}\right]$ and h_{r}^{α} denotes the α th power $\left(h_{r}\right)^{\alpha}$ of h_{r}, that is $h^{\alpha}=$ $\left(h_{r}^{\alpha}\right)=\left(h_{1}^{\alpha}, h_{2}^{\alpha}, \ldots, h_{r}^{\alpha}, \ldots\right)$ and $|\{k \leq n: k \in E\}|^{\beta}$ denotes the β th power of number of elements of E not exceeding n. In the present case this convergence is indicated by $S_{\alpha}^{\beta}(\theta)-\lim x_{k}=L . S_{\alpha}^{\beta}(\theta)$ will indicate the set of all $S_{\alpha}^{\beta}(\theta)-$ statistically convergent sequences. If $\theta=\left(2^{r}\right)$, then we will write S_{α}^{β} in the place of $S_{\alpha}^{\beta}(\theta)$. If $\alpha=\beta=1$ and $\theta=\left(2^{r}\right)$, then we will write S in the place of $S_{\alpha}^{\beta}(\theta)$.

Definition 2. Let $\theta=\left(k_{r}\right)$ be a lacunary sequence, $0<\alpha \leq \beta \leq 1$ and p be a positive real number. We say that the sequence $x=\left(x_{k}\right)$ is strongly $N_{\alpha}^{\beta}(\theta, p)-$ summable (or strongly $N(\theta, p)$-summable of order (α, β)) if there is a real number L such that

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}^{\alpha}}\left(\sum_{k \in I_{r}}\left|x_{k}-L\right|^{p}\right)^{\beta}=0
$$

In the present case we denote $N_{\alpha}^{\beta}(\theta, p)-\lim x_{k}=L . N_{\alpha}^{\beta}(\theta, p)$ will denote the set of all strongly $N(\theta, p)$-summable of order (α, β). If $\alpha=\beta=1$, then we will write $N(\theta, p)$ in the place of $N_{\alpha}^{\beta}(\theta, p)$. If $\theta=\left(2^{r}\right)$, then we will write $w_{\alpha}^{\beta}(p)$ in the place of $N_{\alpha}^{\beta}(\theta, p)$. If $L=0$, then we will write $w_{\alpha, 0}^{\beta}(p)$ in the place of $w_{\alpha}^{\beta}(p) . N_{\alpha, 0}^{\beta}(\theta, p)$ will denote the set of all strongly $N_{\theta}(p)$-summable of order (α, β) to 0 .

Definition 3. Let f be a modulus function, $p=\left(p_{k}\right)$ be a sequence of strictly positive real numbers and $0<\alpha \leq \beta \leq 1$ be real numbers. We say that the sequence $x=\left(x_{k}\right)$ is strongly $w_{\alpha}^{\beta}[\theta, f, p]-$ summable to L (a real number) such that

$$
w_{\alpha}^{\beta}[\theta, f, p]=\left\{x=\left(x_{k}\right): \lim _{r \rightarrow \infty} \frac{1}{h_{r}^{\alpha}}\left(\sum_{k \in I_{r}}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p_{k}}\right)^{\beta}=0, \text { for some } L\right\}
$$

In the present case, we denote $w_{\alpha}^{\beta}[\theta, f, p]-\lim x_{k}=L$. In the special case $p_{k}=1$, for all $k \in \mathbb{N}$ and $f(x)=x$ we will denote $N_{\alpha}^{\beta}(\theta, p)$ in the place of $w_{\alpha}^{\beta}[\theta, f, p]$. $w_{\alpha, 0}^{\beta}[\theta, f, p]$ will denote the set of all strongly $w[\theta, f, p]-$ summable of order (α, β) to 0 .

