and

ON SOME NEW DOUBLE SEQUENCE SPACES OF INVARIANT MEANS DEFINED BY ORLICZ FUNCTIONS

and VAKEEL A. KHAN AND SABIHA TABASSUM

Abstract

The sequence space $B V_{\sigma}$ was introduced and studied by Mursaleen[14]. In this paper we extend $B V_{\sigma}$ to ${ }_{2} B V_{\sigma}(p, r, s)$ and study some properties and inclusion relations on this space.

1. Introduction

Let l_{∞}, and c denote the Banach spaces of bounded and convergent sequences $x=\left(x_{i}\right)$, with complex terms, respectively, normed by $\|x\|_{\infty}=\sup _{i}\left|x_{i}\right|$, where $i \in \mathbb{N}$. Let σ be an injection of the set of positive integers \mathbb{N} into itself having no finite orbits that is to say, if and only if, for all $i=0, j=0, \sigma^{j}(i) \neq i$ and T be the operator defined on l_{∞} by $\left(T\left(x_{i}\right)_{i=1}^{\infty}\right)=\left(x_{\sigma(i)}\right)_{i=1}^{\infty}$.

A continuous linear functional ϕ on l_{∞} is said to be an invariant mean or σ-mean if and only if
(1) $\phi(x) \geq 0$, when the sequence $x=\left(x_{i}\right)$ has $x_{i} \geq 0$ for all i,
(2) $\phi(e)=1$, where $e=\{1,1,1, \ldots \ldots$.$\} and$
(3) $\phi\left(x_{\sigma(i)}\right)=\phi(x)$ for all $x \in l_{\infty}$.

If $x=\left(x_{i}\right)$ write $T x=\left(T x_{i}\right)=\left(x_{\sigma(i)}\right)$. It can be shown that

$$
\begin{equation*}
V_{\sigma}=\left\{x=\left(x_{i}\right): \sum_{m=1}^{\infty} t_{m, i}(x)=L \text { uniformly in i, } L=\sigma-\lim x\right\} \tag{1}
\end{equation*}
$$

where $m \geq o, i>0$.

[^0]1

$$
\begin{gather*}
t_{m, i}(x)=\frac{x_{i}+x_{\sigma(i)}+\ldots+x_{\sigma^{m}(i)}}{m+1} \\
\text { and } t_{-1, i}=0 \tag{2}
\end{gather*}
$$

. Where $\sigma^{m}(i)$ denote the mth iterate of $\sigma(i)$ at i. In the case σ is the translation mapping, $\sigma(i)=i+1$ is often called a Banach limit and V_{σ}, the set of bounded sequences of all whose invariant means are equal, is the set of almost convergent sequence. Subsequently invariant means have been studied by Ahmad and Mursaleen[1], Mursaleen[12,13], Raimi[15] and many others.

The concept of paranorm is closely related to linear metric spaces. It is generalization of that of absolute value. Let X be a linear space. A Paranorm is a function $g: X \rightarrow \mathbb{R}$ which satisfies the following axioms: for any $x, y, x_{0} \in X$, $\lambda, \lambda_{0} \in \mathbb{C}$,
(i) $g(\theta)=0$;
(ii) $g(x)=g(-x)$;
(iii) $g(x+y) \leq g(x)+g(y)$
(iv) the scalar multiplication is continuous, that is $\lambda \rightarrow \lambda_{0}, x \rightarrow x_{0}$ imply $\lambda x \rightarrow \lambda_{0} x_{0}$.

Any function g which satisfies all the condition (i)-(iv) together with the condition
(v) $g(x)=0$ if only if $x=\theta$,
is called a Total Paranorm on X and the pair (X, g) is called Total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (cf.[18],Theorm 10.42,p183])

An Orlicz Function is a function $M:[0, \infty) \rightarrow[0, \infty)$ which is continuous, nondecreasing and convex with $M(0)=0, M(x)>0$ for $x>0$ and $M(x) \rightarrow \infty$, as $x \rightarrow \infty$. If convexity of M is replaced by $M(x+y) \leq M(x)+M(y)$ then it is called Modulus function.

