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ABSTRACT

The authors have defined approximation error for harmonic functions in Dy, 6 <7 R <Z
o0 the class of all harmonic functions H in R®, that are regular in the open ball Dy of radius
R centered at the origin and are continuous on the closure Dy of Dy. Necessary and sufficient
conditions, in terms of the rate of decay of the approximation error E (H, R), such that H ¢ Dy
has analytic eontinuation as an entire harmonic functions having (p, q) —order 2 and (p, q)-

type T, have been obtained.

INTRODUCTION
The harmonic functions in R3 are the solutions of the Laplace
equation
a2 52 52
eie2n e, (0.1)
ox3 o x3 o x2

A harmonic function H, regular about the origin, can be expanded as

o« n
H=H@0, g)= X m X (a® Cosmg -+ al? Sinm &) Pm (Cos®)
n=0 m=0 nm nm n (0.2)

where x; = rCos®, x, = rSin@Cos &, x, = rSinGSinz and P™M(t)
n

are associated Legendre’s functions of first kind of degree m and order
n. A harmonic polynomial of degree k is a polynomial of degree k in
X1, X» and x; which satisfies (0.1).

A harmenic function H is said to be regular in Dy = {(x, x5,
x3): \% - X% - x32 < R%,0<R < o, if the series (0.2) converges
uniformly on compact subset of D,. A harmonic function H is called

entire if it is regular in D,
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The concepts of the index—pair (p, g), p = q > 1, (p, q)- order
and (p, g)-type ete. of an entire function were introduced by Juneja
et al. ([4], [5]). Thus if we denote by logl® x the quantity log log
... log x, where logarithm is taken p tlimes, then an entire harmonic
function H is said to be (p, q)-order p if it is of index—pair (p, q) and

P1]
lim sup log"M (r, H)

T oo logldl ¢

=o(pqg =p¢H),b<p< o (0.3)

Here b=11if (p,q) = (p.p)» p=2, 3,... and b = 0 otherwise.

The entire harmonic function H having (p, q)-orderp, b < p < <0,

is said to be of (p, q)-type T and lower (p, q)-type t if

_ SUP JogiP-11 M (r, H) T g9 T(H)
Hm CEyR = = (0.4)
v opinf  (logl )P t(p,q)  t(H)

where 0 <t < T < oo, and

M (r, H = max [ H (x1, x2, x3) .
x2 4 x3 X? = 12

Fryant [2] related p and T of an entire harmonic function H
with the rate of decrease of coefficients alflir)l mm (0.2), i = 1, 2. Ana-
logous results for the solutions of (0.1) which depend only on the variables
x = x; and y = (x3+ xg)l/2 have been found in Fryant [1]
and Gilbert (3, Theorem 4.3.4).

Let Hy, 0 << R << o0, denote the class of all harmonie functions
H regular in Dy and continuous on Dy, the closure of Dy. For H € H,
let Ey (H, R), the error in approximating the function H by harmonic
polynomials of degree at most n in uniform norm, be defined as

Ea (H,R) — inf | Heg |, (0.5)
gETCn
where 7y, consist of all harmonic polynomials of degree at most n and
|H-g |r = max | H (xq, X0, X3) — g (x5 X2, X3) |-
(Xla X2, X3) EDR
Let H € Hy (class of all harmonic functions H in R3). Kapoor
and Nautiyal [6] have proved the following

Theorem. Let Il € Hy. Then H has analytic continuation as an
entire harmonic function of order p (0 << p << o) and type T
(0 < T < ), if and only if,
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lim sup n (E, (H, R))?/» = epTRo.
n—

In this paper we have extended above theorem for entire harmonic
function of (p, q)-growth. We have also obtained analogous result
for lower (p, q)-type of entire harmonic functions. Finally, we have
studied the growth of the coefficients of polynomial expansion of
entire harmonic function with index—pair (p, q) in terms of approxi-
mation error. The following notation is frequently used in the sequel:

Notation:

r T
Fiy (9 = 11 el % Ay () = IT loghtic

X X , .
Fin® = Ara) A (x)= oo r=0,+1,

AUXILIARY RESULTS

In this section we give some lemmas that are used in proving
Theorems 1 and 2.

Lemma 1.1. Associated Legendre’s functions p™(t) satisfy
n

max | P™(t) | < K [(n + m)!/(p-m)!]1/2, (1.1)
~1<t<1 n

where K is a constant independent of n' and m.

Lemma 1.2. Let H € Hg be entire and r" > 1. Then, for all

r > 2r" R and all sufficiently large values of n, we have
En (H, R) << RM (r, H) (' R/ r)ntL,

Here K is a constant.

Lemma 1.3. Let H € Hg. Then, for any R, <R and n =1,

we “have
(1) (n-+m) ! 1/2
R, max| |aun | (prm L) ] = Kooty By 1 B,
C )
where K, is a constant.
The proofs of these results can be found in [6, pp. 1026-27].

