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k-FREE NUMBERS AND INTEGER PARTS OF αp
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Abstract. In this note, we obtain asymptotic results on integer parts of αp
that are free of kth powers of primes, where p is a prime number and α is a

positive real number.

1. Introduction and Statement of Results

Let α and β be real numbers such that α > 0. Let ⌊x⌋ denote the largest
integer not greater than x. Sequences of the form {⌊αn+ β⌋}∞n=1 are called Beatty
sequences. A Beatty sequence is said to be homogeneous if β = 0. Beatty sequences
have been attracting a lot of attention since they can be viewed as analogues of
arithmetic progressions, therefore they show up in a broad context. The interested
reader is referred to [1, 2, 4–6,8–11,14–16,19,24].

Let k ⩾ 2 be an integer. An integer is said to be k-free if it is not divisible
by a kth power of a prime. Very recently in [3], an asymptotic formula with an
explicit error term is obtained for k-free values of homogeneous Beatty sequences
at prime arguments (i.e. sequences of the form {⌊αp⌋}∞p=2) provided that α is of
finite type (see Definition 1). This result can be viewed as a natural analogue of
the result of Mirsky [20]. In this article, we pursue this result and obtain two
asymptotic formulas that are of the same flavour. The results we present here are
well applicable to non-homogeneous Beatty sequences.

Theorem 1. Let k ≥ 2 be an integer. Let {αi}ℓi=1 be a finite type subset of
irrational numbers each greater than one. Assume that {αi}ℓi=1 satisfies (1) for
some τ > 0. Let α = (α1, α2, . . . , αℓ) and

π(x, k,α) = #{p ⩽ x : ⌊αip⌋ is k-free for each i = 1, . . . , ℓ}.
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Then the following asymptotic is satisfied:

π(x, k,α) =
π(x)

ζℓ(k)
+O

(
x1−

k−1
(k−1+ℓ)(3τ+2)+k(ℓ−1)τ+kℓ e

C log x
log log x

)
for some constant C = C(α1, . . . , αℓ) and every large x.

A nested version of Theorem 1 is given below.

Theorem 2. Let k ⩾ 2 be an integer. Let {α1α2, α2} be a finite type subset
of irrational numbers each greater than zero. Then the following asymptotic is
satisfied:

#{p ⩽ x : ⌊α1 ⌊α2p⌋⌋ is k-free} =
π(x)

ζ(k)
+O(x1−ε)

for some ε > 0.

Here, the interested reader is invited to investigate the following problem: Let
{αi}ni=1 be positive real numbers. Define

aj =

j∏
i=1

αn+1−i.

Assuming that
{
a1, a2, . . . , an

}
is of finite type (see Definition 1), show that

#{p ⩽ x : ⌊an ⌊an−1 · · · ⌊a1p⌋⌋⌋ is k-free} =
π(x)

ζ(k)
+O(x1−ε)

for some ε > 0. It might also be fruitful to investigate the possible power saving in
the error term above.

1.1. Preliminaries and Notation.

1.1.1. Notation. We recall that for functions F and G where G is real non-negative,
the notations F ≪ G and F = O(G) are equivalent to the statement that the
inequality |F | ⩽ αG holds for some constant α > 0. Further we use F ∼ G to
indicate (F/G)(x) tends to 1 as x→ ∞.

Given a real number x, we use the notation {x} for the fractional part of x, the
notation ⌊x⌋ for the greatest integer not exceeding x and e(x) = e2πix.

We use ∥x∥ to denote the distance from the real number x to the nearest integer.
Λ(n) = log p if n = pr where p is a prime number (here and hereafter). Otherwise,
Λ(n) = 0. µ(n) denotes the Mobius function. ϕ(n) denotes the Euler’s totient
function. τ(n) denotes the number of positive divisors of n. We also use π(x) to
denote the number of primes not more than x.
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1.1.2. Preliminaries.

Definition 1. An irrational number α is called of finite type τ , if

τ = sup

{
β : lim inf

q→∞
q∈N

qβ ||αq|| = 0

}
<∞.

If α is an irrational number of finite type τ , then by Dirichlet’s approximation
theorem (Lemma 2.1 of [25]) one has τ ⩾ 1. The celebrated theorems of Khinchin
[17] and of Roth [21,22] state that τ = 1 for almost all (in the sense of the Lebesque
measure) real numbers and for all irrational algebraic numbers respectively.