An Orlicz function M satisfies the $\Delta_{2}-$ condition $\left(M \in \Delta_{2}\right.$ for short $)$ if there exist constant $k \geq 2$ and $u_{0}>0$ such that

$$
M(2 u) \leq K M(u)
$$

whenever $|u| \leq u_{0}$.

[^1]An Orlicz function M can always be represented in the integral form $M(x)=\int_{0}^{x} q(t) d t$, where q known as the kernel of M, is right differentiable for $t \geq 0, q(t)>0$ for $t>0, q$ is non-decreasing and $q(t) \rightarrow \infty$ as $t \rightarrow \infty$.

Note that an Orlicz function satisfies the inequality

$$
M(\lambda x) \leq \lambda M(x) \text { for all } \lambda \text { with } 0<\lambda<1
$$

since M is convex and $M(0)=0$.
W.Orlicz used the idea of Orlicz function to construct the space $\left(L^{M}\right)$. Lindesstrauss and Tzafriri [9] used the idea of Orlicz sequence space;

$$
l_{M}:=\left\{x \in w: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right)<\infty, \text { for some } \rho>0\right\}
$$

which is Banach space with the norm the norm

$$
\|x\|_{M}=\inf \left\{\rho>0: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right) \leq 1\right\}
$$

The space l_{M} is closely related to the space l_{p}, which is an Orlicz sequence space with $M(x)=x^{p}$ for $1 \leq p<\infty$.
Orlicz functons have been studied by V.A.Khan $[3,5,6,7,8]$ and many others.
Throughout a double sequence is denoted by $x=\left(x_{i j}\right)$.A double sequence is a double infinite array of elements $x_{i j} \in \mathbb{R}$ for all $i, j \in \mathbb{N}$. Let ${ }_{2} l_{\infty}$ and ${ }_{2} c$ denote the Banach spaces of bounded and convergent double sequence $x=\left(x_{i, j}\right)$ respectively. Doube sequence spaces have been studied by Moricz and Rhoads[11], E.Savas and R.F.Patterson[16], V.A.Khan[4] and many others.

Let σ be an injection having no finite orbits and T be the operator defined on ${ }_{2} l_{\infty}$ by

$$
T\left(\left(x_{i, j}\right)_{i, j=1}^{\infty}\right)=\left(x_{\sigma(i, j)}\right)_{i, j}^{\infty}
$$

The idea of σ-convergence for double sequences has recently been introduced in [2] and further studied by Mursaleen and Mohiuddine [12].
For double sequences,
${ }_{2} V_{\sigma}=\left\{x=\left(x_{i, j}\right): \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} t_{m n p q}(x)=L\right.$ uniformly in $\left.p, q, L=\sigma-\lim x\right\}$ see[16]

$$
\begin{equation*}
t_{m n p q}(x)=\frac{1}{(m+1)(n+1)} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} x_{\sigma^{i}(p), \sigma^{j}(q)}, p, q=0,1,2 \ldots \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
t_{0,0, p, q}(x) & =x_{p q}, t_{-1,0, p, q}(x)=x_{p-1, q}(x), t_{0,-1, p, q}(x) \\
& =x_{p, q-1}, t_{-1,-1, p, q}(x)=x_{p-1, q-1}
\end{aligned}
$$

and $x_{\sigma^{i}(p), \sigma^{j}(q)}=0$ for all i or j or both negative.
A double sequence space E is said to be solid if $\left(\alpha_{i, j} x_{i, j}\right) \in E$, whenever $\left(x_{i, j}\right) \in E$, for all double sequences $\left(\alpha_{i, j}\right)$ of scalars with $\left|\alpha_{i, j}\right| \leq 1$, for all $i, j \in \mathbb{N}$.

