MONOTONE ITERATIVE TECHNIQUE FOR A COUPLED SYSTEM OF FIRST ORDER DIFFERENTIAL EQUATIONS

ELIF DEMIRCI AND NURI OZALP

Abstract

By the help of upper and lower solutions, the monoton iterative technique is applied to a coupled system of first order ordinary differential equations with initial conditions depending on a function of end points. Some existence and uniqueness results are obtained. An example for a predator-prey system is given.

1. Introduction

It is well known that one of the most effective methods of estimating the solutions of differential equations and systems with initial conditions is monotone iterative technique (for details see [2]). In [1], an existence result is given for the problem

$$
\begin{aligned}
x^{\prime}(t) & =f(t, x(t)), t \in J=[0, T], T>0 \\
x(0) & =g(x(T))
\end{aligned}
$$

by using a monotone technique. Here $f \in C(J \times \mathbb{R}, \mathbb{R}), g \in C(\mathbb{R}, \mathbb{R})$. This technique was also applied to above problem with special cases of the function g (See, [3]-[9]). For application of monotone iterative techniques to higher order equations see, for example, [2] and [10]. In this paper, we consider the following coupled system of differential problem.

$$
\left\{\begin{array}{c}
u^{\prime}=\binom{u_{1}}{u_{2}}^{\prime}=\binom{f_{1}\left(t, u_{1}, u_{2}\right)}{f_{2}\left(t, u_{1}, u_{2}\right)}=f(t, u), \quad t \in J=[0, T], \quad T>0 \tag{1}\\
u(0)=\binom{u_{1}(0)}{u_{2}(0)}=\binom{g_{1}\left(u_{1}(T), u_{2}(T)\right)}{g_{2}\left(u_{1}(T), u_{2}(T)\right)}=g(u(T))
\end{array}\right.
$$

where $f \in C\left(J \times \mathbb{R}^{2}, \mathbb{R}^{2}\right), g \in C\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$.
The purpose of this paper is to prove that monotone technique can be applied

[^0]successfully to problems of type (1) with some assumptions on f and g. A predatorprey example satisfying the conditions given on f and g is also stated.

2. Existence and Uniqueness Results

Theorem 2.1. Let $f \in C\left(\Omega, \mathbb{R}^{2}\right), g \in C\left(\Delta, \mathbb{R}^{2}\right)$. Moreover, we assume that there exists functions $v, w \in C^{1}\left(J, \mathbb{R}^{2}\right)$ such that

$$
\begin{aligned}
v_{i}(t) & \leq w_{i}(t), \quad v_{i}^{\prime}(t) \leq f_{i}(t, v(t)), \quad w_{i}^{\prime}(t) \geq f_{i}(t, w(t)), \quad t \in J, i=1,2, \\
v_{i}(0) & \leq g_{i}(s) \leq w_{i}(0) \quad \text { for } \quad v_{i}(T) \leq s_{i} \leq w_{i}(T), \quad i=1,2
\end{aligned}
$$

where

$$
\begin{aligned}
\Omega & =\left\{(t, u): v_{i}(t) \leq u_{i}(t) \leq w_{i}(t), t \in J, i=1,2\right\} \\
\Delta & =\left\{u \in C^{1}\left(J, \mathbb{R}^{2}\right): v_{i}(t) \leq u_{i}(t) \leq w_{i}(t), t \in J, i=1,2\right\}
\end{aligned}
$$

Then problem (1) has at least one solution in Δ.

Proof. Let $P: J \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by

$$
P(t, u(t))=\binom{P_{1}(t, u(t))}{P_{2}(t, u(t))}=\binom{\max \left\{v_{1}(t), \min \left(u_{1}(t), w_{1}(t)\right)\right\}}{\max \left\{v_{2}(t), \min \left(u_{2}(t), w_{2}(t)\right)\right\}}
$$

Then $f(t, P(t, u(t)))$ defines a continuous extension of f to $J \times \mathbb{R}^{2}$. Because of the fact that f is bounded on $\Omega, f(t, P(t, u(t)))$ is bounded on $J \times \mathbb{R}^{2}$. Similarly, $g(P(t, u(t)))$ is a continuous extension of $g(u(t))$ to \mathbb{R}^{2}. Therefore, the problem

$$
\begin{aligned}
u^{\prime} & =f(t, P(t, u)) \\
u(0) & =g(P(T, u(T)))
\end{aligned}
$$

has a solution defined on J (see [2]). For $\varepsilon_{i}>0, i=1,2$, we consider

$$
\begin{aligned}
\left(w_{\varepsilon_{i}}\right)_{i}(t) & =w_{i}(t)+\varepsilon_{i}(1+t) \\
\left(v_{\varepsilon_{i}}\right)_{i}(t) & =v_{i}(t)-\varepsilon_{i}(1+t) .
\end{aligned}
$$

Let $v_{i}(T) \leq u_{i}(T) \leq w_{i}(T)$. We have

$$
\left(v_{\varepsilon_{i}}\right)_{i}(T)=v_{i}(T)-\varepsilon_{i}(1+T)<v_{i}(T) \leq u_{i}(T) \leq w_{i}(T)<\left(w_{\varepsilon_{i}}\right)_{i}(T) \quad, \quad i=1,2 .
$$

