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A note on Multiple Group Method of Factor Analysis
SONER GONEN*

ABSTRACT

This article extends and generalizes Guttman’s works on multiple group method
of factor analysis when data matrix is Gramian**, where data matrix can be considered
as covariance matrix or correlation matrix.

Key words: multiple group method of factor analysis, matrix algebra, generalized
inverse.

INTRODUCTION

In his previous works on multiple group method of factor
analysis, Guttman developed a basic theorem of the method and
gave computing procedure [3], [4]. His proof of the theorem ba-
sed on the supermatrix, where data matrix is a part, and of the
condition of non- singularity.

This paper discuss a different proof of the theorem which
is analogous to the seperation of the quadratic forms and ranks of
the related matrices. There is also the discussion on a general proof
of the theorem without using the condition of non-singularity.

1. A New Proof Of The Theorem
Theorem: 1)

Let S be a Gramian matrix of order nxn and of rank r > O.
Let A be of order mxn (m =r) and such that ASA’ is non-
singular. Then the residual matrix
(L.1) S, =S—SA’ (ASA')-1AS
is of rank (r—m) and is Gramian.

Proof: If S is a Gramian matrix, then there exists a matnx
E of order nxr and of rank r > O such that

* Hacettepe Universitesi Fen Fakiiltesi Istatistik Ogretim Gorevlisi.
** A Gramian matrix is a symmetric matrix in which all principal minors of all
orders are nonnegative.
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(12) S =EE

[3]. Combining equations (1.1) and (1.2) we get the following

equations:

(1.3) S, =E(I,—E'A’ (AEE'A" ) AE)E,
(1.4) Sres = EG,, E'.

where

(1.5) G, =L,—E'A’ (AEE'A’)1AE.

and I, is identity matrix of order rxr. If we define the reproduced
matrix

(1.6) Step =855,

then by using equations (1.2) and (1.3) we get the followings:
(1.7) Sep =E(E'A’ (AEE'A)"AE)E".

(1.8) S,.,=EG,E’

where

(1.9) Gyep =E'A’ (AEE'A’)1AE’

Then the following equations could be written:
(110)  S5=S,, +S..

(L1) 1, =Gy, G..

(1.12) EIE' =EG,,, E' +EG,F’

Tt can be shown that I, G,,, and G,,, are symmetric matrices of
order rxr and hold the following properties:

(1.13) Gop and G, are each idempotent
(1.14) I, =G,
(1‘15) G Gres :Gres Grep :q)r

rep

+Gyps is idempotent

where @, is a null matrix of order rxr. If any two of the equati-
ons (1.13), (1.14) and (1.15) hold, then the rank of (G, +Gppl)
equals the sum of the ranks of the G, and Gy [1]. Therefore
one could write

(1.16) 1'(G'rep +Gres) :r(Ir) :r(GreP) ~l_r((;res)

where 1(G) denotes the rank of matrix G. Since G, is symmetric
and idempotent then one could write
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(1.17) r(G,,,) =tr (G,,,) =trl, =m.
Substituting (1.17) in (1.16) one could obtain
(1.18) (G,

res) —rI—m.

Since G, is symmetric and idempotent then there exits an ort-
hogonal matrix P of order rxr, such that

Ir-—"l @
(1.19) PG P— ( >

0] ®
Considering equation (1.4) and (1.19) one could write the follo-
wings:

1'(Sres) :r(EGresE’) :r(EPP,G’resPP/E,)

(120)  x(5..) [TP(I“’" @ )PE] \
1. "(Sees)=r | - o ®

) and P, of order rxm, then

inserting in equation (1.20) one could get:

[rmnn (52 (5 5) (]

(1.21) =r(EPP" E)=1(EP)=r—m

Combining equation (1.20) and (1.21), the result r{S,)=r—m
follows.

Partitioning P into P; of order rx(

To prove that S, is Gramian one could substituted sym-
metry and idempotency of G, in equation (1.4)

(1.22) S, =EG,, G, E'—BB’

Tes
where B=EG,, of order nxr and of rank (r—m). Furthermore it
can be shown that S, is also Gramian.