Let

$$
K=\left\{\left(n_{i}, k_{j}\right): i, j \in \mathbb{N} ; n_{1}<n_{2}<n_{3}<\ldots . \text { and } k_{1}<k_{2}<k_{3}<\ldots\right\} \subseteq N \otimes N
$$

and E be a double sequence space. A K-step space of E is a sequence space

$$
\lambda_{K}^{E}=\left\{\left(\alpha_{i, j} x_{i, j}\right):\left(x_{i, j}\right) \in E\right\}
$$

A canonical pre-image of a sequence $\left(x_{n_{i}, k_{j}}\right) \in E$ is a sequence $\left(b_{n, k}\right) \in E$ defined as follows:

$$
b_{n k}=\left\{\begin{array}{l}
a_{n k} \text { if }(n, k) \in K, \\
0 \text { otherwise }
\end{array}\right.
$$

A canonical pre-image of step space λ_{K}^{E} is a set of canonical pre-images of all elements in λ_{K}^{E}.

A double sequence space E is said to be monotone if it contains the canonical pre-images of all its step spaces.

A double sequence space E is said to be symmetric if $\left(x_{i, j}\right) \in E$ implies $\left(x_{\pi(i), \pi(j)}\right) \in E$, where π is a permutation of \mathbb{N}.

2. Main Results

Lemma 1 A sequence space E is solid implies E is monotone.
Mursaleen[14] defined the sequence space

$$
\begin{gather*}
B V_{\sigma}=\left\{x \in l_{\infty}: \sum_{m}\left|\phi_{m, i}(x)\right|<\infty, \text { uniformly in } i\right\} \tag{5}\\
\text { where } \phi_{m, i}(x)=t_{m, i}(x)-t_{m-1, i}(x)
\end{gather*}
$$

assuming that $t_{m, i}(x)=0$ for $m=-1$
A straightforward calculation shows that

$$
\phi_{m, n}(x)=\left\{\begin{array}{l}
\frac{1}{m(m+1)} \sum_{n=1}^{m} n\left[x_{\sigma}^{n}(i)-x_{\sigma}^{n-1}(i)\right](m \geq 1) \tag{6}\\
x_{i}(m=0)
\end{array}\right.
$$

We define

$$
\begin{equation*}
{ }_{2} B V_{\sigma}=\left\{x \in{ }_{2} l_{\infty}: \sum_{m, n}\left|\phi_{m n p q}(x)\right|<\infty, \quad \text { uniformly in } p \text { and } q\right\} \tag{7}
\end{equation*}
$$

where

$$
\phi_{m n p q}(x)=\left\{\begin{array}{l}
\frac{1}{m(m+1) n(n+1)} \sum_{i=1}^{m} \sum_{j=1}^{n} i j\left[x_{\sigma^{i}(p), \sigma^{j}(q)}-x_{\sigma^{i-1}(p), \sigma^{j}(q)}\right. \tag{8}\\
\left.-x_{\sigma^{i}(p), \sigma^{j-1}(q)}+x_{\sigma^{i-1}(p), \sigma^{j-1}(q)}\right](m, n \geq 1) \\
x_{i j} m \text { or } n \text { or both zero } .
\end{array} \quad(\text { see }[12])\right.
$$

Let M be an Orlicz function, $p=\left(p_{i}\right)$ be any sequence of strictly positive real numbers and $r \geq 0$. V.A.Khan[5] defined the following sequence space:

$$
\begin{aligned}
B V_{\sigma}(M, p, r) & =\left\{x=\left(x_{i}\right): \sum_{m=1}^{\infty} \frac{1}{m^{r}}\left[M\left(\frac{\left|\phi_{m, i}(x)\right|}{\rho}\right)\right]^{p_{i}}<\infty\right. \\
& \text { uniformly in } i \text { and for some } \rho>0\} .
\end{aligned}
$$

Let $p=\left(p_{i j}\right)$ be any double sequence of strictly positive real numbers and $r, s \geq 0$. We define the following double sequence spaces as:

$$
\begin{aligned}
{ }_{2} B V_{\sigma}(M, p, r, s)= & \left\{x=\left(x_{i j}\right): \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^{r} n^{s}}\left[M\left(\frac{\left|\phi_{m n p q}(x)\right|}{\rho}\right)\right]^{p_{i j}}<\infty,\right. \\
& \text { uniformly in } p, q \text { and for some } \rho>0\}
\end{aligned}
$$

For $M(x)=x$, we get

$$
{ }_{2} B V_{\sigma}(p, r, s)=\left\{x=\left(x_{i j}\right): \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^{r} n^{s}}\left|\phi_{m n p q}(x)\right|^{p_{i j}}<\infty, \text { uniformly in } p, q\right\} .
$$

For $p_{i, j}=1$ for all i, j we get

$$
{ }_{2} B V_{\sigma}(M, r, s)=\left\{x=\left(x_{i j}\right): \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^{r} n^{s}}\left[M\left(\frac{\left|\phi_{m n p q}(x)\right|}{\rho}\right)\right]<\infty,\right.
$$

uniformly in p, q and for some $\rho>0\}$.