Then, $\left(v_{\varepsilon_{i}}\right)_{i}(0) \leq u_{i}(0) \leq\left(w_{\varepsilon_{i}}\right)_{i}(0), i=1,2$. We want to show that

$$
\left(v_{\varepsilon_{i}}\right)_{i}(t)<u_{i}(t)<\left(w_{\varepsilon_{i}}\right)_{i}(t), \quad i=1,2, \quad t \in J
$$

Suppose that $t_{i} \in(0, T]$ is such that, for $i=1,2$,

$$
\left(v_{\varepsilon_{i}}\right)_{i}(t)<u_{i}(t)<\left(w_{\varepsilon_{i}}\right)_{i}(t) \quad \text { for } t \in\left[0, t_{i}\right)
$$

and $u_{i}\left(t_{i}\right)=\left(w_{\varepsilon_{i}}\right)_{i}\left(t_{i}\right)$. Then, $u_{i}\left(t_{i}\right)>w_{i}\left(t_{i}\right)$ and so, $P_{i}\left(t_{i}, u\left(t_{i}\right)\right)=w_{i}\left(t_{i}\right), i=1,2$. We know that

$$
v_{i}\left(t_{i}\right) \leq P_{i}\left(t_{i}, u\left(t_{i}\right)\right) \leq w_{i}\left(t_{i}\right), \quad i=1,2
$$

from the definition of P. We can also write

$$
w_{i}^{\prime}\left(t_{i}\right) \geq f_{i}\left(t_{i}, w\left(t_{i}\right)\right)=f_{i}\left(t_{i}, P\left(t_{i}, u\left(t_{i}\right)\right)\right)=u_{i}^{\prime}\left(t_{i}\right), \quad i=1,2
$$

Since $\left(w_{\varepsilon_{i}}\right)_{i}^{\prime}\left(t_{i}\right)>w_{i}^{\prime}\left(t_{i}\right)$, we have $\left(w_{\varepsilon_{i}}\right)_{i}^{\prime}\left(t_{i}\right)>u_{i}^{\prime}\left(t_{i}\right), i=1,2$. If we set $z_{i}=$ $\left(w_{\varepsilon_{i}}\right)_{i}-u_{i}$, this gives

$$
z_{i}^{\prime}\left(t_{i}\right) \geq 0 \quad \text { and } \quad z_{i}\left(t_{i}\right)=0, \quad i=1,2 .
$$

By using the definition of derivative, we have

$$
z_{i}^{\prime}\left(t_{i}\right)=\lim _{h \rightarrow 0^{+}} \frac{z_{i}\left(t_{i}\right)-z_{i}\left(t_{i}-h\right)}{h}=\lim _{h \rightarrow 0^{+}} \frac{-z_{i}\left(t_{i}-h\right)}{h} .
$$

Since for $h>0$ small enough, $z_{i}\left(t_{i}-h\right)>0$, we have $z_{i}^{\prime}\left(t_{i}\right)<0$ which contradicts the assumption $z_{i}^{\prime}\left(t_{i}\right) \geq 0, i=1,2$. So, $u_{i}(t) \leq\left(w_{\varepsilon_{i}}\right)_{i}(t)$ on J for $i=1,2$. Similarly, it can be shown that $\left(v_{\varepsilon_{i}}\right)_{i}(t) \leq u_{i}(t)$. Consequently, $\left(v_{\varepsilon_{i}}\right)_{i}(t) \leq u_{i}(t) \leq\left(w_{\varepsilon_{i}}\right)_{i}(t)$ on J for $i=1$, 2. Letting $\varepsilon_{i} \rightarrow 0$, we get $v_{i}(t) \leq u_{i}(t) \leq w_{i}(t)$ on J for $i=1,2$.

The functions $v, w \in C^{1}\left(J, \mathbb{R}^{2}\right)$ are said to be a lower and an upper solution of problem (1), respectively, if

$$
\begin{aligned}
v_{i}^{\prime}(t) & \leq f_{i}(t, v(t)) \\
v_{i}(0) & \leq g_{i}(v(T)),
\end{aligned} \quad t \in J, i=1,2
$$

and

$$
\begin{aligned}
w_{i}^{\prime}(t) & \geq f_{i}(t, w(t)) \\
w_{i}(0) & \geq g_{i}(w(T)),
\end{aligned} \quad t \in J, i=1,2 .
$$

Theorem 2.2. Let $f \in C\left(J \times \mathbb{R}^{2}, \mathbb{R}^{2}\right)$, $g \in C\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$, v_{0}, wo lower and upper solutions of (1) such that $v_{0 i} \leq w_{0 i}$ on J for $i=1,2$ and let g_{i} be nondecreasing on J for $i=1,2$. Suppose further that
$f_{i}(t, u)-f_{i}(t, \bar{u}) \geq-M_{i}\left(u_{i}-\bar{u}_{i}\right) \quad$ for $v_{0 i} \leq \bar{u}_{i} \leq u_{i} \leq w_{i 0}, \quad M_{i} \geq 0, i=1,2$.
Then there exists monotone sequences $\left\{v_{n}\right\},\left\{w_{n}\right\}$ such that $v_{n} \rightarrow v, w_{n} \rightarrow w$ as $n \rightarrow \infty$ monotonically and uniformly on J and that v and w are minimal and maximal solutions of (1), respectively.