In the following theorems we shall assume that the sequence $p=\left(p_{k}\right)$ is bounded and $0<h=\inf _{k} p_{k} \leq p_{k} \leq \sup _{k} p_{k}=H<\infty$.
Theorem 1. The class of sequences $w_{\alpha, 0}^{\beta}[\theta, f, p]$ is linear space.
Proof. Omitted.
Theorem 2. The space $w_{\alpha, 0}^{\beta}[\theta, f, p]$ is paranormed by

$$
g(x)=\sup _{r}\left\{\frac{1}{h_{r}^{\alpha}}\left(\sum_{k \in I_{r}}\left[f\left(\left|x_{k}\right|\right)\right]^{p_{k}}\right)^{\beta}\right\}^{\frac{1}{M}}
$$

where $0<\alpha \leq \beta \leq 1$ and $M=\max (1, H)$.
Proof. Clearly $g(0)=0$ and $g(x)=g(-x)$. Take any $x, y \in w_{\alpha, 0}^{\beta}[\theta, f, p]$. Since $\frac{p_{k}}{\frac{M_{H}}{\beta}} \leq 1$ and $\frac{M}{\beta} \geq 1$, using the Minkowski's inequality and definition of f, we can write

$$
\begin{aligned}
\left\{\frac{1}{h_{r}^{\alpha}}\left(\sum_{k \in I_{r}}\left[f\left(\left|x_{k}+y_{k}\right|\right)\right]^{p_{k}}\right)^{\beta}\right\}^{\frac{1}{M}} & \leq\left\{\frac{1}{h_{r}^{\alpha}}\left(\sum_{k \in I_{r}}\left[f\left(\left|x_{k}\right|\right)+f\left(\left|y_{k}\right|\right)\right]^{p_{k}}\right)^{\beta}\right\}^{\frac{1}{M}} \\
& =\frac{1}{h_{r}^{\frac{\alpha}{M}}}\left(\sum_{k \in I_{r}}\left[f\left(\left|x_{k}\right|\right)+f\left(\left|y_{k}\right|\right)\right]^{p_{k}}\right)^{\frac{1}{M}} \\
\leq & \frac{1}{h_{r}^{\frac{\alpha}{M}}}\left\{\left(\sum_{k \in I_{r}}\left[f\left(\left|x_{k}\right|\right)\right]^{p_{k}}\right)^{\beta}\right\}^{\frac{1}{M}} \\
& +\frac{1}{h_{r}^{\frac{\alpha}{M}}}\left\{\left(\sum_{k \in I_{r}}\left[f\left(\left|y_{k}\right|\right)\right]^{p_{k}}\right)^{\beta}\right\}^{\frac{1}{M}}
\end{aligned}
$$

Therefore $g(x+y) \leq g(x)+g(y)$ for $x, y \in w_{\alpha, 0}^{\beta}[\theta, f, p]$. Let λ be complex number. By definition of f we have

$$
g(\lambda x)=\sup _{r}\left\{\frac{1}{h_{r}^{\alpha}}\left(\sum_{k \in I_{r}}\left[f\left(\left|\lambda x_{k}\right|\right)\right]^{p_{k}}\right)^{\beta}\right\}^{\frac{1}{M}} \leq K^{\frac{H}{\beta}} g(x)
$$

where $[\lambda]$ denotes the integer part of λ, and $K=1+[|\lambda|]$. Now, let $\lambda \rightarrow 0$ for any fixed x with $g(x) \neq 0$. By definition of f, for $|\lambda|<1$ and $0<\alpha \leq \beta \leq 1$, we have

$$
\begin{equation*}
\frac{1}{h_{r}^{\alpha}}\left(\sum_{k \in I_{r}}\left[f\left(\left|\lambda x_{k}\right|\right)\right]^{p_{k}}\right)^{\beta}<\varepsilon \text { for } n>N(\varepsilon) \tag{2}
\end{equation*}
$$

Also, for $1 \leq n \leq N$, taking λ small enough, since f is continuous we have

$$
\begin{equation*}
\frac{1}{h_{r}^{\alpha}}\left(\sum_{k \in I_{r}}\left[f\left(\left|\lambda x_{k}\right|\right)\right]^{p_{k}}\right)^{\beta}<\varepsilon \tag{3}
\end{equation*}
$$

(2) and (3) together imply that $g(\lambda x) \rightarrow 0$ as $\lambda \rightarrow 0$.

Proposition 1. ([19]) Let f be a modulus and $0<\delta<1$. Then for each $\|u\| \geq \delta$, we have $f(\|u\|) \leq 2 f(1) \delta^{-1}\|u\|$.