For $r, s=0$, we get

$$
\begin{aligned}
{ }_{2} B V_{\sigma}(M, p)= & \left\{x=\left(x_{i j}\right): \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left[M\left(\frac{\left|\phi_{m n p q}(x)\right|}{\rho}\right)\right]^{p_{i j}}<\infty,\right. \\
& \text { uniformly in } p, q \text { and for some } \rho>0\}
\end{aligned}
$$

For $M(x)=x$ and $r, s=0$, we get

$$
{ }_{2} B V_{\sigma}(p)=\left\{x=\left(x_{i j}\right): \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left|\phi_{m n p q}(x)\right|^{p_{i j}}<\infty, \text { uniformly in } p, q\right\} .
$$

For $p_{i, j}=1$ for all i, j and $r, s=0$, we get

$$
\begin{gathered}
{ }_{2} B V_{\sigma}(M)=\left\{x=\left(x_{i j}\right): \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left[M\left(\frac{\left|\phi_{m n p q}(x)\right|}{\rho}\right)\right]<\infty, \text { uniformly in } p, q\right. \\
\text { and for some } \rho>0\} .
\end{gathered}
$$

For $M(x)=x, p_{i, j}=1$ and $r, s=0$, we get

$$
{ }_{2} B V_{\sigma}=\left\{x=\left(x_{i j}\right): \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left|\phi_{m n p q}(x)\right|<\infty, \text { uniformly in } p, q\right\} .
$$

Theorem 1 The sequence space ${ }_{2} B V_{\sigma}(M, p, r, s)$ is a linear space over the field \mathbb{C} of complex numbers.

Proof Let $x=\left(x_{i, j}\right)$ and $y=\left(y_{i, j}\right) \in{ }_{2} B V_{\sigma}(M, p, r, s)$ and $\alpha, \beta \in \mathbb{C}$. Then there exist positive numbers ρ_{1} and ρ_{2} such that

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^{r} n^{s}}\left[M\left(\frac{\left|\phi_{m n p q}(x)\right|}{\rho_{1}}\right)\right]^{p_{i j}}<\infty
$$

and

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^{r} n^{s}}\left[M\left(\frac{\left|\phi_{m n p q}(y)\right|}{\rho_{2}}\right)\right]^{p_{i j}}<\infty
$$

uniformly in p and q and $r, s \geq 0$
Define $\rho_{3}=\max \left(2|\alpha| \rho_{1}, 2|\beta| \rho_{2}\right)$. Since M is non decreasing and convex we have,

$$
\begin{aligned}
& \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^{r} n^{s}}\left[M\left(\frac{\left|\alpha \phi_{m n p q}(x)+\beta \phi_{m n p q}(y)\right|}{\rho_{3}}\right)\right]^{p_{i j}}<\infty \\
& \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^{r} n^{s}}\left[M\left(\frac{\left|\alpha \phi_{m n p q}(x)\right|}{\rho_{3}}+\frac{\left|\beta \phi_{m n p q}(y)\right|}{\rho_{3}}\right)\right]^{p_{i j}}<\infty
\end{aligned}
$$

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^{r} n^{s}} \frac{1}{2}\left[M\left(\frac{\phi_{m n p q}(x)}{\rho_{1}}\right)+M\left(\frac{\phi_{m n p q}(y)}{\rho_{2}}\right)\right]<\infty
$$

uniformly in p and q and $r, s \geq 0$.
This proves that ${ }_{2} B V_{\sigma}(M, p, r, s)$ is a linear space over the field \mathbb{C} of complex numbers.