Proof. For any $\eta \in C\left(J, \mathbb{R}^{2}\right)$ such that $v_{0 i} \leq \eta_{i} \leq w_{0 i}, i=1,2$, we consider the following problem:

$$
\begin{equation*}
u_{i}^{\prime}=f_{i}(t, \eta)-M_{i}\left(u_{i}-\eta_{i}\right), \quad u_{i}(0)=g_{i}(\eta(T)) . \tag{2}
\end{equation*}
$$

For every such η, problem (2) has a unique solution u on J. Define a mapping A as $A_{i} \eta=u_{i}, i=1,2$. This mapping will be used to define the sequences $\left\{v_{n i}\right\}$ and $\left\{w_{n i}\right\}, i=1,2$. First, we will prove that
(a) $v_{0 i} \leq A_{i} v_{0}, w_{0 i} \geq A_{i} w_{0}, i=1,2$.
(b) A_{i} are monotone operators on $\Delta, i=1,2$.

To prove (a), set $A_{i} v_{0}=v_{1 i}$ where $v_{1 i}$ is the unique solution of (2) for $\eta_{i}=v_{0 i}$, $i=1,2$. Setting $p_{i}=v_{1 i}-v_{0 i}$, we have

$$
p_{i}^{\prime}=v_{1 i}^{\prime}-v_{0 i}^{\prime} \geq f_{i}\left(t, v_{0}\right)-M_{i}\left(v_{1 i}-v_{0 i}\right)-f_{i}\left(t, v_{0}\right)=-M_{i} p_{i} \quad, \quad i=1,2,
$$

and

$$
p_{i}(0)=v_{1 i}(0)-v_{0 i}(0) \geq g_{i}\left(v_{0}(T)\right)-g_{i}\left(v_{0}(T)\right)=0 .
$$

This gives us that $p_{i}(t) \geq 0$, so $v_{0 i} \leq A_{i} v_{0}, i=1,2$. Similarly, it can be proven that $w_{0 i} \geq A_{i} w_{0}$.
To prove (b), let $\bar{\eta}_{i}, \tilde{\eta}_{i} \in\left[v_{0 i}, w_{0 i}\right]$ such that $\bar{\eta}_{i} \leq \tilde{\eta}_{i}, i=1,2$. Suppose that

$$
u_{1 i}=A_{i} \bar{\eta} \quad \text { and } \quad u_{2 i}=A_{i} \tilde{\eta}
$$

Here, $u_{1 i}$ and $u_{2 i}$ are the unique solutions of (2) for $\bar{\eta}$ and $\tilde{\eta}$, respectively. Set $p_{i}=u_{2 i}-u_{1 i}, i=1,2$, then,

$$
\begin{aligned}
p_{i}^{\prime} & =u_{2 i}^{\prime}-u_{1 i}^{\prime}=f_{i}(t, \tilde{\eta})-M_{i}\left(u_{2 i}-\tilde{\eta}_{i}\right)-f_{i}(t, \bar{\eta})+M_{i}\left(u_{1 i}-\bar{\eta}_{i}\right) \\
& \geq-M_{i}\left(\tilde{\eta}_{i}-\bar{\eta}_{i}\right)-M_{i}\left(u_{2 i}-u_{1 i}-\tilde{\eta}_{i}+\bar{\eta}_{i}\right)=-M_{i} p_{i}
\end{aligned}
$$

and

$$
\begin{aligned}
p_{i}(0) & =u_{2 i}(0)-u_{1 i}(0) \\
& =g_{i}(\tilde{\eta}(T))-g_{i}(\bar{\eta}(T)) \geq 0
\end{aligned}
$$

since g_{i} are nondecreasing for $i=1,2$. This gives us that $p_{i}(t) \geq 0$ so, $u_{2 i} \geq u_{1 i}$, $i=1,2$. Since $A_{i} \tilde{\eta} \geq A_{i} \bar{\eta}, A_{i}$ are monotone operators on Δ for $i=1,2$.
As a result of (a) and (b), the sequences $v_{n i}=A_{i} v_{n-1}$ and $w_{n i}=A_{i} w_{n-1}$ can be defined. We can also show, by using mathematical induction, that

$$
v_{0 i} \leq v_{1 i} \leq \ldots \leq v_{n i} \leq w_{n i} \leq \ldots \leq w_{2 i} \leq w_{1 i} \leq w_{0 i} \quad \text { on } J \text { for } i=1,2
$$