Theorem 3. If $0<\alpha=\beta \leq 1, p>1$ and $\liminf _{u \rightarrow \infty} \frac{f(u)}{u}>0$, then $w_{\alpha}^{\beta}[\theta, f, p]=$ $w_{\alpha}^{\beta}(p)$.
Proof. Let $p_{k}=p$ be a positive real number. If $\liminf _{u \rightarrow \infty} \frac{f(u)}{u}>0$ then there exists a number $c>0$ such that $f(u)>c u$ for $u>0$. We have $x \in w_{\alpha}^{\beta}[\theta, f, p]$. Clearly

$$
\frac{1}{h_{r}^{\alpha}}\left(\sum_{k \in I_{r}}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p}\right)^{\beta} \geq \frac{1}{h_{r}^{\alpha}}\left(\sum_{k \in I_{r}}\left[c\left|x_{k}-L\right|\right]^{p}\right)^{\beta}=\frac{c^{p \beta}}{h_{r}^{\alpha}}\left(\sum_{k \in I_{r}}\left|x_{k}-L\right|^{p}\right)^{\beta}
$$

therefore $w_{\alpha}^{\beta}[\theta, f, p] \subseteq w_{\alpha}^{\beta}(p)$.
Let $x \in w_{\alpha}^{\beta}(p)$. Then we have

$$
\frac{1}{h_{r}^{\alpha}}\left(\sum_{k \in I_{r}}\left|x_{k}-L\right|^{p}\right)^{\beta} \rightarrow 0 \text { as } r \rightarrow \infty
$$

Let $\varepsilon>0, \alpha=\beta$ and choose δ with $0<\delta<1$ such that $c u<f(u)<\varepsilon$ for every u with $0 \leq u \leq \delta$. We can write

$$
\begin{aligned}
\frac{1}{h_{r}^{\alpha}}\left(\sum_{k \in I_{r}}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p}\right)^{\beta=} & \frac{1}{h_{r}^{\alpha}}\left(\sum_{\substack{k \in I_{r} \\
\left|x_{k}-L\right| \leq \delta}}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p}\right)^{\beta} \\
& +\frac{1}{h_{r}^{\alpha}}\left(\sum_{\substack{k \in I_{r} \\
\left|x_{k}-L\right|>\delta}}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p}\right)^{\beta} \\
\leq & \frac{1}{h_{r}^{\alpha}} \varepsilon^{p \beta} h_{r}^{\beta}+\frac{1}{h_{r}^{\alpha}}\left(\sum_{\substack{k \in I_{r} \\
\left|x_{k}-L\right|>\delta}}\left[2 f(1) \delta^{-1}\left|x_{k}-L\right|\right]^{p}\right)^{\beta} \\
\leq & \frac{1}{h_{r}^{\alpha}} \varepsilon^{p \beta} h_{r}^{\beta}+\frac{2^{p \beta} f(1)^{p \beta}}{h_{r}^{\alpha} \delta^{p \beta}}\left(\sum_{k \in I_{r}}\left|x_{k}-L\right|^{p}\right)^{\beta}
\end{aligned}
$$

by Proposition 1. Therefore $x \in w_{\alpha}^{\beta}[\theta, f, p]$.
Example 1. We now give an example to show that $w_{\alpha}^{\beta}[\theta, f, p] \neq w_{\alpha}^{\beta}(p)$ in this case when $\liminf _{u \rightarrow \infty} \frac{f(u)}{u}=0$. Consider the sequence $f(x)=\sqrt{x}$ of modulus function.

Define $x=\left(x_{k}\right)$ by

$$
x_{k}= \begin{cases}h_{r}, & \text { if } k=k_{r} \\ 0, & \text { if otherwise }\end{cases}
$$

We have, for $L=0, p=\frac{3}{2}$ and $\alpha=\beta$

$$
\frac{1}{h_{r}^{\alpha}}\left(\sum_{k \in I_{r}}\left[f\left(\left|x_{k}\right|\right)\right]^{p}\right)^{\beta}=\frac{1}{h_{r}^{\alpha}}\left(\sqrt{h_{r}}\right)^{\frac{3}{2} \beta} \rightarrow 0 \text { as } r \rightarrow \infty
$$

and so $x \in w_{\alpha}^{\beta}[\theta, f, p]$. But

$$
\frac{1}{h_{r}^{\alpha}}\left(\sum_{k \in I_{r}}\left|x_{k}\right|^{p}\right)^{\beta}=\frac{\left(h_{r}\right)^{\frac{3}{2} \beta}}{h_{r}^{\alpha}} \rightarrow \infty \text { as } r \rightarrow \infty
$$

and so $x \notin w_{\alpha}^{\beta}(p)$.
Theorem 4. Let $0<\alpha \leq \beta \leq 1$ and $\liminf p_{k}>0$. Then $x_{k} \rightarrow L$ implies $w_{\alpha}^{\beta}[\theta, f, p]-\lim x_{k}=L$.

