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SUMMARY

- It is shown,in particular, that the fundamental groups of the restricted ideal sheaves
over the complex analytic manifold X, which are normal subgroups of the fundamental
group F of X, satisfy the descending (minimal) chain condition,

In this paper we shall expand on the relationship of the homology
group of the complex analytic manifold X to the Cohomology group
H'(X, A) of the restricted structure sheaf A by analyzing more closely
the connection of the algebraic structure of the ring A(X) of holomorp-
hic functions on X to that of the restricted sheaf 4. [1]. These consi-
derations will ultimately lead to Riemann-Roch Theorem.

The paper quoted in [1] will be refered to as HG.

1. Restricted Sheaves.

Let X be a connected complex analytic manifold with fundamental
group F 7. 1 (1 is the identity element). The totality of holomorphic
functions on X is denoted as usual by A (X). It is a ring (or C-algebra).
As in HG, we make A(X) into a covering topological space A of X

as follows: :

Let f € A(X), and x € X a point. f can be expanded into a power
series f_convergent at x. The totality of such power series at x as f
runs through A(X) is denoted by A, which is agaih a ring (C-algebra)
isomorphic to A(X) The disjoint union
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A =VA,
1EX
is a set over X with a natural projection
m:Ad—-X
mapping each f, onto the point of expansion x.
We introduce in 4 a natural topology as in HG.

Sections in A are introduced in the usual way. Namely, if U< X
is an open set, then the continuous mapping

s: U->4
with mos = 1;; is called a section of A over U.
The totality of sections over U is denoted by I' (U, A4).
Ifs e (U, A) then n: s (U) — U is topological.

Moreover every s € I' (U, A) can be extended holomorphically
to a global section in 4 over X. '

Definitions:

A, with the natural topology thus introduced is called the rest-
‘ricted sheaf over X. The elements of A are the convergent power series
called germs of holomorphic functions f € A(X). The points over x
form the ring (C-algebras) A, = w "1(x) of germs at x called a stalk
of the restricted sheaf 4. Any two stalks are of course isomorphic.
Morecver, A is a complete regular covering space of X.

I’ (X, A4) is an abelian group, and we have [2]
Theorem 1.1. A (X) =~ I' (X, 4).
Proof. Let y: A (X) > I' (X, 4) defined by y f = s over X,

1.+ is injective, i.e., Ker y = 0. Let f ¢ A (X). If v(f) = 0
then for every x € X we have y f (x) = 0. Namely s(x) = 0. The-
refore f(x)=0. Hence there exists a neighborhood U(x) = X such that
s|U = 0. This means' that f|U = 0. Therefore f = 0 over X.

2. v is surjective. If s e ' (X, 4) then for every x € X, there exist
a neighborhood U(x) « X and f e A(X) with f|Us vy (f|U) (x) =
(v £]U) (x) = s(x). Therefore ‘there is ‘a neighborhood V(x) = U >
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v £|V = s|V. Now, let (U,);c; be an open covering of X such that
there is f,eA(X) with f,|U; vf,|U;= s|U,. This implies the existence
of f e A(X) > f|U; = f;|U and for which
v £|U;, = v £;|U; = s|U,.
Hence y f = s over X. The proof is thus complete.

2. Restricted Ideal Sheaves.

Definition 2.1. A restricted analytic sheaf over X is a sheaf S of
A-modules over X. [3].

1. 4 itself is a restricted analytic sheaf.

2. Let S be a restricted analytic sheaf, S* = S a subsheaf. If for
every x € X, S,* = S, is a submodule, then S*is also a r-analytic sheaf,

If (51, 80) € I' (X, 8* @ §*) =« T(X,S @ S), then s, +s, e I' (X, S)
and so s; + s, € I' (X, S*). Thus addition is continuous so is Multip-
lication by scalars. Note that if S* < Sis a restricted analytic subsheaf
then I' (X, $*) =« I' (X, S)is a I' (X, 4) submodule.

3. Now, if] < Aisa r-analytic subsheaf, then I, < A, is an ideal.
For this reason I is called a restricted ideal sheaf, in short r-ideal sheaf.
Here the 1,’s are isomorphic. In fact,

Theorem 2.1. There is a one to one correspondence between the:
ideals of A(X) and the r-ideal sheaves.

