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ABSTRACT 
 In this paper, performance of several tracking algorithms are compared when employed in a ground 
based radar. The algorithms have been compared in terms of percentage track loss and rms estimation 
errors where the manoeuvrability of the scenarios was varied from low to moderate.   
 
1. INTRODUCTION 
 
Phased array radars are used for ground, air or maritime surveillance and/or 
tracking. Electronic scanning feature of these radars provide fast and accurate beam 
direction. This feature helps the radar provide measurements with better accuracy 
which consequently improves the performance of the tracking algorithm employed. 
In radars, tracking algorithms are used to estimate the target states of interest 
(commonly position and velocity) from the noisy measurements that the radar has 
gathered.  
 
The fact that radar is ship based, ground based or airborne calls for caution in terms 
designing the tracking algorithm. For instance, if the radar of interest is ship based 
then special caution has to be taken to deal with heavy sea clutter.  Also, 
performance of ground based radars is hindered by tall objects in the field of view, 
which in return deteriorates the tracking algorithm’s performance. However, 
electronic beam steering has the answer to this specific problem by allowing 
predetermined scanning patterns.  
 
This paper presents performance comparison of several target tracking algorithms 
for a ground based phased array radar. The radar is assumed to rotate mechanically, 
completing its 360° turn in 2 s in azimuth, while scanning electronically in 
elevation. Each radar return goes through a detection process and any return that 
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passes this process yileds a measurement for which the corresponding measurement 
errors and probability of detection (PD) are calculated. Then, the resulting 
measurement is fed into the tracker. 
 
The primary aim of the study is to determine the most appropriate tracking 
algorithm to be employed with a ground based short to mid range phased array 
radar.  Selected tracking algorithms have been tested on selected scenarios where the 
targets perform mild to moderate manoeuvres at both short and mid ranges.  
 
2. RADAR MODEL 
 
Principles of phased arrays have been applied to radars since the World War II 
where most of the advances in theory and technology were achieved in the 50s and 
the 60s. However, they came into operational use in the late 60s and the 70s. The 
main advantage of the phased array antennas is that the beam of the antenna can be 
steered electronically in a certain new direction without delay.  
 
In this study the phased array radar is modelled to scan electronically in elevation 
while rotating mechanically in azimuth. Also the radar is assumed to work in track 
and search (T&S) mode. It completes its 360° turn in 2 s during which it collects 3D 
(range, azimuth, elevation) measurements. The radar model is supported with 
realistic beam scheduling, detection and measurement units. The beam scheduling 
unit carries out the planning of search and track beams in accordance with T&S 
logic. The detection unit calculates the SNR for each hit using the predefined radar 
parameters, target range and target’s distance to the beam centre. The calculated 
SNR is then employed to yield PD which is subsequently compared with random 
number that is uniformly distributed between (0-1). Only radar returns whose 
calculated PD passes this test is declared as a valid detection. Through this test miss 
detection is also modelled. The measurement unit produces 3D measurements in 
spherical coordinates where measurements are assumed to have been taken using 
amplitude comparison mono pulse technique [1]. The unit computes measurements 
errors in elevation and azimuth (i.e., DF errors) along with the SNR which is 
calculated using the beam width and target’s distance to the beam centre. The DF 
errors are than added to the true target position in order to obtain radar 
measurements.  
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3. TRACKING ALGORITHMS 
 
Three different tracking algorithms, namely, probabilistic data association filter 
(PDAF) [2], interacting multiple model probabilistic data association filter 
(IMMPDAF) [2] and interacting multiple model nearest neighbour (IMMNN) 
algorithm, in seven different configurations have been tested on the selected 
scenarios. The configurations belonging to the same algorithm differ either in the 
number/type of models they posses or the assumption of a-priori knowledge 
regarding the target manoeuvre. The selected algorithms (and the configurations) are 
the most widely used and tested tracking algorithms in the literature.  All selected 
algorithms are Kalman based algorithms and have been used with a data association 
approach to deal with clutter. 
 