Proof. Let $x_{k} \rightarrow L$. By definition of f we have $f\left(\left|x_{k}-L\right|\right) \rightarrow 0$. Since liminf $p_{k}>0$, we have $\left[f\left(\left|x_{k}-L\right|\right)\right]^{p_{k}} \rightarrow 0$. Therefore $w_{\alpha}^{\beta}[\theta, f, p]-\lim x_{k}=L$.

Theorem 5. Let $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in(0,1]$ be real numbers such that $0<\alpha_{1} \leq \alpha_{2} \leq$ $\beta_{1} \leq \beta_{2} \leq 1, f$ be a modulus function and let $\theta=\left(k_{r}\right)$ be a lacunary sequence, then $w_{\alpha_{1}}^{\beta_{2}}[\theta, f, p] \subset S_{\alpha_{2}}^{\beta_{1}}(\theta)$.
Proof. Let $x \in w_{\alpha_{1}}^{\beta_{2}}[\theta, f, p]$ and let $\varepsilon>0$ be given and \sum_{1} and \sum_{2} denote the sums over $k \in I_{r},\left|x_{k}-L\right| \geq \varepsilon$ and $k \in I_{r},\left|x_{k}-L\right|<\varepsilon$ respectively. Since $h_{r}^{\alpha_{1}} \leq h_{r}^{\alpha_{2}}$ for each r we may write

$$
\begin{aligned}
\frac{1}{h_{r}^{\alpha_{1}}}\left(\sum_{k \in I_{r}}[f\right. & \left.\left.f\left(x_{k}-L \mid\right)\right]^{p_{k}}\right)^{\beta_{2}} \\
& =\frac{1}{h_{r}^{\alpha_{1}}}\left[\sum_{1}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p_{k}}+\sum_{2}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p_{k}}\right]^{\beta_{2}} \\
& \geq \frac{1}{h_{r}^{\alpha_{2}}}\left[\sum_{1}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p_{k}}+\sum_{2}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p_{k}}\right]^{\beta_{2}} \\
& \geq \frac{1}{h_{r}^{\alpha_{2}}}\left[\sum_{1}[f(\varepsilon)]^{p_{k}}\right]^{\beta_{2}} \\
& \geq \frac{1}{h_{r}^{\alpha_{2}}}\left[\sum_{1} \min \left([f(\varepsilon)]^{h},[f(\varepsilon)]^{H}\right)\right]^{\beta_{2}} \\
& \geq \frac{1}{h_{r}^{\alpha_{2}}}\left|\left\{k \in I_{r}:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|^{\beta_{1}}\left[\min \left([f(\varepsilon)]^{h},[f(\varepsilon)]^{H}\right)\right]^{\beta_{1}}
\end{aligned}
$$

Hence $x \in S_{\alpha_{2}}^{\beta_{1}}(\theta)$.

Theorem 6. If the modulus f is bounded and $\lim _{r \rightarrow \infty} \frac{h_{r}^{\beta_{2}}}{h_{r}^{\alpha_{1}}}=1$ then $S_{\alpha_{1}}^{\beta_{2}}(\theta) \subset$ $w_{\alpha_{2}}^{\beta_{1}}[\theta, f, p]$.
Proof. Let $x \in S_{\alpha_{1}}^{\beta_{2}}(\theta)$. Assume that f is bounded. Therefore $f(x) \leq K$, for a positive integer K and all $x \geq 0$. Then for each $r \in \mathbb{N}$ and $\varepsilon>0$ we can write

