Mak, Mahmut2021-11-302021-11-302021-06-30https://doi.org/10.31801/cfsuasmas.785489http://hdl.handle.net/20.500.12575/76502In this study, we introduce the natural mate and conjugate mate of a Frenet curve in a three dimensional Lie group G with bi-invariant metric. Also, we give some relationships between a Frenet curve and its natural mate or its conjugate mate in G . Especially, we obtain some results for the natural mate and the conjugate mate of a Frenet curve in G when the Frenet curve is a general helix, a slant helix, a spherical curve, a rectifying curve, a Salkowski (constant curvature and non-constant torsion), anti-Salkowski (non-constant curvature and constant torsion), Bertrand curve. Finally, we give nice graphics with numeric solution in Euclidean 3-space as a commutative Lie group.enNatural mateConjugate mateHelixNatural and conjugate mates of Frenet curves in three-dimensional Lie groupArticle7015225402618-6470