Lemma 1.4. Let H ¢ Hgr. Then for any R, <Randn>1,
there exists an entire function h(z) such that
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o . Z n
h(z) = S (2n+ 1)2 By, (H, R) ( ) , and
n=1 R,
M (r, H) < |a® | 4 KKom (1, h), where m (r, h) = max |h(z) .
00 |z | <r

Proof. For H € Hg, using (0.2), Lemma 1.2 and Lemma 1.3, we
have

o n (1 (1) m

'H | < |2 m Z (appCosmo + ay, Sinmgz) P (Cos®) |,
n=0 m=0 n

or

( « i
M, H) < | al)l + K X (2n+41) r® max| | E(lr)lmi ( (n+m)!)
00 n= :

m, i

(1 o«
> a [+ KKy £ @n+ )2 Ea (LR ()
00 n=}

for some R, < R. Hence

*

(1)
M@ H) < |ag | + KKgm (r, h)

where

o z
hz)= = (-t 1)2En (B, R)(R ) .

*

Since lim (E, (H, R))1/» = 0, h(z) is an entire function of a single
n—>c
complex variable z and m(r, h) = max | h(z) |.
|z |<r
2. MAIN RESULTS

Theorem 2.1. Let H ¢ Hg. Then H has analytic continuation as
an entire harmonic function of (p, q)-order ¢ (b < p << o0) and
(p» q-type T (0 < T < ), such that

Iog[p*ﬂn T

Ll_lﬁwsup [og™ 1T (E,, (E, B ) UA]eA = 2.1)
where
1
FP—J{T for (p, q) = (2, 1),
(p-1 ¢—1
M = 0P for (p, q) = (2, 2), (2.2)
1.

otherwise.
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1 for (p,q) = (2,2),

0  otherwise.

A =

Proof: Let K > T. By the definition of the (p, q) type of H there
exists an R, = R, (K) > R; such that

logt"~1IM (v, H)
(Togl=Ti)? < K for >R,

or
M (r, H) < explP~1] [K (log [9711 r)p]. (2.4)

By Lemma 1.3, we have

(R A\ ,
Eq (H, R) < RM (x, H) ( d ) 2.5)
For (p, q) = (2, 1) we proceed on the lines of Kapoor and Nautiyal
[6] to get

n (Ex (H, R) )p /2 > eoKRp. (2.6)
Now for (p, q) = (2, 2), from (2.4) we have ‘
M (r, H) < exp [K (log r)¢], and consequently

. . _ r R \a+1
En (H, R) < K exp [K (log 1)?] (_-r_)

1/p~1
Let N > ng be so large that exp ( £ ) > R,, for n> N.
¢

Choosing

n 1 »
r = exp ( e ) in above inequality, we get

foe ()7 ] e

n oy 1pl o nfl
e [(%5) 1

E, (H, R) <
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ple-l
= log En(H, R)glogf{-{—<1> 1

g TKIfeTL
+ (n41) log &' R) - (n + 1) (-lz_p>1/9—l
= - % logb E, (H, R) > (Klp)l/pﬁl B (_;_)9/9“1 (_I%>1/P—l
+ % (%9)1/9-1 —log (' R) - % log (K1’ R)
a (KLP)I/p—l [1 - % T %] - —ill_ log (Kr’' R) -log (r' R).

= [log (Ex (H, R) SRR w[(5)u+owm] "

for sufficiently large n,

- (p)e
[log (Ex (H, R))~1/n ] ¢71 <K 1)1 (1-o (1)).

Proceeding to limits we get

n K

i _. 2.7
W02 Thog (B, (LRI T T = M &0
For (p, q = (2,1) and (2, 2), let N > ng be large such that
_ 1/
[p—2] 14
eXP[Q"l] [ log I{(n/ Kp) ] > Rz for n > M.
Choosing
() -
-2\ Ko / -
r = expl®Ti] [ log!? e Ke J in (2.4) and (2.5), we get,

. K exp (%) (I" R)n+1
En (Ho R) S

(P—2) 1 /P 9n+1
g exp(d-1) [ log Ié“/KP) ]/ )‘
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or
log Ep (H, R) < log K + KL@ + (n + 1) log (r R)
(_’L) e
— (0 + 1) exple-2] [ 10g[1’—§ Kp ] 3
or

pP—2 1/e
(Iog Ex (B R))-t o = expte— [ P82 0IRO T 1 o)

for sufficiently large values of n,

[logld-1) (£, (H, R))~1/n]e > [ IOg[IzZ] (n/ Ke) ] [1-o(1) Je,

or, since p >> 2,

log[p“2]n
8 = g (6, o, mye A Do

Proceeding to limits we get

T loglP—21
im
n> o P logl 11 (E, (H, R) )2/ 8]

< K. (2.8')

Since (2.6), (2.7) and (2.8) are valid for every K > T, therefore it
follows that

logl"—2In : T

] _— .
s S "P Tlogil (Ey (H, R))-1/5] ¢4 <3 @9
To prove reverse inequality, using Lemma 1.4, we have
. log[p‘ﬂn T
_— (2.10
n]_l_)mwsup [log[q_l] (En H, R))__l/ n] P_A = M ( )

(2.9) and (2.10) taking together prove the theorem i.e., the result (2.1).