$$
\begin{gathered}
\frac{1}{h_{r}^{\alpha_{2}}}\left(\sum_{k \in I_{r}}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p_{k}}\right)^{\beta_{1}} \leq \frac{1}{h_{r}^{\alpha_{1}}}\left(\sum_{k \in I_{r}}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p_{k}}\right)^{\beta_{1}} \\
=\frac{1}{h_{r}^{\alpha_{1}}}\left(\sum_{1}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p_{k}}+\sum_{2}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p_{k}}\right)^{\beta_{1}} \\
\leq \frac{1}{h_{r}^{\alpha_{1}}}\left(\sum_{1} \max \left(K^{h}, K^{H}\right)+\sum_{2}[f(\varepsilon)]^{p_{k}}\right)^{\beta_{1}} \\
\leq\left(\max \left(K^{h}, K^{H}\right)\right)^{\beta_{2}} \frac{1}{h_{r}^{\alpha_{1}}}\left|\left\{k \in I_{r}: f\left(\left|x_{k}-L\right|\right) \geq \varepsilon\right\}\right|^{\beta_{2}} \\
\quad+\frac{h_{r}^{\beta_{2}}}{h_{r}^{\alpha_{1}}}\left(\max \left(f(\varepsilon)^{h}, f(\varepsilon)^{H}\right)\right)^{\beta_{2}} .
\end{gathered}
$$

Hence $x \in w_{\alpha_{2}}^{\beta_{1}}[\theta, f, p]$.
Theorem 7. Let f be a modulus function. If $\lim p_{k}>0$, then $w_{\alpha}^{\beta}[\theta, f, p]-\lim x_{k}=$ L uniquely.
Proof. Let $\lim p_{k}=s>0$. Assume that $w_{\alpha}^{\beta}[\theta, f, p]-\lim x_{k}=L_{1}$ and $w_{\alpha}^{\beta}[\theta, f, p]-$ $\lim x_{k}=L_{2}$. Then

$$
\lim _{r} \frac{1}{h_{r}^{\alpha}}\left(\sum_{k \in I_{r}}\left[f\left(\left|x_{k}-L_{1}\right|\right)\right]^{p_{k}}\right)^{\beta}=0
$$

and

$$
\lim _{r} \frac{1}{h_{r}^{\alpha}}\left(\sum_{k \in I_{r}}\left[f\left(\left|x_{k}-L_{2}\right|\right)\right]^{p_{k}}\right)^{\beta}=0 .
$$

By definition of f and using (1), we have

$$
\begin{aligned}
& \frac{1}{h_{r}^{\alpha}}\left(\sum_{k \in I_{r}}\left[f\left(\left|L_{1}-L_{2}\right|\right)\right]^{p_{k}}\right)^{\beta} \\
& \quad \leq \frac{D}{h_{r}^{\alpha}}\left(\sum_{k \in I_{r}}\left[f\left(\left|x_{k}-L_{1}\right|\right)\right]^{p_{k}}+\sum_{k \in I_{r}}\left[f\left(\left|x_{k}-L_{2}\right|\right)\right]^{p_{k}}\right)^{\beta} \\
& \quad \leq \frac{D}{h_{r}^{\alpha}}\left(\sum_{k \in I_{r}}\left[f\left(\left|x_{k}-L_{1}\right|\right)\right]^{p_{k}}\right)^{\beta}+\frac{D}{h_{r}^{\alpha}}\left(\sum_{k \in I_{r}}\left[f\left(\left|x_{k}-L_{2}\right|\right)\right]^{p_{k}}\right)^{\beta}
\end{aligned}
$$

where $\sup _{k} p_{k}=H, 0<\alpha \leq \beta \leq 1$ and $D=\max \left(1,2^{H-1}\right)$. Hence

$$
\lim _{r} \frac{1}{h_{r}^{\alpha}}\left(\sum_{k \in I_{r}}\left[f\left(\left|L_{1}-L_{2}\right|\right)\right]^{p_{k}}\right)^{\beta}=0
$$

Since $\lim _{k \rightarrow \infty} p_{k}=s$ we have $L_{1}-L_{2}=0$. Thus the limit is unique.