3.1 Kalman Filter 
 
Kalman filter is the traditional and most widely used state estimator [3]. The Filter is 
the general solution to the recursive linear minimum mean square estimation 
problem and it provides optimal tracking performance provided the following 
conditions [4] are met; i) the state of the target evolves according to a known linear 
dynamic model driven by a single known input and additive zero-mean, white 
Gaussian noise with known covariance and ii) the measurements are linear functions 
of the target state corrupted by additive zero-mean, white Gaussian noise with 
known covariance. 
 
Assuming that the target dynamic process can be modelled in discrete Markov form, 
then the equation that describes the target dynamics in terms of a Markov process 
can be written as, 
 

( 1) ( ) ( )X k FX k V k+ = +Γ  (1) 

 
where X(k) is the k dimensional target state vector, F is the known transition matrix, 
Γ  is the known disturbance transition matrix and V(k) is the unknown zero-mean 
Gaussian process noise with assumed known covariance Q. Measurements are a 
linear combination of the system state variables and corrupted by uncorrelated noise. 
Thus, the m dimensional measurement vector is modelled as 
 

( ) ( ) ( )Z k HX k w k= +    (2) 

 
where H is the mxk measurement matrix and  w(k) is zero mean, white Gaussian 
measurement noise with covariance R. Note that, it is assumed that V(k) and w(k) are 
mutually uncorrelated. A good derivation of the Kalman filter equations can be 
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found in [5], here only the resulting standard Kalman filter equations [4] are given. 
ˆ( 1 | ) ( | )X k k FX k k+ =%        (3) 

( 1) ( 1) ( 1| )v k Z k HX k k+ = + − +%         (4) 

( 1| ) ( | )P k k FP k k F Q′ ′+ = + Γ Γ         (5) 

( 1) ( 1| )S k HP k k H R′+ = + +         (6) 

1( 1) ( 1| ) ( 1)W k P k k H S k −′+ = + +  
       (7) 

ˆ ( 1| 1) ( 1| ) ( 1) ( 1)X k k X k k W k v k+ + = + + + +%  
       (8) 

( 1| 1) ( 1| ) ( 1) ( 1) ( 1)P k k P k k W k S k W k ′+ + = + − + + +         (9) 
 

In the Eqs (3) through (9)  ( 1 | )X k k+%
 and P(k+1⎢k) are the predicted state and 

state covariance and ˆ ( 1 | 1)X k k+ +  and P(k+1⎢k+1) are the updated state and 
state covariance respectively. S(k+1), R, W(k+1) and ν(k+1) are the covariance of 
the innovation, the covariance of the measurement noise, the Kalman gain and the 
innovation respectively. 
 
3.2 Interacting Multiple Model (IMM) Algorithm 
 
The Interacting Multiple Model (IMM) algorithm [4] uses a bank of filters but 
unlike other multiple model algorithms, it keeps the number of hypotheses fixed, 
which reduces the computational burden. The algorithm employs a fixed number of 
models that interact through state mixing to track a manoeuvring target. Every filter 
employed in the algorithm corresponds to a possible target motion to cover the 
actual modes of the target. The initial estimate at the beginning of each cycle for 
each filter is a mixture of all the most recent estimates from the filters. It is the 
mixing that enables the algorithm to effectively take the history of the modes into 
account. The probability of each model being true is found by using a likelihood 
function for the model and switching between the models is governed by a transition 
probability matrix. The state estimates from the sub-filters are then mixed, by means 
of weighting coefficients, in order to get the combined state estimate. The operation 
of the algorithm is completed in 4 steps;  
 
1) Interaction of the Estimates: 
Mixing the state estimates for the jth model is done by using the outputs of each 
model 

ˆ ( | )iX k k , model probability wi(k) and the transition probabilities pij . 
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The final interactive estimation is given by 
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The corresponding error covariance for the same model is 
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where 'k' is the scan number and Pi(k|k) is the estimate covariance for the ith model at 
scan 'k'. 
 
