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SUMMARY

In this paper, we investigated the sectional curvatures of the submanifolds which are
totally real in S°.

INTRODUCTION

A 6 dimensional sphere S6 does not admit any Kaehler structure.
However a natural almost complex structure J can be defined
on S6. This structure on S6 is nearly Kaehler, that is, it satisfies
(V xJ) (X) =0, where T/ is the Riemannian connection on S6 and J is
the almost complex structure of 56 [5],

There are two types of submanifolds on S6, those which are almost
complex and those which are totally real. A Riemann manifold M
isometrically immersed in S6, is called a totally real submanifold of
S6 if J (TM) « T1n where TL1) is the normal bundle of M in Sé,
then we have n = dim M <C 3. In this paper we investigated the sec-
tional curvatures of the submanifolds which are totally real in S6.

1. PRELIMINARIES

Let UM = {X eTM: |X | =I{ be the unit tangent bundle
of M. If M is two dimensional, consider the function f; UM -» R defined
by f(v) = < h(V,V), J V> which is clearly smooth, where h is the 2 nd
fundamental form tensor of M. Suppose that f is not constant. The unit
tangent bundle UM being compact, f attains its maximum at a tangent
vector, say e,. Then it is well known that < h(e;, €,), Jy > =0,
fory e UM and y L e, [3].

Put k (e, e;) = a Je;, where a is a smooth function on M. Choose
ey such that {e;, e;} is a local orthonormal frame of M. Then we have
the following expressions [1].
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(*) hep,e)) =aJe,h(ees) =bje +cleyh(e,ey) =ble,

where b, ¢ are smooth functions on M.

Now assume that M is three dimensional. Let x € M and let us
construct an orthonormal basis of TxM in the following way [2]. Con-
sider the function f: UM — R defined by f; (v) = < h(V, V), JV >
If f, attains an absolute maximum in u then < h (u, u), J'w> =0,
for w orthogonal to u. Choose e, to be an absolute maximum of f.
Then we consider the restriction of f; to {ve UMy| < v, e; > =0}.
We will denote this restriction of f; by f,. If f, is identically zero, we
choose e, as an eigenvector of Aje , where Aje, is the shape operator
with respect to Je,. If f, is not identically zero, we take e, as an abso-
lute maximurm of f,. Finally, we choose e; such that G (e, es) = Jes.
Then, the second fundamental form can be written as

h (ej,e;) =alJe

h (ez,el) —bJel—l—cJez

h (e3, e3) =—~(a + b)J‘ﬁ—cJLz

h (e, e3) =b J ey + dJe;

h(e,e;) =—(a+ b)Jey+ dJ e

h (e, e;) =dJey—cJey,
wher¢- a-> 4 >.0 and b, c e R.
At ‘this point we may express the following lemma -which was
proifed in [21.

Lemma. If M is a 3 —dimensional compact totally real submanifold
of SG then for each point p of M, there exists an orthonormal basis
{1, €2, €3{ of TpM such that either

(i) h(ep, e)) =h (e, e3) =h (e;, e;) =0,
o Rlen o) =hiep el =hlex ) =0
(@) B e) = (V12) Ty, ey, ) = (/B4 T e

hi(en, &) = (—v/5/4) J ey £(1/10/4) T, h (g, 03) =(-y/5/ 4)Tes
b (‘339 e3) =(V/5/4) T ey~ (4/10/4) J 3, b (2, 03) = (-1/10/4) J es,
(iii) b-(eyp e1) = (v/5/2) J ey, h ey, 02) = (/5 /4) T e,

h (e2,.02) = (—/5/4) J ey, h (e}, e2) = (-4/5/4) J ey,

h (e3, e5) = (—1/5/4) J e}, h (es, e5) = 0.



- -SECTIONAL CURVATURES - . 101

The lenght of the second fundamental form of M at point x is defined by
Ihx 2= = | hx(es e 2. - (LY
1<ij<n

If P is a plane section of M at x, i.e. a two dimensional subspace
of TxM, then denote by K(P) the sectional curvature of M at P and
by b | the symmetric bilinear form from PxP to TLM obtained by
restricting hy to PxP. Let e, e; be any orthonormal basis of P. Then
the Gauss curvature equation can be written as

CK(P) =1 <h(epe)hiene)>—[hiepe) oo (12)
and the length of h|p is [hip 2 = X | h(epe) 2.

Ilpf2 = [ (eps o) 2 + 2 [h (e, e2> Pt Ihenen B3
. RELATIONS BETWEEN SLCTIONAL CURVATURES

Now, we may prove the following theorems providing somie rela-
tions about the sectional curvatures of totally real submanifold M in S6.

Theorem 1. Let M be an 2 or 3 dimensional-totally real submani-
fold of S6. If P is a plane section of M, then K(P) <1 + (1/2) |h|y?
<1+(1/2) [h | |

Proof: If M is 2 dimensional, then the sectional curvature K(P)
coincides with the Gaussian curvature of M at P. For 2 dlmensmnal
case, it was proved by S. Deshmukh in [1] that the Gaussian curvature
of M is 1, that is, M is totally geodesic. In this case, since h|y-also coin-
cides with hy, we easily have 1 < 1 + (1/2)|h [p[2 =1+ (1/2)] k]2
Now, let us give the proof of theorem for the case of dimension 3.

Let 5, e; be an orthonormal basis of P. We will con51der three
cases in the Lemma. Case (i). From (1.2.) and (1.3.) we get

Jh 2 =0, |hiy |2 =0 and so K(P) = 1.
Case (11) From (1.2.) and (1.3.) we get :
KP) =14 <(/5/2) Je (—y/5/4) Jes + (\/10 /4) Je2
~l<-v/5/4) Je 2 =1/16
and

I o= 2 llh (e, e5) |2 =95/16, |h|p|z =45/16 =7

and so
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1/16 <1+ 45/32 <1 4 95/ 32, which proves the assertion.
Case (iil). From (1.2) and (1.3) we get

K(P) =1+ <(/5/2) Jo, (v/5/4) Je; > —[(-4/5/4) Jes |2 =
1/16

and

|h |2 =4/50/16, |hip|> =35/16
and so
1/16 <14 35/32 <1 4 50/ 32, which proves the assertion.

Theorem 2. If M is a totally real minimal surface of S6. Then, we
have

K(P) =1-1/2)|h |2 < L.

Proof: If M is a minimal surface, then mean curvature vector of
M is zero so from (*) we get h(e;, e;) = -a J e;. Using this in (1.2)
and (1.3) it follows that

K(P) =1+ < aJe;, —aJe; > - < blJes, bJe; > =1 - (a2+4-b?)
and

[h |2 =2 (a2 + b2)
and so

K(P) =1-(1/2) |h |p < 1.

Remark to Theorem 2. In three dimensional case Theorem 2 is

justified for the only case (i) and the other cases do not occur.

Theorem 3. If M is a totally real and also totally umbilic sub-
manifold of 56, then, wehave K(P) = 1.

Proof: If M is three dimensional, then only the case (i) occurs, so
the proof for this case is clear. If M is a totally real and also totally
umbilic surface, then by definition we write h (e;, €3) = 0 and h (e.e;)
= h (e,, ;). From (*), it follows that a =b =c¢ = 0, which imply
h(e;, ) =h(ey, e;) =h(e;, e3) = 0. Thus, from (1.2) we have
K®P) =1.
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