Theorem 2 For any Orlicz function M and a bounded sequence $p=\left(p_{i, j}\right)$ of strictly positive real numbers, ${ }_{2} B V_{\sigma}(M, p, r, s)$ is a paranormed space with paranorm
$g\left(\left(x_{i j}\right)\right)=\sup _{i}\left|x_{i, 1}\right|+\sup _{j}\left|x_{1, j}\right|+\inf \left\{\rho^{\frac{p_{i j}}{H}}:\left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left[M\left(\frac{\left|\phi_{m n p q}(x)\right|}{\rho}\right)\right]^{p_{i j}}\right)^{\frac{1}{H}} \leq 1\right.$
uniformly in p and $q\}$
where $H=\max \left(1, \sup _{i, j} p_{i, j}\right)$.

Proof Clearly $g(0)=0, g\left(-\left(x_{i j}\right)\right)=g\left(\left(x_{i, j}\right)\right)$.
Using Theorem[1], for $\alpha=\beta=1$, we get

$$
g(x+y) \leq g(x)+g(y)
$$

For continuity of scalar multiplication let $\eta \neq 0$ be any complex number. Then by definition we have

$$
\begin{gathered}
g\left(\eta\left(x_{i j}\right)\right)=\sup _{i}\left|\eta x_{i, 1}\right|+\sup _{j}\left|\eta x_{1, j}\right|+\inf \left\{\rho^{\frac{p_{i j}}{H}}:\left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left[M\left(\frac{\left|\phi_{m n p q}(\eta x)\right|}{\rho}\right)\right]^{p_{i j}}\right)^{\frac{1}{H}} \leq 1\right. \\
\quad \text { uniformly in } p \text { and } q\} \\
=\sup _{i}|\eta|\left|x_{i, 1}\right|+\sup _{j}|\eta|\left|x_{1, j}\right|+\inf \left\{(|\eta| r)^{\frac{p_{i j}}{H}}:\left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left[M\left(\frac{\left|\phi_{m n p q}(x)\right|}{r}\right)\right]^{p_{i j}}\right)^{\frac{1}{H}} \leq 1\right. \\
\text { uniformly in } p \text { and } q\}
\end{gathered}
$$

where $\frac{1}{r}=\frac{|\eta|}{\rho}=\max \left(1,|\eta|^{H} g\left(\left(x_{i, j}\right)\right)\right.$
and therefore $g\left(\eta\left(x_{i j}\right)\right)$ converges to zero when $g\left(\left(x_{i j}\right)\right)$ converges to zero in ${ }_{2} B V_{\sigma}(M, p, r, s)$.
Now let x be fixed element in ${ }_{2} B V_{\sigma}(M, p, r, s)$. There exist $\rho>0$ such that

$$
g\left(\left(x_{i j}\right)\right)=\sup _{i}\left|x_{i, 1}\right|+\sup _{j}\left|x_{1, j}\right|+\inf \left\{\rho^{\frac{p_{i j}}{H}}:\left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left[M\left(\frac{\left|\phi_{m n p q}(x)\right|}{\rho}\right)\right]^{p_{i j}}\right)^{\frac{1}{H}} \leq 1\right.
$$

$$
\text { uniformly in } p \text { and } q\}
$$

$$
\begin{aligned}
\underset{g\left(\eta\left(x_{i j}\right)\right)=}{\operatorname{Now}} & \sup _{i}\left|\eta x_{i, 1}\right|+\sup _{j}\left|\eta x_{1, j}\right| \\
& +\inf \left\{\rho^{\frac{p_{i j}}{H}}:\left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^{r} n^{s}}\left[M\left(\frac{\left|\phi_{m n p q}(\eta x)\right|}{\rho}\right)\right]^{p_{i j}}\right)^{\frac{1}{H}} \leq 1\right. \\
& \text { uniformly in } p \text { and } q\} \rightarrow 0 \text { as } \eta \rightarrow 0 .
\end{aligned}
$$

This copmletes the proof.