Is S is a positive definite matrix of order nxn as usually the
case in applications, then obviously the residual matrix in equa-
tion (1.1) is of rank n—m and is also Gramian. -

2. Generalization Of The Theorem.

Another theorem will be stated and proved here, which can
be named as a generalized version of Guttman’s basic theorem.
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Theorem 2: Let S be a Gramian matrix of order nxn and of
rank r>0. Let A be a matrix of order mxn, and of rank t, (t<
m«<n). Then the residual matrix

@2.1) S, —=S-SA’(ASA")*AS

is of rank r—t and is Gramian. Where (ASA')* denotes the gene-
ralized inverse of ASA’ [2].

This theorem enlarges the applicability of multiple group
method of factor analysis to the case of singular matrix (ASA’),

which is sometimes encountered by the researchers in practical
work.

- Proof: From equations (1.2) and (2.1) one could write
(2.2) S,s=E(I,—E'A’ (AEE’A/)*AE)E'=EG,E'.
where G, =1—FE'A’ (AEE’A)*AE as in (L.5).

Taking the defination in below
(23)  S,=5 8., =E (E'A’ (AEE'A")“AE)E’ —EG,,,E’

where G,,, = E'A’ (AEE’A’)*AE, the following equations could
be written:

(2.4) G =1, —C/'(CC)*C

(2.5) G,,=C'(CC)*C

26)  T=CpptGr

where C=AE, of rank t.

Now we can show that, I, G, G, are idempotent, G,
and G, are orthogonal to each other and are symmetric.

Since generalized inverse X+ of a matrix X, holds the fol-
lowing properties [2]:

@27 X X+X=X

2.8) XX X+ = X+

29) (X X4 =XX+

2.10)  (X+X) = X+X

we can substitute (2.8) into (2.5) and write
(Grop)? = € (€ CYC.C (CCYHC
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@2.11)  (6,,)? = C. (C C)C=6

rep

From equation (2.6) and (2.11) one could get
(212) (C'res)2 :(Ir—Grep)z :Ir_G G,

rep = res
It follows from equations (2.6) and (2.11) that
(2'13) : Gres'Grep :Grep'Gres :(I)r'

From equations (2.7) through (2.10) the following could be writ-
ten:

@14) (X =(X3)
[2]. Substituting (2.14) into (2.4) and (2.5) one could see that
Gy and G,,, are symmetric matrices.

From equations (2.6) and (2.13) the following will be hold:
(2.15)  1(L) =x(G,,)+1(Gye)

Since C is of order mxr and of rank txr and I,—C’(CC')*C is idem-
potent, then

(2.16)  r(I,—C/(CC)*C=tr(I,—C’ (CC)+C)

[2]. Substitution (2.16) into (2.2) one could write
(2.17) (S

Now it can be shown, as we did in theorem 1, that S, is Gra-
mian. Taking equation (2.2), (2.12) and propetry of symmetry of
Gees we could write the following:

(218)  S,.—=EG,, G, E'=DD’

res res Tes

where D =EG.

Tes*

Y=1—1t.

res

Equation (2.18) shows that S,,, is Gramian. It can be shown
that S, is also Gramian.

For the non-singular case, we had the following additional
property:
(219)  AS,, =S, A =0,

Let us show that it is also true for the singular case. The fol-
lowing equations were given by Rao [5].
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(2.20) CC (CCHHC=C
(2.21) ¢ (cayrce' =
Substituting equations (1.3), (2.20) and (2.21) into equation
(2.19) one could write
AS =AE (I—E'A’ (AEE'A")*AE) E
(2.22) AS, = (C—CC") (CC)C) B/ =D,

SiesA’ =E (I,—E’A’ (AEE’A)*AE) E'A’
(2.23) StesA' =E(C'—C’ (CC")TCC )=,
where C=AE.

Therefore, instead of matrix A, a new hypothesis matrix
should be used to reapply the theorem 2 to S, which is Gramian.
Since S, is substitued instead of Gramian matrix S in theorem 2,
process continues until exhausting the final S_.
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OZET

L. Guttman, veri matrisi Gramian bir matris oldugu zaman “faktér analiz’in ¢ok-
Iu gruplandirma yontemi® diye bir yéntem énermis ve iizerinde caligrugtir. Caligmamiz-
da Guttman’in teoremi hem degisik bir yolla ispatdanmig hem de genellegtirilmigtir.
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