Theorem 2.2. Let H € Hg. Then, H has analytic continuation
as an entire harmonic function of (p, q)-order p (b << p + ) and
lower (p, q)-type t (0 < t < ) such that
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.. loglP-2in t
lim i - = e J1
po ol — TR, (W) ] R T (2.11)
where A and M have their usual meaning.
Proof. Let
. . lOg[p_Z]ll
o T, (L R e
Then for any ¢ > 0, there exist n > n; such that
log [*2]n ~ Jes
fog™ 11 (B, (1, Ry T/rjea = 77
or
1/p—A -—n
(-2] [t
E, (H, R) > g expla-1] [ 103% n ] g (2.12)
-

For (p, q) = (2, 1),

n \R/P
En(H, B) = (=)
or
o r R n+1 R n _n/ P
RM (r,H)( . ) - (J_g) .
or
log M (r, H) > -n/p log ( Ji: ) + (n+1) log (r/r R)-log K.

Choosing

’ ]./p
R)p

logM(r,H)2—~%log (J‘;>Jr (n+91) [log( n )JT

log e (" R)P] - (n + 1) log (' R) - log K.

g e ()] e

= 2 [1-+oe (1) ]——O(b, for sufficiently large n.
¢
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. %—EL [1+ o(1)] - 0(1),

log M(r, H) - (J-e) (r/1)p

P ~ peRP P [t + oM

Proceeding to limit, as r - oo, we get since ' > 1 is arbitrary,
t > M.J. (2.13)
Again for (p, q) = (2, 2), from (2.12) we have 4

En (H, R) > %exp (_JI_IS )1/ -1 §-n’ |

T

RM (v, H) (I'R> n+12 % exp (Jn—° )1/9—1, gﬂn

log M (r, H) > —(n)p /o1 (%)1/9*1 + (1) log (r_’_ﬁ) _log K.

Choosing

= P {(e/ ) (] J-o)1 /ey,

we get
- 1/e-1
p/p—1 o .
g M1 = - % + @t [ e-1 ( Jfl_e' ) ]_log K.
p/e—1 1
- (JI'I—E)l/P“l o1 [1 + 0(1)]—0(1) as n - 0.
(p-1)p-1

= (1) E— . (log (/1 R))P [14+o(1)]-0()

log M(r, H) (e—1)p—1 . (log (x/ " R))? Lo o
(log r)P = P (J-9) (log )P [1 4 o (1)]-o(l).

Proceeding to limits we get,

t > M.J. (2.14)
Now for (p, q) # (2, 1) and (2.2). From (2.12) and Lemma 2, we have
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_ ’ n+1 { [r—-21 1/ p 1
RM (x, H) ( rrR ) > 3 expla~il [_1_‘1%._13,] !

J—z §
or
~9 1/
- loglP~2In e T
1 > - fa—z} ¢ & T N .
og M (r, H) > -n expl®2 [ 7= ] +(n|~1)log(r,R>
- log K.
Choosing

. * /e |
T logtP—2In P .
= Y [q~2] —_— &)
O exp 3 14 exp [ T2 ] ; . We get

- 1/0
{p-2] / _
_lg__n_] log K

log M (r, H) > n+14expla-2] [ e

— expl®-2] %(J~e) (log[q—l] ( er,‘R ))P g [14-“)‘(1)]—0(1).

(1ogee-n (o) )
logli-11 \ er' R

(logl9-11 r)p

logi®~11 M (r, H)
(log[Q— 1] I‘)P

> (J-¢)

[1 + o(1)] - o(1)

Proceeding to limits we get

t = J. (2.15)
Combining the results (2.13), (2.14) and (2.15) we get

t .
M > J. (2.16)

To prove reverse inequality, using Lemma 1.4, we get
—_— . (2.17
<7 (217)

(2.16), (2.17) taking together prove the theorem i.e., the result (2.11).



APPROXIMATION OF ENTIRE HARMONIC FUNCTIONS 167

REFERENCES

1. A.J. FRYANT., Growth and complete sequences of generalized axisymetric potentials.
J. Approx. Theory, 19 (1977), 361-370.

2. A.J. FRYANT., Growth of entire harmonic functions in R3. J. Math. Anal. Appl., 66
(1978), 599-605.

3. R.P. GILBERT., Function Theoretic Methods in Partial Differential Equations. Academic
Press, New York, (1969).

4. 0.P. JUNEJA., G.P. KAPOOR and $.K. BAJPAL, On the (p, q)-order and lower (p, q)
—order of an entire function. J. reine. Angew. Math. 282 (1976), 53-57.

w1

. O0.P. JUNEJA., G.P. KAPOOR and S.K. BAJPAL, On the (p, q)-type and lower (p, 9
type of an entire function. J. reine Angew. Math. 296 (1977), 180-190.

6. G.P. KAPOOR and A. NAUTIYAL., Approximation of entire harmonic functions in R®.
Indian J. Pure Appl. Math., 13 (1982), 1024-1030.