Theorem 8. Let $\theta=\left(k_{r}\right)$ and $\theta^{\prime}=\left(s_{r}\right)$ be two lacunary sequences such that $I_{r} \subset J_{r}$ for all $r \in \mathbb{N}$ and let $\alpha_{1}, \alpha_{2}, \beta_{1}$ and β_{2} be such that $0<\alpha_{1} \leq \alpha_{2} \leq \beta_{1} \leq \beta_{2} \leq 1$,
(i) If

$$
\begin{equation*}
\lim \inf _{r \rightarrow \infty} \frac{h_{r}^{\alpha_{1}}}{\ell_{r}^{\alpha_{2}}}>0 \tag{4}
\end{equation*}
$$

then $w_{\alpha_{2}}^{\beta_{2}}\left[\theta^{\prime}, f, p\right] \subset w_{\alpha_{1}}^{\beta_{1}}[\theta, f, p]$,
(ii) If the modulus f is bounded and

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{\ell_{r}}{h_{r}^{\alpha_{2}}}=1 \tag{5}
\end{equation*}
$$

then $w_{\alpha_{1}}^{\beta_{2}}[\theta, f, p] \subset w_{\alpha_{2}}^{\beta_{1}}\left[\theta^{\prime}, f, p\right]$.
Proof. (i) Let $x \in w_{\alpha_{2}}^{\beta_{2}}\left[\theta^{\prime}, f, p\right]$. We can write

$$
\begin{aligned}
\frac{1}{\ell_{r}^{\alpha_{2}}}\left(\sum_{k \in J_{r}}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p_{k}}\right)^{\beta_{2}}= & \frac{1}{\ell_{r}^{\alpha_{2}}}\left(\sum_{k \in J_{r}-I_{r}}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p_{k}}\right)^{\beta_{2}} \\
& +\frac{1}{\ell_{r}^{\alpha_{2}}}\left(\sum_{k \in I_{r}}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p_{k}}\right)^{\beta_{2}} \\
\geq & \frac{1}{\ell_{r}^{\alpha_{2}}}\left(\sum_{k \in I_{r}}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p_{k}}\right)^{\beta_{2}} \\
\geq & \frac{h_{r}^{\alpha_{1}}}{\ell_{r}^{\alpha_{2}}} \frac{1}{h_{r}^{\alpha_{1}}}\left(\sum_{k \in I_{r}}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p_{k}}\right)^{\beta_{1}}
\end{aligned}
$$

Thus if $x \in w_{\alpha_{2}}^{\beta_{2}}\left[\theta^{\prime}, f, p\right]$, then $x \in w_{\alpha_{1}}^{\beta_{1}}[\theta, f, p]$.
(ii) Let $x=\left(x_{k}\right) \in w_{\alpha_{1}}^{\beta_{2}}[\theta, f, p]$ and (2) holds. Assume that f is bounded. Therefore $f(x) \leq K$, for a positive integer K and all $x \geq 0$. Now, since $I_{r} \subseteq J_{r}$
and $h_{r} \leq \ell_{r}$ for all $r \in \mathbb{N}$, we can write

$$
\begin{aligned}
& \frac{1}{\ell_{r}^{\alpha_{2}}}\left(\sum_{k \in J_{r}}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p_{k}}\right)^{\beta_{1}} \\
&=\frac{1}{\ell_{r}^{\alpha_{2}}}\left(\sum_{k \in J_{r}-I_{r}}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p_{k}}\right)^{\beta_{1}}+\frac{1}{\ell_{r}^{\alpha_{2}}}\left(\sum_{k \in I_{r}}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p_{k}}\right)^{\beta_{1}} \\
& \leq\left(\frac{\ell_{r}-h_{r}}{\ell_{r}^{\alpha_{2}}}\right)^{\beta_{1}} K^{p_{k} \beta_{1}}+\frac{1}{\ell_{r}^{\alpha_{2}}}\left(\sum_{k \in I_{r}}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p_{k}}\right)^{\beta_{1}} \\
& \leq\left(\frac{\ell_{r}-h_{r}^{\alpha_{2}}}{h_{r}^{\alpha_{2}}}\right) K^{H \beta_{1}}+\frac{1}{h_{r}^{\alpha_{2}}}\left(\sum_{k \in I_{r}}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p_{k}}\right)^{\beta_{2}} \\
& \leq\left(\frac{\ell_{r}}{h_{r}^{\alpha_{2}}}-1\right) K^{H \beta_{1}}+\frac{1}{h_{r}^{\alpha_{1}}}\left(\sum_{k \in I_{r}}\left[f\left(\left|x_{k}-L\right|\right)\right]^{p_{k}}\right)^{\beta_{2}}
\end{aligned}
$$