2) Filtering 
The standard Kalman filter equations, i.e., Eqs 3-9, are used to update the filters. 
 
3) Mode Probability Calculation 

The likelihood of the jth model is calculated using the innovation jv  and the 

corresponding covariance of innovation jS  
 

1 11 1( ( ) | ( ), ) exp( ( ) ( ))
22 ( )

k
j j j j

j

p Z k M k Z v k S v k
S kπ

− −′= −  
 

(12) 

 

Then the model probabilities (weighting coefficients) ( )jw k  are given by 
 

1
1
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−
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(13) 

 

where 
1( ( ) | )kP Z k Z −

 is the normalisation constant which ensures that the sum of the 
sub-model probabilities is equal to one. 
 
4) Estimate Combination 
The final estimate is a weighted sum of the estimates from all of the filters, that is 
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and the corresponding estimate of covariance is 
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3.3 Data Association 
 
Kalman filter, when used in tracking, assumes that there is only one measurement 
with unity probability of detection in every scan and the measurement is originated 
from target. In real applications, these assumptions are not valid. It is possible to 
have more than one measurement at any time since a measurement may have 
originated from either target, clutter or some other source. Moreover, target 
detection every scan may not be possible due to sensor limitations which makes the 
probability of detection less than unity. Tracking a target under measurement origin 
uncertainty problem requires a decision to determine which measurement is 
originated from the target. Nearest Neighbour (NN) Data Association [2] and 
Probabilistic Data Association (PDA) [2,6] methods are most widely used decision 
rules.  
 
3.3.1 Nearest Neighbour Data Association 
 
This is a non-Bayesian method. In NN, decision of the target originated 
measurement is made in two steps. In the first step, a validation gate [2] is set up to 
determine possible measurements that are related to the target of interest. In the 
second step, the nearest measurement among the validated measurements to the 
predicted measurement is selected according to distance measure which is given 
below. 
 

1( ) [ ( 1| )] ( 1) [ ( 1| )]D Z Z z k k S k Z z k k−′= − + + − +  (15) 

 
where, Z is the measurement under consideration, z(k+1|k) and S(k+1) are predicted 
measurement and innovation covariance respectively. 
 
3.3.2 Probabilistic Data Association 
 
This method takes all the measurements which lie in the validation gate into 
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account. It computes the association probabilities for each validated measurement at 
current time to the target of interest. Detailed extraction of the association 
probabilities is given in [2], here only resulting equations are given for the 
parametric and non-parametric PDA algorithms.  
 
1) Parametric PDA 

( )

1

( )

1
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( )
0
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11 ( ) ( 1)
2 i iv k S k v
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(17) 

1/ 2 12 ( 1) D G

D

P Pb S k
P

λ π
−

= +%  
(18) 

 
Eq 18 can be re-written as 

/ 2 1 12( ) ( )Z
Z

n D G
n

D

P Pb V k c
P

π λ
γ

− −
=  

 
(19) 

 
In the above equations PD and PG are the probability of detection and gating 

probability respectively. S(k), λ, Znc
, γ , ( )m k , ( )V k  are innovation covariance, 

spatial density of the false measurements, volume of the unit hyper sphere, gating 
threshold, number of measurements in the validation gate and volume of the 
validation gate respectively. 
 
2) Non-Parametric PDA 
The non-parametric PDA is the same as above except for replacing λV(k) in Eq 19 
by m(k) which  requires knowledge of λ. 
 