It then follows

$$
\lim _{n \rightarrow \infty} v_{n i}=v_{i} \quad \text { and } \quad \lim _{n \rightarrow \infty} w_{n i}=w_{i}
$$

monotonically and uniformly on $J, i=1,2$. It is clear that v and w are are solutions of (1) since for $i=1,2, v_{n i}$ and $w_{n i}$ satisfy

$$
\begin{align*}
& v_{n i}^{\prime}=f_{i}\left(t, v_{n-1}\right)-M_{i}\left(v_{n i}-v_{(n-1) i}\right), \quad v_{n i}(0)=g_{i}\left(v_{n-1}(T)\right) \\
& \quad w_{n i}^{\prime}=f_{i}\left(t, w_{n-1}\right)-M_{i}\left(w_{n i}-w_{(n-1) i}\right), \quad w_{n i}(0)=g_{i}\left(w_{n-1}(T)\right) \tag{3}
\end{align*}
$$

To prove that v and w are minimal and maximal solutions of (1), we have to show that if u is any solution of (1) such that $v_{0 i} \leq u_{i} \leq w_{0 i}$ on $J, i=1,2$, then,

$$
v_{0 i} \leq v_{i} \leq u_{i} \leq w_{i} \leq w_{0 i} \quad \text { on } J \text { for } i=1,2
$$

Suppose that for some $n, v_{n i} \leq u_{i} \leq w_{n i}$ on J and set $p_{i}=u_{i}-v_{(n+1) i}$, then we have

$$
\begin{aligned}
p_{i}^{\prime} & =u_{i}^{\prime}-v_{(n+1) i}^{\prime} \\
& =f_{i}(t, u)-f_{i}\left(t, v_{n}\right)+M_{i}\left(v_{(n+1) i}-v_{n i}\right) \\
& \geq-M_{i}\left(u_{i}-v_{n i}\right)+M_{i}\left(v_{(n+1) i}-v_{n i}\right)=-M_{i} p_{i}
\end{aligned}
$$

and

$$
p_{i}(0)=u_{i}(0)-v_{(n+1) i}(0)=g_{i}(u(T))-g_{i}\left(v_{n}(T)\right) \geq 0
$$

These inequalities give us that $p_{i}(t) \geq 0$. So, $u_{i} \geq v_{(n+1) i}$ on J for $i=1,2$. Similarly it can be shown that $u_{i} \leq w_{(n+1) i}$ on J for $i=1,2$. Hence, $v_{(n+1) i} \leq u_{i} \leq w_{(n+1) i}$ on J for $i=1,2$. By using mathematical induction, this proves that for all n, $v_{n i} \leq u_{i} \leq w_{n i}$. Taking the limit as $n \rightarrow \infty$ gives us that $v_{i} \leq u_{i} \leq w_{i}$ on J for $i=1,2$.

We note that, every element of the sequence $\left\{v_{n}\right\}$ is a lower solution and every element of the sequence $\left\{w_{n}\right\}$ is an upper solution for problem (1).

Theorem 2.3. Let the conditions of Theorem 1 hold and moreover let
$f_{i}(t, x)-f_{i}(t, \bar{x}) \leq h_{i}(t)\left(x_{i}-\bar{x}_{i}\right) \quad$ for $\quad v_{i}(t) \leq \bar{x}_{i}(t) \leq x_{i}(t) \leq w_{i}(t), \quad t \in J, i=1,2$
$g_{i}(x(T))-g_{i}(\bar{x}(T)) \leq L_{i}(T)\left(x_{i}(T)-\bar{x}_{i}(T)\right)$ for $v_{i}(T) \leq \bar{x}_{i}(T) \leq x_{i}(T) \leq w_{i}(T)$, where $h_{i}: J \rightarrow \mathbb{R}$ are integrable functions on J and $L_{i}: J \rightarrow \mathbb{R}^{+}$are nonnegative functions for $i=1,2$ such that

$$
\begin{equation*}
L_{i}(T) \exp \left(\int_{0}^{T} h_{i}(s) d s\right)<1 \tag{4}
\end{equation*}
$$

Then the problem (1) has a unique solution in the set Δ.
Proof. The existence of the solution of the problem (1) follows from Theorem 1. So, we need to prove the uniqueness of the solution. Let $y, z \in \Delta$ be two arbitrary solutions of (1). Without loss of generality we can assume y and z satisfy the conditions

$$
y_{i}(t)>z_{i}(t) \quad \text { for } \quad t \in J=[0, T], \quad i=1,2
$$

Set $p_{i}=y_{i}-z_{i}, i=1,2$. Hence,

$$
\begin{aligned}
p_{i}^{\prime}(t) & =y_{i}^{\prime}(t)-z_{i}^{\prime}(t)=f_{i}(t, y(t))-f_{i}(t, z(t)) \\
& \leq h_{i}(t)\left(y_{i}(t)-z_{i}(t)\right) \\
& =h_{i}(t) p_{i}(t)
\end{aligned}
$$

and

$$
\begin{align*}
p_{i}(0) & =y_{i}(0)-z_{i}(0)=g_{i}(y(T))-g_{i}(z(T)) \\
& \leq L_{i}(T)\left(y_{i}(T)-z_{i}(T)\right) \tag{5}\\
& =L_{i}(T) p_{i}(T)
\end{align*}
$$