for every $r \in \mathbb{N}$. Therefore $w_{\alpha_{1}}^{\beta_{2}}[\theta, f, p] \subset w_{\alpha_{2}}^{\beta_{1}}\left[\theta^{\prime}, f, p\right]$.
Now as a result of Theorem 8 we have the following Corollary 1.
Corollary 1. Let $\theta=\left(k_{r}\right)$ and $\theta^{\prime}=\left(s_{r}\right)$ be two lacunary sequences such that $I_{r} \subset J_{r}$ for all $r \in \mathbb{N}$. If (4) holds then, for $0<\alpha_{1} \leq \alpha_{2} \leq \beta_{1} \leq \beta_{2} \leq 1$
(i) If $0<\alpha_{1} \leq \alpha_{2} \leq \beta_{1} \leq 1$ and $\beta_{2}=1$, then $w_{\alpha_{2}}\left[\theta^{\prime}, f, p\right] \subset w_{\alpha_{1}}^{\beta_{1}}[\theta, f, p]$,
(ii) If $0<\alpha_{1} \leq \alpha_{2} \leq 1$ and $\beta_{1}=\beta_{2}=1$, then $w_{\alpha_{2}}\left[\theta^{\prime}, f, p\right] \subset w_{\alpha_{1}}[\theta, f, p]$,
(iii) If $0<\alpha_{1} \leq 1$ and $\alpha_{2}=\beta_{1}=\beta_{2}=1$, then $w\left[\theta^{\prime}, f, p\right] \subset w_{\alpha_{1}}[\theta, f, p]$,
(iv) If $0<\alpha_{1} \leq \alpha_{2} \leq 1$ and $\beta_{1}=\beta_{2}=\beta$, then $w_{\alpha_{2}}^{\beta}\left[\theta^{\prime}, f, p\right] \subset w_{\alpha_{1}}^{\beta}[\theta, f, p]$,
(v) If $\alpha_{1}=\alpha_{2}=\alpha$ and $0<\beta_{1} \leq \beta_{2} \leq 1$, then $w_{\alpha}^{\beta_{2}}\left[\theta^{\prime}, f, p\right] \subset w_{\alpha}^{\beta_{1}}[\theta, f, p]$,
(vi) If $\alpha_{1}=\alpha_{2}=1$ and $\beta_{1}=\beta_{2}=1$, then $w\left[\theta^{\prime}, f, p\right] \subset w[\theta, f, p]$.

If (5) holds then, for $0<\alpha_{1} \leq \alpha_{2} \leq \beta_{1} \leq \beta_{2} \leq 1$
(i) If $0<\alpha_{1} \leq \alpha_{2} \leq \beta_{1} \leq 1$ and $\beta_{2}=1$, then $w_{\alpha_{1}}[\theta, f, p] \subset w_{\alpha_{2}}^{\beta_{1}}\left[\theta^{\prime}, f, p\right]$,
(ii) If $0<\alpha_{1} \leq \alpha_{2} \leq 1$ and $\beta_{1}=\beta_{2}=1$, then $w_{\alpha_{1}}[\theta, f, p] \subset w_{\alpha_{2}}\left[\theta^{\prime}, f, p\right]$,
(iii) If $0<\alpha_{1} \leq 1$ and $\alpha_{2}=\beta_{1}=\beta_{2}=1$, then $w_{\alpha_{1}}[\theta, f, p] \subset w\left[\theta^{\prime}, f, p\right]$,
(iv) If $0<\alpha_{1} \leq \alpha_{2} \leq 1$ and $\beta_{1}=\beta_{2}=\beta$, then $w_{\alpha_{1}}^{\beta}[\theta, f, p] \subset w_{\alpha_{2}}^{\beta}\left[\theta^{\prime}, f, p\right]$,
(v) If $\alpha_{1}=\alpha_{2}=\alpha$ and $0<\beta_{1} \leq \beta_{2} \leq 1$, then $w_{\alpha}^{\beta_{2}}[\theta, f, p] \subset w_{\alpha}^{\beta_{1}}\left[\theta^{\prime}, f, p\right]$,
(vi) If $\alpha_{1}=\alpha_{2}=1$ and $\beta_{1}=\beta_{2}=1$, then $w[\theta, f, p] \subset w\left[\theta^{\prime}, f, p\right]$.

