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SOME BOUNDS FOR THE n-FOLD CONVOLUTION OF
CONCAVE AND LOG-CONCAVE DISTRIBUTION FUNCTIONS

HALIL AYDO¼GDU

Abstract. In general it is impossible to obtain analytical expressions for the
n-fold convolution Fn� of a distribution function F . Existence of bounds for
Fn� is of great value. In this study some bounds for Fn� are given with the help
of the probability integral transformation when F is concave or log-concave.

1. Introduction

The n-fold convolution of a distribution function is of great interest in applied
probability theory. Many expressions in reliability and renewal theory involve this
convolution.
Let F and G be any distribution functions. The function F �G de�ned as

F �G(t) =
1Z

�1

G(t� x)dF (x); t 2 R;

is called the convolution of F and G. The convolution F �G is again a distribution
function.We write F 2� for F � F . For any n 2 N , the n-fold convolution of F with
itself is de�ned as

Fn�(t) =

8<:
F (t) ; n = 1
1R
�1

F (n�1)�(t� x)dF (x) ; n > 1:

The support of F for the distributions arising most commonly in practice is
[0;1) : Then, for n > 1;

Fn�(t) =

1Z
0

F (n�1)�(t� x)dF (x) =
tZ
0

F (n�1)�(t� x)dF (x): (1)
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It is well known that Fn� is the distribution function of the sum of n independent
random variables each of which has the same distribution function F ; that is,

Fn�(t) = P (X1 +X2 + :::+Xn � t); t 2 R;
where X1; X2; :::; Xn are independent and identically distributed random variables
with distribution function F:
For some distribution functions, such as the uniform, shifted exponential, trun-

cated exponential and Erlang (gamma with integer shape parameter), the Fn� can
be obtained in analytical form. For example, if F is a distribution function of the
uniform distribution on the interval (0; �), the well known analytical expression for
Fn�(t) is

Fn�(t) =

8>><>>:
0; t < 0

1
n!�n

kP
j=0

(�1)j
�
n
j

�
(t� j�)n; k� � t � (k + 1)�;

k = 0; 1; :::; n� 1
1; t � n�:

(2)

However, closed forms do not exist for many distributions arising in practice. Sev-
eral numerical methods are available for evaluating Fn�(t); n � 1 [2]. The numerical
evaluation of Fn�(t) sometimes leads to di¤erent numerical errors, which are not
always easy to bound. Hence, bounds for Fn�(t) are very useful.
In this study some bounds for Fn�(t) are given with the help of the probability

integral transformation when F is a concave or log-concave distribution function
with support [0;1). For a complete presentation, we �rst give some de�nitions and
some known results.
Consider a continuous distribution function F with support [0;1). F is called

concave if
F (�s+ (1� �)t) � �F (s) + (1� �)F (t) (3)

for every s; t � 0 and 0 � � � 1: It is easy to see that
F is concave() F (t+ h)� F (t) � F (s+ h)� F (s) for all t � s � 0 and h � 0:
So, we have

F is concave =) F is subadditive: (4)
Let F be concave and �i 2 [0; 1]; i = 1; 2; 3 such that �1 + �2 + �3 = 1: Then,

from (3) it follows that

F (�1t1 + �2t2 + �3t3) = F ((1� �3)(
�1

1� �3
t1 +

�2
1� �3

t2) + �3t3)

� (1� �3)F (
�1

1� �3
t1 +

�2
1� �3

t2) + �3F (t3)

� (1� �3)
�1

1� �3
F (t1) + (1� �3)

�2
1� �3

F (t2) + �3F (t3)

= �1F (t1) + �2F (t2) + �3F (t3):

In general,
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F is concave =) F (�1t1 + :::+ �ntn) � �1F (t1) + :::+ �nF (tn) (5)

for �i 2 [0; 1]; i = 1; 2; :::; n such that
nP
i=1

�i = 1:

The distribution function F is called log-concave if lnF is concave. Suppose that
F is absolutely continuous with probability density function f . If f is continuously
di¤erentiable and log-concave, then F is also log-concave [5]. Since the logarithm
function ln is increasing and concave, it is clear that

F is concave =) F is log-concave. (6)