Theorem 3 Suppose that $0<p_{i j} \leq q_{i j}<\infty$ for each $m \in \mathbb{N}$ and $r, s \geq 0$. Then
(i) ${ }_{2} B V_{\sigma}(M, p) \subseteq{ }_{2} B V_{\sigma}(M, q)$.
(ii) ${ }_{2} B V_{\sigma}(M) \subseteq{ }_{2} B V_{\sigma}(M, r, s)$.
$\operatorname{Proof}(\mathbf{i})$ Suppose $x \in{ }_{2} B V_{\sigma}(M, p)$. This implies that

$$
\left[M\left(\frac{\left|\phi_{m n p q}(x)\right|}{\rho}\right)\right]^{p_{i j}} \leq 1
$$

for sufficiently large values m, n say $m \geq m_{0}, n \geq n_{0}$ for some fixed $m_{0}, n_{0} \in \mathbb{N}$. Since M is non decreasing, we have

$$
\begin{aligned}
\sum_{m=m_{0}}^{\infty} \sum_{n=n_{0}}^{\infty}\left[M\left(\frac{\left|\phi_{m n p q}(x)\right|}{\rho}\right)\right]^{q_{i j}} & \leq \sum_{m=m_{0}}^{\infty} \sum_{n=n_{0}}^{\infty}\left[M\left(\frac{\left|\phi_{m n p q}(x)\right|}{\rho}\right)\right]^{p_{i j}} \\
& <\infty .
\end{aligned}
$$

uniformy in p, q. Hence $x \in{ }_{2} B V_{\sigma}(M, q)$.
The second proof is trivial.

The following result is a consequence of the above result.

Corollary 1 If $0 \leq p_{i j} \leq 1$ for each i and j, then ${ }_{2} B V_{\sigma}(M, p) \subseteq{ }_{2} B V_{\sigma}(M)$. If $0 \leq p_{i j} \leq 1$ for all i, j then ${ }_{2} B V_{\sigma}(M) \subseteq{ }_{2} B V_{\sigma}(M, p)$.

Theorem 4 The sequence space ${ }_{2} B V_{\sigma}(M, p, r, s)$ is solid.

Proof Let $x \in{ }_{2} B V_{\sigma}(M, p, r, s)$.
This implies $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^{r} n^{s}}\left[M\left(\frac{\left|\phi_{\text {mpp }}(x)\right|}{\rho}\right)\right]^{p_{i j}}<\infty$.
Let $\left(\alpha_{i j}\right)$ be sequence of scalars such that $\left|\alpha_{i j}\right| \leq 1$ for all $i, j \in \mathbb{N}$. Then the result follows from the following inequality
$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^{r} n^{s}}\left[M\left(\frac{\left|\alpha_{i j} \phi_{m n p q}(x)\right|}{\rho}\right)\right]^{p_{i j}} \leq \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^{r} n^{s}}\left[M\left(\frac{\left|\alpha_{i j} \phi_{m n p q}(x)\right|}{\rho}\right)\right]^{p_{i j}}<\infty$.
Hence $\alpha x \in{ }_{2} B V_{\sigma}(M, p, r, s)$, for all sequences of scalars $\left(\alpha_{i j}\right)$ with $\left|\alpha_{i j}\right| \leq 1$ for all $i, j \in \mathbb{N}$ whenever $x \in{ }_{2} B V_{\sigma}(M, p, r, s)$.

From Theorem[4] and Lemma we have:

Corollary 2 The sequence space ${ }_{2} B V_{\sigma}(M, p, r, s)$ is monotone.

Theorem 5 Let M_{1}, M_{2} be Orlicz functions satisfying Δ_{2}-condition and r, r_{1}, r_{2}, $s, s_{1}, s_{2} \geq 0$. Then we have
(i) if $r, s>1$ then ${ }_{2} B V_{\sigma}(M, p, r, s) \subseteq{ }_{2} B V_{\sigma}\left(M \circ M_{1}, p, r, s\right)$,
(ii) ${ }_{2} B V_{\sigma}\left(M_{1}, p, r, s\right) \cap_{2} B V_{\sigma}\left(M_{2}, p, r\right) \subseteq{ }_{2} B V_{\sigma}\left(M_{1}+M_{2}, p, r, s\right)$,
(iii) if $r_{1} \leq r_{2}$ and $s_{1} \leq s_{2}$ then ${ }_{2} B V_{\sigma}\left(M, p, r_{1}, s_{1}\right) \subseteq{ }_{2} B V_{\sigma}\left(M, p, r_{2}, s_{2}\right)$.

