SEPERATION PROPERTIES IN CATEGORIES OF PREBORNOLOGICAL SPACES AND BORNOLOGICAL SPACES

MEHMET BARAN

Erciyes University, Faculty of Art and Science 38039 Kayseri | Turkey

ABSTRACT

In this paper, an explicit characterization of each of the separation properties T_0 , T_1 , $PreT_2$, and T_2 is given in the topological categories of Prebornological Spaces and Bornological Spaces. Moreover, specific relationships that arise among the various T_0 , $PreT_2$, and T_2 structures are examined in these categories.

1. INTRODUCTION

Let E be a category and Sets be the category of sets.

- 1.1. **Definition.** A Functor U: $E \rightarrow \text{Sets}$ is said to be topological or E is a topological category over Sets iff the following conditions hold:
- 1. U is concrete i.e. faithful (U is mono on hom sets) and amnestic (if U (f) = id and f is an isomorphism, then f = id).
 - 2. U has small fibers i.e. U⁻¹(b) is a set for all b in Sets.
- 3. For every U-source, i.e. family $g_i \colon b \to U(X_i)$ of maps in Sets, there exists a family $f_i \colon X \to X_i$ in E such that $U(f_i) = g_i$ and if $U(h_i \colon Y \to X_i) = kg_i \colon UY \to b \to U(X_i)$, then there exists a lift $k \colon Y \to X$ of $k \colon UY \to UX$ i.e. U(k) = k. This latter condition means that every U-source has an initial lift. It is well known, see [3] p. 125 or [5] p. 278, that the existence of initial lifts of arbitrary U-source is equivalent to the existence of final lifts (the dual of the initial lifts) for arbitrary U-sink.
- **1.2. Definition.** A Prebornological Space is a pair (A, F) where F is a family of subsets of A that is closed under finite union and contains all finite nonempty subsets of A. See [4]p. 530. Furthermore, if $F \neq \emptyset$ and F is hereditary closed, then (A, F) is called a Bornological Space [4] p. 530 or [6] p. 1376. A morphism $(A, F) \rightarrow (A_1, F_1)$

of such spaces is a function $f: A \to A_1$ such that $f(C) \in F_1$ if $C \in F$. We denote by P Born and Born respectively, the categories so formed and by P Born*, the full subcategory of P Born determined by those spaces (A, F) with $\emptyset \notin F$. [4] p. 530. The categories PBorn, P Born*, and Born are topological over sets. See [4] p. 530.

- 1.3. The discrete structure (A, F) on A in (P Born, P Born*), Born is the set of all (nonempty) finite subsets of A. See [4]. p. 530.
- 1.4. A source $\{f_i\colon (A,\ F)\to (A_i,\ F_i)\ i\in I\}$ is initial in P Born, P Born*, and Born iff $F=\{B\,/\,B\subseteq A,\ f_iB\in F_i\ \text{for all }i\}$. See [4] p. 530.
- 1.5. An epi morphism $f: (A_1, F_1) \to (A, F)$ is final in P Born or PBorn* (resp. Born) iff $F = \{f(B) \mid B \in F_1\}$ (resp. $F = \{B \mid B \subseteq A \text{ and } B \subseteq f(C) \text{ for some } C \in F_1\}$).

An epi sink $\{i_i, i_2: (A, F) \rightarrow (A_1, F_1)\}$ is final in P Born or PBorn* (resp. Born) iff $F_1 = \{B \mid B \subset A_1 \text{ and } B \text{ is (resp. contained in)}$ a finite union of sets of the form $i_k(C)$ with $C \in F$, $k = 1, 2\}$. See [4] p. 530.

1.6. Lemma, Suppose $f: X \to Y$ is a morphism in P Born, PBorn*, or Born. If f has finite fibers i.e. $f^{-1}(y)$ is a finite set for all y in Y, then f reflects discreteness i.e. if Y is discrete, then so is X.

Proof: See [1] p. 6.