So, we can write

$$
\begin{equation*}
\frac{p_{i}^{\prime}(t)}{p_{i}(t)} \leq h_{i}(t), \quad i=1,2 \tag{6}
\end{equation*}
$$

If we integrate (6) on the interval $[0, T]$, we get

$$
\begin{equation*}
p_{i}(T) \leq p_{i}(0) \exp \left(\int_{0}^{T} h_{i}(s) d s\right), \quad i=1,2 \tag{7}
\end{equation*}
$$

Using (5) and (7), we have

$$
0<p_{i}(0) \leq L_{i}(T) p_{i}(T) \leq L_{i}(T) p_{i}(0) \exp \left(\int_{0}^{T} h_{i}(s) d s\right), \quad i=1,2 .
$$

By the condition given in (4), this inequality yields $p_{i}(0)=0$ which contradicts with the assumption

$$
p_{i}(t)=y_{i}(t)-z_{i}(t)>0, \quad t \in J, \quad i=1,2 .
$$

So, there exists a $t_{0} \in J$ such that $y_{i}\left(t_{0}\right)=z_{i}\left(t_{0}\right), i=1,2$. If $t_{0}=T$ or $t_{0}=0$, then

$$
y_{i}(0)=g_{i}(y(T))=g_{i}(z(T))=z_{i}(0), \quad i=1,2 .
$$

This and (6) yields

$$
p_{i}(t)=y_{i}(t)-z_{i}(t)=0, \quad t \in J, \quad i=1,2
$$

which is a contradiction. Let $t_{0} \in(0, T)$. Then, $y_{i}(t)=z_{i}(t)$ on $\left[t_{0}, T\right]$, since $y_{i}(T)=z_{i}(T)$ and $y_{i}(0)=z_{i}(0)$. So, $y_{i}(t)=z_{i}(t)$ on J for $i=1,2$. This is also a contradiction. Consequently, (1) has a unique solution in the set Δ.

Note that if f and g satisfy the conditions of Theorem 2 besides the conditions of Theorem 3, the sequences $\left\{v_{n}\right\}$ and $\left\{w_{n}\right\}$ converge to the unique solution u, uniformly as $n \rightarrow \infty$.

Functions $v, w \in C^{1}\left(J, \mathbb{R}^{2}\right)$ are called weakly coupled lower and upper solutions of (1), if

$$
\begin{array}{rlrl}
v_{i}^{\prime}(t) & \leq f_{i}(t, v(t)), & t \in J, i=1,2 \\
v_{i}(0) & \leq g_{i}(w(T)) \\
w_{i}^{\prime}(t) & \geq f_{i}(t, w(t)), & \tag{9}\\
w_{i}(0) & \geq g_{i}(v(T)) . &
\end{array}
$$

If the inequalities are converted to equalities in (8) and (9), v and w are called coupled quasisolutions of (1).

Theorem 2.4. Let $f \in C\left(J \times \mathbb{R}^{2}, \mathbb{R}^{2}\right)$, $g \in C\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$, y_{0}, z_{0} be weakly coupled lower and upper solutions of (1) such that $y_{0 i}(t) \leq z_{0 i}(t)$ on J for $i=1,2$ and let g be nonincreasing. Suppose further that
$-M_{i}\left[w_{i}-v_{i}\right] \leq f_{i}(t, w)-f_{i}(t, v) \quad$ for $y_{0 i}(t) \leq v_{i}(t) \leq w_{i}(t) \leq z_{0 i}(t), t \in J, i=1,2$.
Then there exists monotone sequences $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ such that $y_{n} \rightarrow y, z_{n} \rightarrow z$ monotonically and uniformly on J. Moreover, y and z are coupled quasisolutions of (1).

Proof. For any $\eta, \mu \in C\left(J, \mathbb{R}^{2}\right)$ such that $y_{0 i} \leq \eta_{i} \leq z_{0 i}, y_{0 i} \leq \mu_{i} \leq z_{0 i} i=1,2$, we consider the following problems:

$$
\begin{equation*}
u_{i}^{\prime}=f_{i}(t, \eta)-M_{i}\left(u_{i}-\eta_{i}\right), \quad u_{i}(0)=g_{i}(\mu(T)) \tag{10}
\end{equation*}
$$

For every such η, μ, problem (10) has unique solution u on J. Define a mapping A as $A_{i}[\eta, \mu]=u_{i}, i=1,2$. This mapping will be used to define the sequences $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$. First, we will prove that
(a) $y_{0 i} \leq A_{i}\left[y_{0}, z_{0}\right], z_{0 i} \geq A_{i}\left[z_{0}, y_{0}\right], i=1,2$.
(b) A_{i} are monotone operators on $\Delta, i=1,2$.