Proof(i) Since M is continuous at 0 from right, for $\epsilon>0$, there exists $0<\delta<1$ such that $0 \leq c \leq \delta$ implies $M(c)<\epsilon$. If we define

$$
\begin{aligned}
& I_{1}=\left\{m \in \mathbb{N}: M_{1}\left(\frac{\left|\phi_{m n p q}(x)\right|}{\rho}\right) \leq \delta \text { for some } \rho>0\right\} . \\
& I_{2}=\left\{m \in \mathbb{N}: M_{1}\left(\frac{\left|\phi_{m n p q}(x)\right|}{\rho}\right)>\delta \text { for some } \rho>0\right\} .
\end{aligned}
$$

then, when $M_{1}\left(\frac{\left|\phi_{m n p q}(x)\right|}{\rho}\right)>\delta$ we get

$$
M\left(M_{1}\left(\frac{\left|\phi_{m n p q}(x)\right|}{\rho}\right)\right) \leq\left\{2 \frac{M(1)}{\delta}\right\} M_{1}\left(\frac{\left|\phi_{m n p q}(x)\right|}{\rho}\right)
$$

Hence for $x \in{ }_{2} B V_{\sigma}(M, p, r, s)$ and $r, s>1$

$$
\begin{gathered}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^{r} n^{s}}\left[M \circ M_{1}\left(\frac{\left|\phi_{m n p q}(x)\right|}{\rho}\right)\right]^{p_{i j}} \\
=\sum_{m \in I_{1}} \sum_{n \in I_{1}} \frac{1}{m^{r} n^{s}}\left[M \circ M_{1}\left(\frac{\left|\phi_{m n p q}(x)\right|}{\rho}\right)\right]^{p_{i j}} \\
+\sum_{m \in I_{2}} \sum_{n \in I_{2}} \frac{1}{m^{r} n^{s}}\left[M \circ M_{1}\left(\frac{\left|\phi_{m n p q}(x)\right|}{\rho}\right)\right]^{p_{i j}} \\
\leq \sum_{m \in I_{1}} \sum_{n \in I_{1}} \frac{1}{m^{r} n^{s}}[\epsilon]^{p_{i j}}+\sum_{m \in I_{2}} \sum_{n \in I_{2}} \frac{1}{m^{r} n^{s}}\left[\left\{2 \frac{M(1)}{\delta}\right\} M_{1}\left(\frac{\left|\phi_{m n p q}(x)\right|}{\rho}\right)\right]^{p_{i j}} \\
\leq \max \left(\epsilon^{h}, \epsilon^{H}\right) \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^{r} n^{s}}+\max \left(\left\{2 \frac{M(1)}{\delta}\right\}^{h}\left\{2 \frac{M(1)}{\delta}\right\}^{H}\right)
\end{gathered}
$$

(where $0<h=\inf p_{i j} \leq p_{i j} \leq H=\sup _{i, j} p_{i j}<\infty$.)
(ii) The proof follows from the following inequality

$$
\begin{aligned}
\frac{1}{m^{r} n^{s}}\left[\left(M_{1}+M_{2}\right)\left(\frac{\left|\phi_{m n p q}(x)\right|}{\rho}\right)\right]^{p_{i j}} & \leq \frac{C}{m^{r} n^{s}}\left[M_{1}\left(\frac{\left|\phi_{m n p q}(x)\right|}{\rho}\right)\right]_{p_{i j}}^{p_{i j}} \\
& +\frac{C}{m^{r} n^{s}}\left[M_{2}\left(\frac{\left|\phi_{m n p q}(x)\right|}{\rho}\right)\right]^{p_{i j}}
\end{aligned}
$$

(iii) The proof is trivial.