However, the converse of (6) is not true. For example, let F be the Weibull distrib-
ution function with parameters � = 2 and � > 0; that is, F (t) = 1�e�(t=�)2 ; t � 0:
The corresponding probability density function is f(t) = 2

�2
te�(t=�)

2

; t � 0: By dif-
ferentiating F (t) and ln f(t) twice it is obtained that F 00(t) = 2

�2
e�(t=�)

2

(1� 2
�2
t2)

and (ln f(t))00 = � 2
�2
� 1

t2 : Since F
00(t) > 0 for t < �p

2
and F 00(t) < 0 for t > �p

2
;

F is not concave. The sign of (ln f(t))00 is negative. Therefore F is log-concave.
The distribution function F (or the corresponding F = 1� F ) is called
(i) increasing failure rate (IFR) if lnF is concave; that is, if for all s > 0,

F (s + t)=F (t) is non-increasing in t whenever t � 0 and F (t) > 0. If F has a
density function f then this is equivalent to the condition that the failure rate
r(t) � f(t)=F (t) is non-decreasing in t on ft : F (t) > 0g;
(ii) new better than used (NBU) if F (s+ t) � F (s)F (t) for all s; t � 0;
(iii) new better than used in expectation (NBUE) if the mean � of F is �nite

and � �
R1
0
[F (s+ t)=F (t)]ds for all t � 0 such that F (t) > 0:

By reversing the inequalities above, the notions of decreasing failure rate (DFR),
new worse than used (NWU) and new worse than used in expectation (NWUE) are
de�ned.
It is known that the DFR-ness of F is a su¢ cient condition for F to be concave

[3] and the concavity of F implies that F is NWUE [1]. Then, from (6) the class
of log-concave distribution functions is broader than the class of DFR distribution
functions. Note that some IFR distribution functions such as gamma (� � 1; � > 0)
and Weibull (� � 1; � > 0) are log-concave.

2. Results

From (1) it follows that F (n+1)�(t) � F (t)Fn�(t); n = 1; 2; ::: . Then, Fn�(t) �
Fn(t) for t � 0 and n = 1; 2; ::: . Some better bounds are given by Barlow and
Proschan [4]. Suppose that F is continuous. They have shown that for t � 0 and
n = 1; 2; :::,

F is IFR (DFR) =) Fn�(t) � (�)1�
n�1X
j=0

(nR( tn ))
j

j!
e�nR(

t
n ) (7)
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and

F is NBU (NWU) =) Fn�(t) � (�)1�
n�1X
j=0

Rj(t)

j!
e�R(t) (8)

where R is the hazard function; that is, R(t) = � lnF (t):
It is well known that if F is IFR (DFR) then F is NBU (NWU). Therefore, from

(7) and (8) it can be written that

F is IFR =) 1�
n�1X
j=0

(nR( tn ))
j

j!
e�nR(

t
n ) � Fn�(t) � 1�

n�1X
j=0

Rj(t)

j!
e�R(t) (9)

and

F is DFR =) 1�
n�1X
j=0

Rj(t)

j!
e�R(t) � Fn�(t) � 1�

n�1X
j=0

(nR( tn ))
j

j!
e�nR(

t
n ) (10)

for t � 0 and n = 1; 2; ::: .
Now assume that F is concave. We give an upper bound for Fn�(t) as the

following theorem.
Theorem 1. If F is continuous and concave then for n = 1; 2; :::;

Fn�(t) �

8>><>>:
1
n!

kP
j=0

(�1)j
�
n
j

�
(nF ( tn )� j)

n;
nF�1( kn ) � t < nF

�1(k+1n );
k = 0; 1; :::; n� 1

1; t � nF�1(1);

(11)

where F�1(0) = 0 and F�1(t) = inffx : F (x) � tg; 0 < t � 1:
Proof. It is clear that for t � 0 and n = 1; 2; :::;

Fn�(t) = P (X1 +X2 + :::+Xn � t)

= P

�
F

�
X1 +X2 + :::+Xn

n

�
� F ( t

n
)

�
;

where X1; X2; :::; Xn are independent and identically distributed random variables
with distribution function F: Using the concavity of F with �i = 1

n ; i = 1; 2; :::; n
in (5) we have

F

�
X1 +X2 + :::+Xn

n

�
� F (X1) + F (X2) + :::+ F (Xn)

n
.

