Commun. Fac. Sci. Univ. Ank. Series A₁ V. 36, pp 41-42 (1987)

CORRIGENDUM

HÜSEYİN BOR

Department af Mathematics, Erciyes University, Kayseri, Turkey

In our previous paper [Bor (1984)], the conditions (i) (c) and (i) (d) are redundant, because these conditions can be obtained from the condition (i) (a), Lemma 1 and Lemma 2. In fact, we shall first show that the condition (i) (c) is satisfied. Since

$$\gamma_n \left| \triangle \lambda_n \right| = O(1) \text{ as } n \to \infty, \text{ by Lemma 1, we have}$$

$$\left| \triangle \lambda_n \right| = O(1/\gamma_n) = O(1) \text{ as } n \to \infty. \tag{1}$$

On the other hand, since

$$\left(\frac{|P_{n-1}|}{|P_n|}\right)\gamma_n\left|\triangle\lambda_n\right| \ = \ O(1)$$
 as $n\to\infty,$ by Lemma 2, we get

$$\frac{P_{n-1}}{P_n} |\triangle \lambda_n| = O(1/\gamma_n) = O(1) \text{ as } n \to \infty.$$
 (2)

Hence

$$\begin{array}{c|c} \frac{P_n}{p_n} & |\triangle \lambda_n| = \frac{(P_{n-1} + p_n)}{p_n} & |\triangle \lambda_n| \\ \\ = \frac{P_{n-1}}{p_n} & |\triangle \lambda_n| + & |\triangle \lambda_n| = O(1) \text{ as } n \to \infty, \text{ by (1) and (2).} \end{array}$$

Now, let us show that the condition (i) (d) is also satisfied. Since

$$\lambda_n \gamma_n \ = \ O(1) \ n \ \rightarrow \ \infty, \ by \ (i) \ (a), \ we have that$$

$$\lambda_n = O(1/\gamma_n) = O(1) \text{ as } n \to \infty.$$

Since (n+1) P_n = O (P_n), by hypothesis of the theorem, we have

$$\frac{p_n}{p_{n-1}} \to 0 \ (n \to \infty)$$

Thus,

REFERENCES

BOR, H. (1984). On the absolute summability factors af infinite series, Comm. Fac. Sci. Univ. Ankara, Ser. A₁, 33, 193-197.

the state of the s