Corollary 3 Let M be an Orlicz function satisfying Δ_{2}-condition. Then we have.
(i) if $r, s>1$ then ${ }_{2} B V_{\sigma}(p, r, s) \subseteq{ }_{2} B V_{\sigma}(M, p, r, s)$,
(ii) ${ }_{2} B V_{\sigma}(M, p) \subseteq{ }_{2} B V_{\sigma}(M, p, r, s)$,
(iii) ${ }_{2} B V_{\sigma}(M) \subseteq{ }_{2} B V_{\sigma}(M, r, s)$.

Acknowledgments. The authors would like to record their gratitude to the reviewer for his careful reading and making some useful corrections which improved the presentation of the paper.

ÖZET: $B V_{\sigma}$ dizi uzayı, Mursaleen tarafından tanımlanmış ve incelenmiştir. Bu makalede ise $B V_{\sigma}$ uzayı, ${ }_{2} B V_{\sigma}(p, r, s)$ uzayna genişletilmiş ve bazı özellikleri ile içerme bağıntıları incelenmiştir.

References

[1] Ahmad Z.U.and Mursaleen M. An application of banach limits. Proc. Amer. Math. Soc., 1983,103, 244-246.
[2] Çacan C.,Altay and Mursaeen. The σ-convergence and σ-core of doube sequences. Appl. Math. Lett., 2006,19, 1122-1128.
[3] Khan V.A. On a new sequence spaces defined by Musielak Orlicz Functions. Studia Math., 2010, LV-2, 143-149.
[4] Khan V.A. Quasi almost convergence in a normed space for double sequences. Thai J.Math., 2010, 8(1), 227-231.
[5] Khan V.A. On a new sequence space defined by Orlicz Functions. Commun. Fac. Sci. Univ. Ank. Series Al, 2008, 57(2), 25-33.
[6] Khan V.A. On a new sequence space related to the Orlicz sequence space. J. Mathematics and its applications, 2008, 30, 61-69.
[7] Khan V.A. On Riesz-Musielak Orlicz sequence spaces. Numerical Functional Analysis and Optimization, 2007, 28(7-8), 883-895.
[8] Khan V.A. and Lohani Q.M.D. Statistically Pre-Cauchy sequence and Orlicz Functions. Southeast Asian Bull.Math.,2007, 31, 1107-1112.
[9] Lindenstrauss J. and Tzafiri L. On Orlicz Sequence Spaces. Israel J.Math., 1971, 10, 379-390.
[10] Lorentz G.G. A contribution to the theory of divergent series. Acta Math., 1948,80, 167-190.
[11] Moricz F. and Rhoades B.E. Almost Convergence of double sequences and strong regularity of summability matrices. Math.Proc.Camb.Phil.Soc., 1987, 104, 283-294.
[12] Mursaleen M. and Mohiuddine S.A. Some new double sequences of invariant-means. Glasnik Mathemtički, 2010, 45(65), 139-153.
[13] Mursaleen M. Matrix transformation between some new sequence spaces. Houston J.Math., 1983, 9, 505-509.
[14] Mursaleen M. On some new invariant matrix methods of summability. Quart.J. Math. Oxford, 1983, 34(2), 77-86.
[15] Raimi R.A. Invariant means and invariant matrix method of summmability. Duke Math. J., 1963,30, 81-94.
[16] Savas E. and Patterson R.F. Some σ-double sequence spaces defined and its applications. J.Mathematical Analysis and its Applications, 2006, 324(1), 525-531.
[17] Schfer P. Infinite matrices and invariant means. Proc. Amer. Math. Soc., 1972, 36, 104-110.
[18] Wilansky A. Summability through functional analysis. North-Holland Mathematical Studies, 1984, 85.
Current address: Department of Mathematics, A.M.U. Aligarh-202002 INDIA
E-mail address: vakhan@math.com, sabihatabassum@math.com,
URL: http://communications.science.ankara.edu.tr

[^0]: Received by the editors Agu. 01, 2011, Accepted: Dec. 26, 2011.
 2000 Mathematics Subject Classification. 46E30, 46E40, 46B20.
 Key words and phrases. Invariant means, double sequence spaces, Orlicz Function.

[^1]: ${ }^{1}$ The second author is supported by Maulana Azad National Fellowship under the University Grants Commision of India.