 
 
 
3.4 Nearest Neighbour Kalman Filter 
 
The Nearest Neighbour Kalman filter [2] is simply a Kalman filter which is used in 
conjunction with the NN approach in order to take the measurement origin 
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uncertainty into account. Integration of the Kalman filter and NN data association 
method is the simplest way of adapting Kalman filter to track a target under 
measurement origin uncertainty. NN algorithm needs to know the predicted 
measurement and innovation covariance which are computed by the Kalman filter. 
Thus, the data association unit using NN algorithm must be integrated after the 
computation of innovation covariance given by Eq 6.  After the integration, the new 
filter computes state estimation and its covariance in three steps as follows: i) 
Compute the predicted measurement and innovation covariance in the Kalman filter 
manner. ii) Set up a validation gate and determine the measurements which are in 
the gate. iii) Select the nearest validated measurement to the predicted state using 
NN algorithm then update target state with this measurement, i.e., in the Kalman 
filter manner. 
 
3.5.IMM-NN Filter 
 
The IMM algorithm improves tracking performance when the target manoeuvres. 
Thus, it is logical to employ the NN approach together with the IMM algorithm 
when tracking manoeuvring targets in clutter In the IMM-NN algorithm, it is 
essential that each filter has to update the target state using the same validated 
measurements, i.e., the data association unit has to set up a validation gate which is 
equal to the union of the mode-conditioned gates. In practice, the largest of the 
validations gates is approximately equal to the union and thus can be used instead. 
Consequently, determining the validated measurements portion of the data 
association procedure is performed by the filter which has the biggest validation 
gate in the IMM structure. This filter will be called as centre filter of the IMM-NN 
algorithm.  The equations given for the IMM filter and the NN approach are valid 
for the IMM-NN algorithm. 
 
3.6 Probabilistic Data Association Filter (PDAF) 
 
The (PDAF) is simply a Kalman filter which is used in conjunction with the PDA 
approach in order to take the measurement origin uncertainty into account. The filter 
assumes that the target is detected (perceived) and its track has been initialized. At 
each sampling interval a validation gate is set up and the validated measurements are 
determined. The measurement originating from the target of interest can be among 
the possible several validated measurements; hence, the track update is done by 
taking the weighted sum of all observations within the gated region. The weights are 
the association probabilities given by Eq 16 computed by the PDA algorithm. Since, 
more than one measurement may be used in updating the track  and there is no 
guarantee that the target originated measurement would be amongst these 
measurements, state estimation update equations given by Eqs 8 and 9 its associated 
covariance respectively must be modified.  This modification is explained in [2], 
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and modified state update equations are given as follows: 
 

ˆ ( 1| 1) ( 1| ) ( 1) ( 1)X k k X k k W k v k+ + = + + + +%  (20) 

 
where  
 

1

( 1) ( 1) ( 1)
km

i i
i

v k k v kβ
=

+ = + +∑  
 

(21) 

is the combined innovation. In Eq 21, mk, βi(k+1) and νi(k+1) are the number of the 
validated measurements, ith association probability and the innovation term of the ith 
measurement respectively. The covariance of the updated state is 
 

0

0
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where the covariance of the state updated with the correct measurement is 
 

( 1| 1) ( 1| ) ( 1) ( 1) ( 1)cP k k P k k W k S k W k ′+ + = + − + + +  (23) 

 
and the spread of innovation term is 
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(24) 

 
3.7 IMM-PDA Filter  
 
The Interacting Multiple Model Probabilistic Data Association Filter (IMMPDAF) 
[2] employs PDAF as a state estimator in IMM structure. As in IMM-NN filter, all 
the filters have to use same validated measurements. Thus, the filter which has the 
largest validation gate must be chosen as centre filter. Using PDAF in IMM 
structure necessitates a modification in IMM likelihood function calculation which 
is then utilised to compute the mode probabilities. Reason of the modification rises 
from the nature of the PDA algorithm’s assumption that an observation is originated 
from either target or other sources (clutter, false alarms, etc.) with a probability 
which is never unity or zero. IMMPDAF takes the uncertainty about the source of 
the observations into account while computing the likelihood function 



GÖKHAN SOYSAL AND MURAT EFE 
 

10

corresponding to filter matched to mode (model) j with m the number of validated 
measurements as follows: 
 

where PD is the target detection probability and, Zi(k+1|k) and Si(k+1) are the 
predicted measurement and innovation covariance  for the model j respectively. 
 