To prove (a), set $A_{i}\left[y_{0}, z_{0}\right]=y_{1 i}$ where y_{1} is the unique solution of (10), for $\eta_{i}=y_{0 i}$, $\mu_{i}=z_{0 i}, i=1,2$. Setting $p_{i}=y_{1 i}-y_{0 i}$, we have

$$
p_{i}^{\prime}=y_{1 i}^{\prime}-y_{0 i}^{\prime} \geq f_{i}\left(t, y_{0}\right)-M_{i}\left(y_{1 i}-y_{0 i}\right)-f_{i}\left(t, y_{0}\right)=-M_{i} p_{i} \quad, \quad i=1,2
$$

and

$$
p_{i}(0)=y_{1 i}(0)-y_{0 i}(0) \geq g_{i}\left(z_{0}(T)\right)-g_{i}\left(z_{0}(T)\right)=0 .
$$

This gives us that $p_{i}(t) \geq 0$, so $y_{0 i} \leq A_{i}\left[y_{0}, z_{0}\right], i=1,2$. Similarly, it can be proven that $z_{o i} \geq A_{i}\left[z_{0}, y_{0}\right], i=1,2$.
To prove (b), let $\bar{\eta}_{i}, \tilde{\eta}_{i}, \mu_{i} \in\left[y_{0 i}, z_{0 i}\right]$ such that $\tilde{\eta}_{i} \leq \bar{\eta}_{i}, i=1,2$. Suppose that

$$
u_{1}=A[\tilde{\eta}, \mu] \quad \text { and } \quad u_{2}=A[\bar{\eta}, \mu] .
$$

Here, $u_{1 i}$ and $u_{2 i}$ are the unique solutions of (10) for $[\tilde{\eta}, \mu]$ and $[\bar{\eta}, \mu]$, respectively. Set $p_{i}=u_{2 i}-u_{1 i}, i=1,2$, then,

$$
\begin{aligned}
p_{i}^{\prime} & =u_{2 i}^{\prime}-u_{1 i}^{\prime}=f_{i}(t, \bar{\eta})-M_{i}\left(u_{2 i}-\bar{\eta}_{i}\right)-f_{i}(t, \tilde{\eta})+M_{i}\left(u_{1 i}-\tilde{\eta}_{i}\right) \\
& \geq-M_{i}\left(\bar{\eta}_{i}-\tilde{\eta}_{i}\right)-M_{i}\left(u_{2 i}-u_{1 i}-\bar{\eta}_{i}+\tilde{\eta}_{i}\right)=-M_{i} p_{i}
\end{aligned}
$$

and

$$
p_{i}(0)=u_{2 i}(0)-u_{1 i}(0)=g_{i}(\mu(T))-g_{i}(\mu(T))=0
$$

So, $p_{i}(t) \geq 0$. Let $\eta_{i}, \tilde{\mu}_{i}, \bar{\mu}_{i} \in\left[y_{0 i}, z_{0 i}\right]$ such that $\tilde{\mu}_{i} \leq \bar{\mu}_{i}, i=1,2$. Suppose that

$$
u_{1}=A[\eta, \tilde{\mu}] \quad \text { and } \quad u_{2}=A[\eta, \bar{\mu}] .
$$

Set $p_{i}=u_{1 i}-u_{2 i}, i=1,2$, then,

$$
\begin{aligned}
p_{i}^{\prime} & =u_{1 i}^{\prime}-u_{2 i}^{\prime}=f_{i}(t, \eta)-M_{i}\left(u_{1 i}-\eta_{i}\right)-f_{i}(t, \eta)+M_{i}\left(u_{2 i}-\eta_{i}\right) \\
& =-M_{i} p_{i}
\end{aligned}
$$

and

$$
p_{i}(0)=u_{1 i}(0)-u_{2 i}(0)=g_{i}(\tilde{\mu}(T))-g_{i}(\bar{\mu}(T)) \geq 0
$$

So, $p_{i}(t) \geq 0$ on J for $i=1,2$. As a result of (a) and (b), the sequences $y_{n}=$ $A\left[y_{n-1}, z_{n-1}\right]$ and $z_{n}=A\left[z_{n-1}, y_{n-1}\right]$ can be defined. We can also show, by using mathematical induction, that

$$
y_{0 i} \leq y_{1 i} \leq \ldots \leq y_{n i} \leq z_{n i} \leq \ldots \leq z_{2 i} \leq z_{1 i} \leq z_{0 i} \quad \text { on } J \text { for } i=1,2
$$

It then follows

$$
\lim _{n \rightarrow \infty} y_{n i}=y_{i} \quad \text { and } \quad \lim _{n \rightarrow \infty} z_{n i}=z_{i}
$$

monotonically and uniformly on J for $i=1,2$. It is clear that y and z are coupled quasisolutions of (1), since $y_{n i}$ and $z_{n i}$ satisfy

$$
\begin{align*}
y_{n i}^{\prime}(t) & =f_{i}\left(t, y_{(n-1) i}(t)\right)-M_{i}\left[y_{n i}(t)-y_{(n-1) i}(t)\right], \\
y_{n i}(0) & =g_{i}\left(z_{(n-1) i}(T)\right), \quad t \in J, i=1,2, \tag{11}\\
z_{n i}^{\prime}(t) & =f_{i}\left(t, z_{(n-1) i}(t)\right)-M_{i}\left[z_{n i}(t)-z_{(n-1) i}(t)\right], \\
z_{n i}(0) & =g_{i}\left(y_{(n-1) i}(T)\right), \quad t \in J, i=1,2 .
\end{align*}
$$