Let X be a set and $X^2 = X \times X$ be the cartesian product of X with itself. $X^2V_{\Delta} X^2$ (two distinct copies of X^2 identified along the diagonal). A point (x, y) in $X^2V_{\Delta} X^2$ will be denoted by $(x, y)_1$ ($(x, y)_2$) if (x, y) is in the first (resp. second) component of $X^2V_{\Delta} X^2$. Clearly $(x, y)_1 = (x, y)_2$ iff x = y. [2] p. 3.

1.7. Definitions. The principal axis map, A: X^2V_{Δ} $X^2 \rightarrow X^3$ is given by $A(x,y)_1=(x,y,x)$ and $A(x,y)_2=(x,x,y)$. The skewed axis map, S: X^2V_{Δ} $X^2 \rightarrow X^3$ is given by S $(x,y)_1=(x,y,y)$ and S $(x,y)_2=(x,x,y)$ and the fold map $\nabla\colon X^2V_{\Delta}$ $X^2 \rightarrow X^2$ is given by $\nabla(x,y)_1=(x,y)$ for i=1,2.

Let U: $E \rightarrow Sets$ be topological and X an object in E with UX = B.

1.8. Definitions.

1. X is \overline{T}_0 iff the initial lift of the U-source $\{A\colon B^2V_\Delta\ B^2\to U\ (X^3)=B^3\ \text{and}\ \nabla\colon B^2V_D\ B^2\to U\ D\ (B^2)=B^2\}$ is discrete.

- 2. X is T'_0 iff the initial lift of the U–source {id: $B^2V_\Delta B^2 \to U$ (B²V_ Δ B²)' = B²V_ Δ B² and \bigtriangledown : B²V_ Δ B² \to U D (B²) = B²) is discrete, where (B²V_ Δ B²)' is the final lift of the U–sink {i_1, i_2: U (X²) = B² \to B²V_ Δ B²}
- 3. X is T_1 iff the initial lift of the U-source $\{S\colon B^2V_\Delta\ B^2\to U\ (X^3)=B^3\ \text{and}\ \nabla\colon B^2V_\Delta\ B^2\to U\ (D\ (B^2)=B^2\}$ is discrete.
- 4. X is $Pre\overline{T}_2$ iff the initial lift of the U-sources A: B^2V_{Δ} $B^2 \rightarrow U(X^3) = B^3$ and S: B^2V_{Δ} $B^2 \rightarrow U(X^3)$ agree.
- 5. X is $Pre\overline{T'}_2$ iff the inital lift of the U-source S: B^2V_Δ $B^2 \to U$ (X³) and the final lift of the U-sink i_1 , i_2 : U (X²) \to B_2V_Δ B^2 agree.
 - 6. X is \overline{T}_2 iff X is \overline{T}_0 and $Pre\overline{T}_2$.
 - 7. X is T'₂ iff X is T'₀ and PreT'₂.
 - 8. X is $\triangle T_2$ iff the diagonal, \triangle , is closed in X^2 . See [1] p. 8.
 - 9. X is ST_2 iff the diagonal, \triangle , is strongly closed in X^2 . See [1] p. 8.
- **1.9. Remark.** We define π_{ij} by $\pi_i + \pi_j$: $B^2 \vee_{\Delta} B^2 \rightarrow B$, where π_i : $B_2 \rightarrow B$ is the ith projection i = 1, 2. Note that $\pi_1 A = \pi_{11} = \pi_1 S$, $\pi_2 A = \pi_{21} = \pi_2 S$, $\pi_3 A = \pi_{12}$ and $\pi_3 S = \pi_{22}$. When showing that A and S are initial, it is sufficient to show that $(\pi_{11}, \pi_{21} \text{ and } \pi_{12})$, and $(\pi_{11}, \pi_{21} \text{ and } \pi_{22})$ are initial lifts, respectively. See [2] p. 13.

2. Separation Properties

In this section, we give explicit characterizations of the generalized separation properties for the topological categories of P Born, P Born*, and Born.

2.1. Lemma. If $\bigtriangledown: (B^2 V_\Delta \ B^2, \ K) \rightarrow (B^2, \ K_d)$ is in any one of P Born, P Born*, or Born, where K_d is discrete structure on B, then K is discrete.