4. SCENARIOS 
 
Three different target scenarios are considered for this study with accelerations 
ranging from mild (1.5g) to moderate (4g) where all three targets are assumed to 
appear both at short range (15 km) and at mid range (40 km) from the radar, so that 
both the effects of target manoeuvrability and target range could be investigated. 
The simulated target motions were generated in 3 dimensions, i.e. X-Y-Z plane, with 
sampling interval of 0.1 seconds. In the first scenario, the target begins its motion 
from the (-15,5,5)km. point in the 3D Cartesian space with a velocity of 300m/sec. 
in X axis. The target moves on a straight line for the first 100 seconds and then 
proceeds with a right at 3 deg/sec for a 60 seconds rate and there is another straight 
line path for 100 seconds. In the last part of the motion, target turns right at 3 
deg/sec turn rate for 60 seconds. The second target starts its motion from         
(15,10,5) km initial position with velocity of -200m/sec. in X axis. For 40 seconds it 
moves on a straight line path then turns for 15 seconds at 6 deg/sec turn rate then the 
target  proceeds with another straight line motion for 10 seconds and before ending 
its motion with a turn for 20 seconds with 1 deg/sec turn rate.  In the third scenario, 
target motion starts at (-4.6,-1.9,2.8)km. with initial velocity of (143,388,8)m/sec. in 
3D Cartesian space. The motion consists of two consecutive turns at 6deg/sec and -
6dec/sec turn rates. Each of the turns lasts 30 seconds. 
 
The scenarios explained above are the short range scenarios. Mid range scenarios 
have been generated by moving the initial positions of the target motions generated 
for the short range scenarios. In mid rage scenarios starting points have been chosen 
to be (-25,40,7)km.,(40,25,8)km. and (-40,60,10)km. for the first, second and third  
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scenarios respectively. Moreover, in order to create a more realistic simulation 
environment for comparing the algorithms’ performance, targets are assumed to be 
moving in a cluttered environment where the number of clutter is assumed to have 
Poisson distribution and they are uniformly distributed in the surveillance region 
[2,6]. The Poisson parameter λ that describes the clutter density was chosen a 10-6 
which corresponds to approximately 40 clutter in the chosen surveillance volume. 
 
5. FILTERS DESIGN PARAMETERS 
 
Seven different configurations of the tracking algorithms, namely PDAF, 
IMMPDAF, NNKF and IMMNN, have been design to be tested on the selected 
scenarios. The configurations belonging to the same algorithm differ either in the 
number/type of models they posses or the assumption of a-priori knowledge 
regarding the target manoeuvre. The filters using a-priori knowledge about target 
manoeuvre comprise second order dynamic models. These filters are PDAF, NNKF, 
IMMPDAF2 and IMMNN1. The IMM algorithm based filters, i.e. IMMPDAF2 and 
IMMNN1, have 2 models and one of the models employs large process noise 
covariance to track manoeuvres where the second one utilises small process noise 
covariance to track benign motion. Process noise covariance of the PDAF and 
NNKF approaches has been selected sufficient enough to track the maximum 
acceleration change. Tables 1 and 2 present process noise covariance values selected 
for the first two scenarios whereas process noise covariance values used for the third 
scenario where the target performs a bigger manoeuvre are shown in Table 3. Other 
IMM based filters, namely IMMPDAF1, IMMPDAf3, IMMNN2, have been 
designed to track a target without a-priori knowledge regarding the target 
manoeuvre. IMMPDAF1 algorithm includes two second order models (a 
coordinated turn model in XY plane and a linear model). Three model IMM structure 
has been used in IMMPDAF3 and IMMNN2 filters. Dynamic models employed in 
three model IMM structures are;  
 
Model 1: Third order dynamic model with large process noise covariance for 
tracking onset or end of acceleration. 
 