Theorem 2.5. Assume that $f \in C\left(J \times \mathbb{R}^{2}, \mathbb{R}^{2}\right)$, $g \in C\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$. Let the functions $y_{0}, z_{0} \in C^{1}\left(J, \mathbb{R}^{2}\right)$ be weakly coupled lower and upper solutions of (1) satisfying $y_{0 i}(t) \leq z_{0 i}(t), t \in J, i=1,2$. Moreover, assume that there exists nonnegative constants M_{i}, integrable functions $K_{i}: J \rightarrow \mathbb{R}$ and nonnegative functions $N_{i}: J \rightarrow$ \mathbb{R}^{+}for $i=1,2$ such that

$$
\begin{aligned}
& -M_{i}\left[w_{i}-v_{i}\right] \leq f_{i}(t, w)-f_{i}(t, v) \leq K_{i}(t)\left[w_{i}-v_{i}\right] \\
& \quad \text { for } y_{0 i}(t) \leq v_{i}(t) \leq w_{i}(t) \leq z_{0 i}(t), t \in J, i=1,2, \\
& 0 \leq g_{i}(v(T))-g_{i}(w(T)) \leq N_{i}(T)\left[w_{i}(T)-v_{i}(T)\right] \\
& \quad \text { for } y_{0 i}(T) \leq v_{i}(T) \leq w_{i}(T) \leq z_{0 i}(T), i=1,2
\end{aligned}
$$

and

$$
\begin{equation*}
N_{i}(T) \exp \left(\int_{0}^{T} K_{i}(s) d s\right)<1 \tag{12}
\end{equation*}
$$

Then problem (1) has a unique solution $u \in \Delta$,

$$
\begin{equation*}
y_{0 i} \leq y_{1 i} \leq \ldots \leq y_{n i} \leq z_{n i} \leq \ldots \leq z_{2 i} \leq z_{1 i} \leq z_{0 i} \quad \text { on } J \text { for } i=1,2 \tag{13}
\end{equation*}
$$

and $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ converge to u uniformly, for $n \rightarrow \infty$, on J.
Proof. Since the assumptions of Theorem 3 are satisfied, problem (1) has a unique solution, $u \in \Delta$. It is known from Theorem 4 that $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ converge to their limit functions uniformly and monotonically as $n \rightarrow \infty$. Let

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(y^{n}\right)(t) & =y(t) \\
\lim _{n \rightarrow \infty}\left(z^{n}\right)(t) & =z(t)
\end{aligned}
$$

Then, y and z satisfy

$$
\begin{aligned}
& y_{i}^{\prime}(t)=f_{i}(t, y(t)) \\
& y_{i}(0)=g_{i}(z(T)), \\
& z_{i}^{\prime}(t)=f_{i}(t, z(t)) \\
& z_{i}(0)=g_{i}(y(T)), \quad t \in J, i=1,2, \\
&
\end{aligned}
$$

and

$$
\left(y^{0}\right)_{i}(t) \leq y_{i}(t) \leq z_{i}(t) \leq\left(z^{0}\right)_{i}(t), \quad t \in J, i=1,2
$$

Set $p_{i}=z_{i}-y_{i}$ so, $p_{i}(t) \geq 0, t \in J, i=1,2$. So,

$$
\begin{equation*}
p_{i}^{\prime}(t)=z_{i}^{\prime}(t)-y_{i}^{\prime}(t)=f_{i}(t, z(t))-f_{i}(t, y(t)) \leq K_{i}(t) p_{i}(t) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{i}(0)=z_{i}(0)-y_{i}(0)=g_{i}(y(T))-g_{i}(z(T)) \leq N_{i}(T) p_{i}(T), \quad i=1,2 \tag{15}
\end{equation*}
$$

Using (14), we have

$$
\begin{equation*}
p_{i}(T) \leq p_{i}(0) \exp \int_{0}^{T} K_{i}(s) d s \tag{16}
\end{equation*}
$$

(15) and (16) give us

$$
0 \leq p_{i}(0) \leq A_{i}(T) p_{i}(T) \leq N_{i}(T) p_{i}(0) \exp \left(\int_{0}^{T} K_{i}(s) d s\right)
$$

Condition (12) yields to $p_{i}(0)=0, i=1,2$. So, $p_{i}(t)=0, t \in J, i=1,2$. Since the problem (1) has a unique solution on $\Delta, u_{i}=y_{i}=z_{i}, i=1,2$.

