Yamancı, Ulaş2021-11-042021-11-042019-08-01https://doi.org/10.31801/cfsuasmas.425391http://hdl.handle.net/20.500.12575/75879In this paper, we introduce the concept of (Ber)-convergence of bounded double sequences in the Fock space F(C²). We show that every (Ber)-convergent double sequence is Borel convergent. Namely, we prove the following theorem by using the Berezin symbol method: If the {x_{ij}}_{i,j=0}^{∞} is regularly convergent to x, then lim_{k,l→∞}e^{-k-l}∑_{i,j=0}^{∞}x_{ij}((k^{i}t^{j})/(i!j!))=x.enBorel convergenceBerezin symbolPringsheim's senseOn Borel convergence of double sequencesArticle682128912932618-6470