Model 2: Third order dynamic model with small process noise covariance for 
tracking nearly constant acceleration motion.  
 
Model 3:  Second order dynamic model with small process noise covariance for 
tracking nearly constant velocity motion. 
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Table 1 : Process noise covariance values (mild manoeuvre) 

 
 
 
In Table 4, mode transition probabilities and initial model probabilities are given for 
the IMM based filters. The validation gate threshold has been taken as 11.4 which 
corresponds to 0.99 gating probability, also the probability of detection used in the 
simulations is 0.85. 
 
 
 
Table 2 : Process noise covariance values (moderate manoeuvre) 
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Table 3 : Process noise covariance values (no a-priori knowledge) 

 
 
 
 
 
 
 
 
 
Table 4 : Mode transition and model probabilities. 

 
 
 
 
 
6. SIMULATION RESULTS 
 
Each of the filters given in previous section was tested on the generated scenarios. 
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Performance of the filters was examined in terms of percentage track loss (Ptl) and 
rms estimation error in spherical coordinates (i.e., range, azimuth and elevation) 
through 100 Monte Carlo simulations. The simulation results for the short and mid 
range scenarios have been given in Table 5 and 6 respectively. 
 
Table 5 : Results for short range scenarios. 

 
 
 
 
 
 
Table 6 : Results for mid range scenarios. 
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Simulation results have revealed that:  
 
• Regardless of the target range all algorithms, except for IMMNN2, perform well in 
terms of measurement errors i.e., below a specified error limit of 0.2º. However, it 
should be noted that a-priori knowledge of target manoeuvre is usually not possible 
in real life applications. 
 
• Target range has a big effect both on the number of track loss and estimation 
errors, the farther the target from the radar the larger the estimation errors and % 
track loss. However, % track loss and estimation error criteria should be assessed 
separately. Despite the high number of track loss at farther ranges all algorithms 
have managed to keep estimation errors below the specified level as estimation 
errors were only calculated for un-dropped tracks. Further investigations into the 
number of track loss has shown that most of the losses occurred at certain times 
during simulations which correspond to minimum RCS, thus, low SNR, indicating 
that one needs a certain level of SNR in order to be able to keep the target in track. 
 
• In order to reduce track loss declarations and increase the probability of detection 
at least 18dB SNR is needed. This result is consistent with approximately 20dB 
level given in [1]. 



GÖKHAN SOYSAL AND MURAT EFE 
 

16

 
• IMMNN approach has not produced a stable performance. The filter tends to 
diverge following relatively large estimation errors; due to its weighted structure 
IMMPDA approach is more robust in such cases. Thus it is recommended that IMM 
and NN approaches not be employed together. 
 
• Three dimensional nonlinear target models (i.e., a coordinated turn model in XY 
plane and a 2nd degree model in Z used in IMMPDAF1) cause filter divergence, 
thus, degraded tracking performance and they are not recommended. 
 
• The three model IMMPDA approach with no a-priori knowledge regarding the 
target motion has compared well with algorithms that, unrealistically, assumed 
knowledge of target manoeuvre and proved to be a successful tracking algorithm for 
ground based radar both at short and mid ranges. 
 
 
 
 
 
 
7. CONCLUSIONS 
 
Performance of most commonly used tracking algorithms has been compared for 
ground based radar. Algorithms have been compared in terms of track loss and rms 
estimation errors. The 3 model IMMPDAF algorithm with no a-priori knowledge of 
the target motion has compared favourably with all the tested algorithms even with 
the ones that assume knowledge of the target manoeuvre. 
 
ÖZET 
 
Bu makalede kara konuşlu bir radar için çeşitli hedef takibi algorimalarının performansları 
karşılaştırılmıştır. Algoritma performans ölçüsü olarak yüzde iz kaybı ve ortalama karekök 
hata esas alınmıştır. Algoritmaların performansı manevra seviyesi düşükten orta seviyeye 
değişen hedef senaryoları üzerinde incelenmiştir.  
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