F (Xi) (i = 1; 2; :::; n) are independent and identically distributed random variables.
Then, it follows from the above inequality and the probability integral transforma-
tion that

Fn�(t) � P (F (X1) + F (X2) + :::+ F (Xn) � nF (
t

n
))

= Fn�U (nF (
t

n
));



SOME BOUNDS FOR THE n-FOLD CONVOLUTION 21

where U is a uniform random variable on (0; 1). Hence, from the analytical expres-
sion with � = 1 in (2) the inequality (11) is obtained. Thus the proof is completed.
Note that we take F�1(1) =1 in (11) if F (t) < 1 for all t.
Example 1. Let F be the uniform distribution function on the interval (0; �).

This distribution function is both concave and IFR. It is obvious that the upper
bound in (11) is equal to Fn�(t) given in (2) for all t � 0 and n = 1; 2; ::: . Thus,
this upper bound is the best for the uniform distribution on (0; �).
Example 2. Consider the following distribution function

F (t) =

8<:
0; t < 0

t� t2

4 ; 0 � t < 2
1; t � 2:

It is clear that F is concave. Since the failure rate function r(t) = (4�2t)=(4�4t+
t2); 0 � t < 2 is increasing, F is also IFR. Then, the upper bound in Theorem 1 or
(9) given by Barlow and Proschan [4] can be used for Fn�(t). Let us take n = 2.
Then we obtain

F 2�(t) =

8>><>>:
0; t < 0
t2

2 �
t3

6 +
t4

96 ; 0 � t < 2
� 5
3 +

8t
3 � t

2 + t3

6 �
t4

96 ; 2 � t < 4
1; t � 4:

Let u1(t) and u2(t) denote the upper bounds in (11) and (9), respectively. We have

u1(t) =

8<:
t2

2 �
t3

8 +
t4

128 ; 0 � t � 1:1716
�1 + 2t� 3t2

4 + t3

8 �
t4

128 ; 1:1716 � t � 4
1; t � 4

and

u2(t) =

�
t� t2

4 + (1� t+
t2

4 ) ln(1� t+
t2

4 ); 0 � t < 2
1; t � 2:

The graphs of F 2�(t), u1(t) and u2(t) are given in Figure 1. It is clear that the
upper bound in Theorem 1 is better than the upper bound in (9) given by Barlow
and Proschan [4].
Example 3. Let

F (t) =

8<:
0; t < 0
1�e�

p
t

1�e�2 ; 0 � t < 4
1; t � 4:

In fact, this distribution is obtained by truncating the Weibull distribution with
parameters � = 1=2 and � = 1 at t = 4. F is concave. Since the failure rate function
r(t) = 1

2
p
t(1�e

p
t�2)

; 0 < t < 4 is not monotone, F is neither IFR nor DFR. It is

easy to see that if there exists a t 2 R such that F (t) = 1 for any distribution
function F , then F can not be NWU. Therefore, the above distribution function
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F is not NWU. Furthermore, it is easily veri�ed that F is not NBU. Finally, F is
none of IFR, DFR, NBU and NWU distributions, although F is concave. Thus,
the bounds given in (7) and (8) can not be used for this distribution. However, by
Theorem 1, we can get an upper bound on Fn�(t) for t � 0 and n = 1; 2; ::: . For
instance, taking n = 2 in (11) it is obtained that

F 2�(t) �

8>><>>:
2e

�2
p

t
2�4e�

p
t
2+2

(1�e�2)2 ; 0 � t < 0:6412
4e

�
p

t
2
�2�2e�2

p
t
2+1�2e�2�e�4

(1�e�2)2 ; 0:6412 � t < 8
1; t � 8:
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Figure 1. Comparison of the upper bounds for F 2�(t) in Example 2.