Example 2.6. Consider

$$
\begin{align*}
x_{1}^{\prime} & =x_{1}\left(10-2 x_{1}-5 x_{2}\right) \\
x_{2}^{\prime} & =x_{2}\left(-3+5 x_{1}\right) \tag{17}\\
x_{1}(0) & =\frac{1}{2 e^{20}} x_{1}(2) \geq 0 \\
x_{2}(0) & =x_{1}(2)+\frac{1}{6} x_{2}(2) \geq 0, \quad t \in[0,2] .
\end{align*}
$$

$v_{i}(t) \equiv 0$ is a lower solution of (17). The solution of the system

$$
\begin{align*}
w_{1}^{\prime} & =w_{1}\left(10-2 w_{1}\right) \\
w_{2}^{\prime} & =w_{2}\left(-3+5 w_{1}\right) \tag{18}\\
w_{1}(0) & =\frac{1}{2 e^{20}} w_{1}(2)=g_{1}(w(2)) \geq 0 \\
w_{2}(0) & =w_{1}(2)+\frac{1}{6} w_{2}(2)=g_{2}(w(2)) \geq 0, \quad t \in[0,2]
\end{align*}
$$

is an upper solution of (17). We note that, the functions on the right-hand side of the system (18) are obtained by

$$
\begin{aligned}
& \sup _{0 \leq \varphi \leq x_{2}} x_{1}\left(10-2 x_{1}-5 \varphi\right) \\
& \sup _{0 \leq \varphi \leq x_{1}} x_{2}(-3+5 \varphi)
\end{aligned}
$$

From (18),

$$
\begin{aligned}
& w_{1}(t)=\left(\frac{\left(2-2 e^{20}\right) e^{-10 t}}{5}\right)^{-1} \\
& w_{2}(t)=\frac{15 e^{4}\left(-1+2 e^{20-10 t}-e^{-10 t}\right)^{\frac{1}{10}}\left(2 e^{20}-1\right)^{\frac{1}{10}}}{e^{2 t}\left(2 e^{20}-1\right)^{\frac{1}{10}}\left(e^{-20}-1\right)\left(6 e^{4}\left(2 e^{20}-1\right)^{\frac{1}{10}}-\left(1-e^{-2}\right)^{\frac{1}{10}}\right)}
\end{aligned}
$$

is an upper solution of (17). From Theorem 1, (1) has a solution u satisfying the condition $v_{i}(t) \leq u_{i}(t) \leq w_{i}(t), t \in J, i=1,2$. Since the functions g_{i} are nondecreasing for the $i^{t h}$ component, Theorem 2 gives us that (17) has a minimal and a maximal solution on Δ. Moreover, L_{1}, L_{2}, M_{1} and M_{2} constants for g_{1}, g_{2}, f_{1} and f_{2} are $\frac{1}{2 e^{20}}, \frac{1}{6}, 10$ and 1 , respectively. Since

$$
\frac{1}{2 e^{20}} \exp \int_{0}^{2} 10 d t<1
$$

and

$$
\frac{1}{6} \exp \int_{0}^{2} d t<1
$$

(17) has a unique solution.

References

[1] T. Jankowski, Ordinary differential equations with nonlinear boundary conditions. Georgian Mathematical Journal 9(2002), No. 2, 287-294.
[2] G. S. Ladde, V. Lakshmikantham, and A. S. Vatsala, Monotone iterative techniques for nonlinear differential equations. Pitman, Boston, 1985.
[3] V. Lakshmikantham, Further improvements of generalized quasilinearization method. Nonlinear Anal. 27(1996), 223-227.
[4] V. Lakshmikantham, S. Leela and S. Sivasundaram, Extentions of the method of quasilinearization. J. Optim. Theory Appl. 87(1995), 379-401.
[5] V. Lakshmikantham, N. Shahzad and J. J. Nieto, Methods of generalized quasilinearization for periodic boundary value problems. Nonlinear Anal. 27(1996), 143-151.
[6] V. Lakshmikantham and N. Shahzad, Further generalization of generalized quasilinearization method. J. Appl. Math. Stochastic Anal. 7(1994), No. 4, 545-552.
[7] V. Lakshmikantham and A. S. Vatsala, Generalized quasilinearization for nonlinear problems. Mathematics and its Applications, 440. Kluwer Academic Publishers, Dordrecht, 1998.
[8] Y. Yin, Remarks on first order differential equations with anti-periodic boundary conditions. Nonlinear Times Digest 2(1995), No. 1, 83-94.
[9] Y. Yin, Monotone iterative technique and quasilinearization for some anti-periodic problems. Nonlinear World 3,(1996), 253-266.
[10] C.Y.Chan, N. Ozalp, Beyond quenching for singular reaction-diffusion mixed boundary-value problems. Advances in nonlinear dynamics, Stability Control Theory Methods Appl., 5, Gordon and Breach, Amsterdam, (1997), 217-227.
Current address: Ankara University, Faculty of Sciences, Dept. of Mathematics, Ankara, TURKEY

E-mail address: edemirci@ankara.edu.tr - nozalp@science.ankara.edu.tr
URL: http://communications.science.ankara.edu.tr/index.php?series=A1

[^0]: Received by the editors May 04, 2012; Accepted: July 08, 2013.
 2000 Mathematics Subject Classification. MSC: 34A12; 34A34; 34A40; 34A45; 34B15.
 Key words and phrases. Monotone technique, upper and lower solutions, existence and uniqueness, predator-prey.