Proof: This follows from 1.6 since the fibers of ∇ are finite.

2.2. Theorem. All objects in P Born, P Born* or Born are T'_0 , \overline{T}_0 , and T_1 .

Proof: This follows from 2.1 and Definition 1.8.

2.3. Theorem. $X=(B,\,F)$ in P Born or P Born* is $Pre\overline{T}_2$ iff X is strictly hereditary closed i.e. if $\varnothing\neq V\subset U$ and $U\in F$, then $V\in F$.

Conversely, we shall show that if X is strictly hereditary closed, then X is $\operatorname{Pre}\overline{T}_2$ i.e. if $W = \operatorname{UVV}$ is any subset of the wedge with $\pi_{11} \ W = \pi_1 \ U \ \cup \ \pi_1 \ V \in F, \ \pi_{21} \ W = \pi_2 \ U \ \cup \ \pi_1 \ V \in F, \ \text{then}$ $\pi_{12} \ W = \pi_1 \ U \ \cup \ \pi_2 \ W \in F \ \text{iff} \ \pi_{22} \ W = \pi_2 \ U \ \cup \ \pi_2 \ V \in F. \ \text{To this end,}$ assume $\pi_{11} \ W \ \text{and} \ \pi_{21} \ W \ \text{are in } F. \ \text{If} \ U = \varnothing \neq V, \ \text{then} \ \pi_{12} = \pi_2 \ V \in F \ \text{iff} \ \pi_{22} \ W = \pi_1 \ U \in F,$ $\pi_{21} \ W = \pi_2 \ U \in F \ \text{and} \ \text{consequently} \ \pi_{12} \ W = \pi_1 \ U \in F \ \text{iff} \ \pi_{22} \ W = \pi_2 \ U \in F. \ \text{If} \ U \neq \varnothing \neq V, \ \text{then} \ \pi_{11} \ W = \pi_1 \ U \ \cup \ \pi_1 \ V \in F \ \text{and} \ \pi_{21} \ W = \pi_2 \ U \ \cup \ \pi_1 \ V \in F \ \text{imply} \ \text{by} \ \text{assumption} \ \text{that} \ \pi_1 \ U,$ $\pi_2 \ U, \ \pi_1 \ V \in F \ \text{and} \ \text{consequently}, \ \pi_{12} \ W = \pi_1 \ U \ \cup \ \pi_2 \ V \in F \ \text{iff} \ \pi_{22} \ W = \pi_2 \ U \ \cup \ \pi_2 \ V \in F. \ \text{If} \ X \ \text{is in} \ P \ \text{Born} \ \text{and} \ U = \varnothing = V,$ then $W = \varnothing \ \text{and} \ \text{iff} \ \pi_{11} \ W = \varnothing = \pi_{21} \ W \in F, \ \text{then} \ \pi_{12} \ W = \varnothing \in F \ \text{iff} \ \pi_{22} \ W = \varnothing \in F.$ This completes the proof.

2.4. Theorem. $X=(B,\,F)$ in P Born or P Born* is $PreT'_2$ iff X is hereditary closed.

Proof: Suppose X is $\operatorname{PreT'_2}$ i.e. by 1.4, 1.9, and 1.5 for any subset W of the wedge (a) π_{11} W \in F, π_{21} W \in F, and π_{22} W \in F iff (b) W $= i_1W_1 \cup i_2W_2$ for some W_1 , $W_2 \in$ F² where F² is defined by N \in F² iff π_1 N \in F and π_2 N \in F. We will show that if U \in F and V \subset U, then V \in F. If V = U, then V \in F. If V \neq U and V \subset U, then let W = V²V $(U - V)^2$ and clearly π_{11} W = U = π_{21} W = π_{22} W \in F. Since X is $\operatorname{PreT'_2}$, it follows that W = $i_1W_1 \cup i_2W_2$ and consequently $W_1 = V^2 \in$ F². Thus, $\pi_1W_1 = V \in$ F.