We now assume that F is log-concave. An upper bound for Fn�(t) in this case
is given below.
Theorem 2. If F is continuous and log-concave then for t � 0 and n = 1; 2; :::;

Fn�(t) �
n�1X
j=0

(nK( tn ))
j

j!
e�nK(

t
n ); (12)

where K(t) = � lnF (t):
Proof. The proof is similar to that of Theorem 1. Let X1; X2; :::; Xn be inde-

pendent and identically distributed random variables with distribution function F:
Since lnF is concave, choosing �i = 1

n ; i = 1; 2; :::; n in (5) we have

lnF

�
X1 +X2 + :::+Xn

n

�
� lnF (X1) + lnF (X2) + :::+ lnF (Xn)

n
. (13)
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Then, by (13) and the increasingness of the ln function it is obtained that for t � 0
and n = 1; 2; :::;

Fn�(t) = P (X1 +X2 + :::+Xn � t)

= P

�
lnF

�
X1 +X2 + :::+Xn

n

�
� lnF ( t

n
)

�
� P (lnF (X1) + lnF (X2) + :::+ lnF (Xn) � n lnF (

t

n
))

= P (� lnF (X1)� lnF (X2)� :::� lnF (Xn) � �n lnF (
t

n
))

= 1� FY (nK(
t

n
));

where Y = � lnF (X1)� lnF (X2)� :::� lnF (Xn) and lnF (Xi) (i = 1; 2; :::; n) are
independent and identically distributed random variables. Using the probability
integral transformation it is easily seen that Y is a gamma distributed random
variable with the shape parameter � = n and the scale parameter � = 1: Hence the
expression (12) is obtained.
Example 4. Let F be the Weibull distribution function with parameters � = 2

and � = 1; that is, F (t) = 1 � e�t2 ; t � 0: From Section 1 we have that F is
log-concave although F is not concave. Furthermore, it is well known that F is
both IFR and NBU. Thus, the upper bound given in (8) or (12) can be used for
Fn�(t). Let us take n = 2: Then, the upper bounds in (8) and (12) are obtained as

1�(1+ t2)e�t2 and (1�e� t2

4 )2(1�2 ln(1�e� t2

4 )) respectively. The graphs of these
upper bounds are given in Figure 2. Note that an analytical expression of Fn�(t)
does not exist for t � 0 and n = 2; 3; ::: . Now we use a numerical procedure based
on the idea of the trapezoidal rule in numerical analysis for computing Fn�(t) for
given n and t values. The details of this procedure can be found in Aydo¼gdu [2].
The values of F 2�(t) calculated numerically by this method are also given in Figure
2. These values can be considered as almost exact. From Figure 2, it is seen that
the upper bound given in Theorem 2 is better than the upper bound in (8) given
by Barlow and Proschan [4].
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Figure 2. Comparison of the upper bounds for F 2�(t) in Example 4.

Note that the concave distribution functions given in Examples 2 and 3 are
also log-concave. Then, the upper bound of Theorem 2 can be used for the n-fold
convolution of these distribution functions. By Theorem 2, the upper bounds for

F 2�(t) are obtained respectively as
�
t
2 �

t2

16

�2 �
1� 2 ln

�
t
2 �

t2

16

��
; 0 < t � 4 and�

1�e�
p

t
2

1�e�2

�2�
1� 2 ln

�
1�e�

p
t
2

1�e�2

��
; 0 < t � 8: Hence, by comparing these upper

bounds with the upper bounds given in Examples 2 and 3 it is seen that the upper
bounds of Theorem 1 are better than those of Theorem 2. This is not surprising
because the concavity of F is a stronger condition than the log-concavity of F .

KONKAV VE LOG-KONKAV DA¼GILIM FONKS·IYONLARININ n
KEZ KONVOLÜSYONU ·IÇ·IN BAZI SINIRLAR

Özet: Genelde bir F da¼g¬l¬m fonksiyonunun kendi kendisiyle olan
n-kez konvolüsyonu için analitik ifadeler elde etmek mümkün de¼gildir.
Fn� için s¬n¬rlar¬n varl¬¼g¬önemlidir. Bu çal¬̧smada F konkav ya da
log-konkav oldu¼gunda olas¬l¬k integral dönüşümü yard¬m¬yla Fn�

için baz¬s¬n¬rlar verilir.
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