Proof. Let I = A (X) be an ideal, then I, < A, for every x. There-
fore I = V I, is the ideal sheaf determined by I. Conversely if Iis

x€X
given, then each I, <I defines the ideal I = A (X).

Definition 2.2. A r-ideal sheaf I is called proper if I is different from
the zero sheaf and A. We conclude that a proper r-ideal sheaf cannot
contain the unit sectlon For, the latter generates the whole A.

Definition 2. 3. A r-ideal sheaf J is -maximal if it is proper and
ifJ I < A,then I = J.Iis any proper r-ideal sheaf.

Theorem 2.2. Every r-ideal sheaf I is contained in a max1ma1 T-
ideal shezf J. :

Proof. Order partially by set inclusion the. collectlon P of all proper
r-ideal sheaves of A containing I < A, The natural union of any chain
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in P is a proper r-ideal sheaf because no r-ideal sheaf of P contains the
unit section. In view of Hausdorff Maximality theorem P contains a
maximal chain Q. The union of Q is a proper r-ideal sheaf J. The
maximality of Q implies that J is maximal.

3. r-ideal sheaves as a covering space of X.

Again from HG we infer that the r-ideal sheaves I are complete re-
gular covering spaces of X, and that the group T of cover transformations
of Iisisomorphic to the abelian group I' (X, I) whose elements are uni-
quely determined by the points (germs) on I,, = A, where x,e X is a
fixed point. We have seen, theire, that the fundamental group of I pro-
jects onto and is isomorphic to a normal subgroup D of F or its conju-
gate subgroups in F.

Accordingly,
X, I) ~ ¥/D.
Conversely, if D is a normal subgroup of F such that F /D is commu-

tative then D determines a r-ideal sheaf I whose fundamental group
is isomorphic to D. Therefore, we can state

Theorem 3.1. There is a one to one correspondence between the
r-ideal sheaves I (or the ideals I of A(X) ) and the normal subgroups
D of F for which F/D is commutative. Moreover every pair I < I’
maps onto the pair D 5 D',

If we define a proper normal subgroup as being different from F
and [F, F], then a proper minimal normal subgroup D,, of F, such
that F /D,, is commutative, is that one for which if for any proper
normal subgroup D < F such that F/D is commutative [F, F]
< D < D, then D = D,,. By theorem 3.1 it is clear that D,, is iso-
morphic to the fundamental group of a maximal r-ideal sheaf J.

Theorem 3.2. If D is a proper normal subgroup of F such that
F/D is commutative then there exists a D,, with same qualification
such that D 5 T7,. Namely, these D’s satisfy the descending (mini-
mum) chain condition.

Pioof. By hypothesis D is isomorphic to the fundamental group
of the r-ideal sheaf I. In view of theorem 2.2 I < J. But by theorem
3.1, 1 < J maps onto D 5 D,,.
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We finally note that A as a covering space of X is itself a connec-
ted complex analytic manifold with fundamental group isomorphic
to [F, F]. Yet, in view of the property of [F, F] being the smallest
normal subgroup for which F/[F, F] is commutative, the covering space
of A would consist of a single section homeomorphic to 4. Namely,
it is A itself.

4. The Riemann-Roch Theorem. With regard to connected Rie-
mann Surfaces X with structure sheaf 4, the author’s Theory of
restricted analytic sheaves when viewed as topological covering spa-
ces of X yields at once the crucial results on the dimensions of the
vector spaces of holomorphic functions on these Riemann surfaces,
and the Riemann-Roch Theorem thereof.

In particular, theorem 6.4 in HG reads:

Theorem 4.1. On a Riemann Surface with structure sheaf 4 and
genus g there are exactly 2g linearly independent global sections
(holomorphic functions). Namely, dimA(X) = g.

Proof. The abelianized fundamental group ¥ /[F,F] has exactly
2g linearly independent generators. Now, the theorem follows from the

relationship H'(X, 4) ~ I' (X, 4) ~ F/[F, F]. [11.

OZET

Ozel olarak gosteriliyor ki, ' nin normal altgruplar: olan tahditli ideal demetlerin. esas:
gruplar1 azalan (minimum) zincir sartim saglamaktadirlar.
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