References

[1] Altın, Y., Properties of some sets of sequences defined by a modulus function, Acta Math. Sci. Ser. B Engl. Ed. 29(2) (2009), 427-434.
[2] Caserta, A., Giuseppe, Di M. and Kočinac, L. D. R., Statistical convergence in function spaces, Abstr. Appl. Anal. 2011, Art. ID 420419, 11 pp.
[3] Çakallı, H., A study on statistical convergence, Funct. Anal. Approx. Comput. 1(2) (2009), 19-24.
[4] Et, M., Generalized Cesàro difference sequence spaces of non-absolute type involving lacunary sequences, Appl. Math. Comput. 219(17) (2013), 9372-9376.
[5] Gadjiev, A. D., and Orhan, C., Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32(1) (2002), 129-138.
[6] Kolk, E., The statistical convergence in Banach spaces, Acta Comment. Univ. Tartu, 928 (1991), 41-52.
[7] Çolak, R., Statistical convergence of order α, Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub, 2010: 121-129.
[8] Connor, J. S., The Statistical and Strong p-Cesaro Convergence of Sequences, Analysis,8, pp. (1988), 47-63.
[9] Fast, H., Sur La Convergence Statistique, Colloq. Math., 2, pp. (1951), 241-244.
[10] Fridy, J., On Statistical Convergence, Analysis, 5, pp. (1985), 301-313.
[11] Fridy, J., and Orhan, C., Lacunary Statistical Convergence, Pacific J. Math., 160, pp. (1993), 43-51.
[12] Fridy, J., and Orhan, C., Lacunary Statistical Summability, J. Math. Anal. Appl., 173, pp. (1993), no. 2, 497-504.
[13] Schoenberg, I. J., The Integrability of Certain Functions and Related Summability Methods, Amer. Math. Monthly, 66, pp. (1959), 361-375.
[14] Salat, T., On Statistically Convergent Sequences of Real Numbers, Math. Slovaca., 30, pp. (1980), 139-150.
[15] Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73-74.
[16] Şengül, H., On Statistical Convergence of Order (α, β). (In rewiev)
[17] Et, M., and Şengül, H., Some Cesaro-type summability spaces of order α and lacunary statistical convergence of order α, Filomat 28 (2014), no. 8, 1593-1602.
[18] Şengül, H., and Et, M., On lacunary statistical convergence of order α, Acta Math. Sci. Ser. B Engl. Ed. 34 (2014), no. 2, 473-482.
[19] Pehlivan, S., and Fisher, B., Some sequence spaces defined by a modulus, Mathematica Slovaca vol. 45, no. 3, pp. 275-280,1995.
[20] Nakano, H., Modulared sequence spaces, Proc. Japan Acad. 27 (1951), 508-512.
[21] Gaur, A. K., and Mursaleen, M., Difference sequence spaces defined by a sequence of moduli, Demonstratio Math. 31(2) (1998), 275-278.
[22] Nuray, F., and Savaş, E., Some new sequence spaces defined by a modulus function, Indian J. Pure Appl. Math. 24(11) (1993), 657-663.
[23] Işık, M., Strongly almost (w, $\lambda, q)$-summable sequences, Math. Slovaca 61(5) (2011), 779788.
[24] Maddox, I. J., Elements of Functional Analysis, Cambridge University Press, 1970.
[25] Maddox, I. J., Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc, 1986, 100:161-166.
[26] Et, M., Strongly almost summable difference sequences of order m defined by a modulus, Studia Sci. Math. Hungar. 40(4) (2003), 463-476.
[27] Et, M., Spaces of Cesàro difference sequences of order r defined by a modulus function in a locally convex space, Taiwanese J. Math. 10(4) (2006), 865-879.
[28] Ruckle, W. H., FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973-978.
[29] Pehlivan, S. and Fisher, B., Lacunary strong convergence with respect to a sequence of modulus functions, Comment. Math. Univ. Carolin. 36 (1995), no. 1, 69-76.

Current address: Hacer Şengül: Department of Mathematics ; Siirt University 56100; Siirt; TURKEY.

E-mail address: hacer.sengul@hotmail.com

[^0]: Received by the editors: August 04, 2016; Accepted: November 01, 2016.
 2010 Mathematics Subject Classification. Primary 40A05, 40C05; Secondary 46A45.
 Key words and phrases. Lacunary sequence, modulus function, statistical convergence.