Conversely, suppose X is hereditary closed. We will show that X is $\operatorname{Pre} T'_2$ i.e. (a) and (b) are equivalent. To show (b) implies (a) note that if $W = i_1W_1 \cup i_2W_2$, then clearly $\pi_{11}W = \pi_1W_1 \cup \pi_1W_2 \in F$, $\pi_{21}W = \pi_2W_1 \cup \pi_1W_2 \in F$, and $\pi_{22}W = \pi_2W_1 \cup \pi_2W_2 \in F$ (since W_1 and W_2 are in F^2 iff $\pi_1W_1 \in F$ and $\pi_2W_1 \in F$, and $\pi_1W_2 \in F$

 \in F and $\pi_2W_2 \in$ F). On the other hand, if W = UVV, where U, V are subsets of B^2 , and $\pi_{11}W = \pi_1U \cup \pi_1V \in$ F, $\pi_{21}W = \pi_2U \cup \pi_1V \in$ F, and $\pi_{22}W = \pi_2U \cup \pi_2V \in$ F, then, by assumption π_iU and π_iV are in F for all i=1 2. and consequently, U, V are in F². Clearly, $W = i_1UVi_2V$ and thus (a) implies (b). Therefore (a) and (b) are equivalent i.e. X is $PreT'_2$.

2.5. Theorem. $X=(B,\ F)$ in P Born or P Born* is \overline{T}_2 iff X is strictly hereditary closed i.e. if $\varnothing\neq V\subset U$ and $U\in F$, then $V\in F$.

Proof: Combine 2.2, 2.3, and Definition 1.8.

2.6. Theorem. $X=(B,\,F)$ in P Born or P Born* is T'_2 iff X is herediatary closed.

Proof: Combine 2.2, 2.4, and Definition 1.8.

- **2.7. Remark.** In P Born and P Born*, $PreT'_2$ and T'_2 imply $Pre\overline{T}_2$ and \overline{T}_2 , respectively.
 - **2.8. Theorem.** Every object in Born is $Pre\overline{T}_2$, $PreT'_2$, \overline{T}_2 , and T'_2 . **Proof:** This follows from the fact that X is heredidary closed.
- **2.9. Theorem.** Let $X=(B,\ F)$ be in P Born, P Born* or Born. X is $\triangle T_2$ iff $B=\varnothing$ or a point.

Proof: [1] p. 17.

2.10. Theorem. All X in P Born, P Born*, or Born are ST₂.

Proof: [1] p. 17.

2.11. Remark. Except for $\triangle T_2$, all of the other separation properties defined in 1.8 are equivalent in Born. Some of the " T_2 " structures could be equal while others could be different. For example, in Born, T'_2 , ST_2 and \overline{T}_2 are all equivalent and all are implied by but are different from $\triangle T_2$. In PBorn and P Born*, T'_2 and \overline{T}_2 are equivalent, are implied by $\triangle T_2$, and imply ST_2 .

BORNOLOJÍK VE PREBORNOLOJÍK KATEGORÍ UZAYLARINDA AYRILMA AKSÍYONLARI

ÖZET

Bu çalışmada, Bornolojik uzaylar ve Prebornolojik uzaylarında $T_0,\ T_i,\ Pre\ T_2\ ve\ T_2$ ayrılma özelliklerinin her birinin açık bir karakte-

rezisyonu verildi. Bundan başka, bu kategorilerde değişik T_0 , Pre T_2 ve T_2 yapıları arasında ortaya çıkan özel ilişkiler incelendi.

REFERENCES

- M. BARAN., Separation Properties in Topological Categories, Ph. D. Thesis, University of Miami (1990).
- [2] M. BARAN., Separation Properties, Submitted.
- [3] H. HERRLICH., Topological Functors, Gen. Top. Appl. 4 (1975) 125-142.
- [4] M.V. MIELKE, Convenient Categories for Internal Singular Algebraic Topology, Illinois Journal of Math., Vol. 27, No. 3, (1983).
- [5] M.V. MIELKE., Geometric Topological Completions with Universal Final Lifts, Top. and Appl. 9 (1985) 277-293.
- [6] L.D. NEL., Initially Structured Categories and Cartesian Closedness, Can. Journal of Math., Vol. XXVII, No. 6, (1975), 1361-1377.