Definition 2. A finite subset of real numbers {β1, β2, . . . , βℓ} is said to be of finite
type if there is τ > 0 such that the inequality

||h1β1 + h2β2 + · · ·+ hℓβℓ|| < (max{1, |h1|, . . . , |hℓ|})−τ (1)

has only finitely many solutions for hi ∈ Z.

If {βi}ℓi=1 satisfies (1) for some τ > 0, then it follows from Dirichlet’s theorem on
rational approximations that τ ⩾ 1. Furthermore, such a set is linearly independent
over Q.

Throughout this paper, we shall mostly use the weak form of the prime number
theorem, that is

π(x) ∼ x

log x
.

Lemma 1. For every positive integer n ≥ 1,

τ(n) < e
C log 5n
log log 5n

for some constant C > 0.

Proof. Follows from [23, Theorem 2.11]. □

Lemma 2. If ∣∣∣∣α− a

q

∣∣∣∣ ⩽ 1

q2

for some integers a and q such that (a, q) = 1, then∑
p⩽x

e(αp) ≪ x log3 x
(
q−

1
2 + x−

1
5 + q

1
2x−

1
2

)
.

Proof. This follows in a standard way using the main result of [12, §25]. □

Lemma 3 (Erdős-Turán-Koksma Inequality). If {xi}Ni=1 is a finite sequence in Rℓ,
then for any J ⊆ [0, 1)ℓ that is a Cartesian product of subintervals of [0, 1) and any
H ⩾ 1, we have

#{1 ⩽ i ⩽ N : xi ∈ J mod 1} − |J |N ≪ N

H
+

∑
0<||h||⩽H

1

r(h)

∣∣∣∣∣∣
∑

1⩽i⩽N

e(⟨h,xi⟩)

∣∣∣∣∣∣ .
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Here |J | denotes the ℓ-dimensional Lebesgue measure of J , ⟨·, ·⟩ denotes the standard
inner product in Rℓ and we set ||h|| = max1⩽i⩽ℓ{|hi|} and

r(h) =

ℓ∏
i=1

max{|hi|, 1} (2)

for all h = (h1, h2, . . . , hℓ) ∈ Zℓ. Moreover, the implied constant depends only on
ℓ.

Proof. For the proof see [18]. □

The following lemma is a classical result due to Vinogradov [26, Lemma 12].

Lemma 4. Let α, β and ∆ be real numbers such that

0 < ∆ <
1

2
and ∆ ⩽ β − α ⩽ 1−∆.

Then there exists a periodic function Ψ(x), with period 1, satisfying

(i) Ψ(x) = 1 in the interval α+ 1
2∆ ⩽ x ⩽ β − 1

2∆,

(ii) Ψ(x) = 0 in the interval β + 1
2∆ ⩽ x ⩽ 1 + α− 1

2∆,

(iii) 0 ⩽ Ψ(x) ⩽ 1 in the remainder of the interval α− 1
2∆ ⩽ x ⩽ 1 + α− 1

2∆,

(iv) Ψ(x) has a Fourier expansion of the form

Ψ(x) =

∞∑
h=−∞

ahe(hx),

where

|ah| ⩽ c ·min

{
|h|−1, |h|−2∆−1

}
for every |h| ⩾ 1 and some c fixed. Furthermore, a0 = β − α.

2. Proof of The Main Results

2.1. Proof of Theorem 1. Let α = (α1, α2, . . . , αℓ) and

π(x, k,α) = #{p ⩽ x : ⌊αip⌋ is k-free for each i = 1, . . . , ℓ}.
Let Ik denote the characteristic function of k-free integers. Since

Ik(n) =
∑
dk|n

µ(d), (3)

we have
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π(x, k,α)

=
∑
p⩽x

Ik(⌊α1p⌋) · · · Ik(⌊αℓp⌋)

=
∑
p⩽x

 ∑
dk
1 |⌊α1p⌋

µ(d1)

 · · ·

 ∑
dk
ℓ |⌊αℓp⌋

µ(dℓ)


=

∑
p⩽x

∑
(d1,...,dℓ)

dk
i |⌊αip⌋
i=1,...,ℓ

µ(d1) · · ·µ(dℓ)

=
∑

(d1,...,dℓ)

µ(d1) · · ·µ(dℓ)
∑
p⩽x

dk
i |⌊αip⌋
i=1,...,ℓ

1

=
∑

(d1,...,dℓ)
di⩽z

i=1,...,ℓ

µ(d1) · · ·µ(dℓ)
∑
p⩽x

dk
i |⌊αip⌋
i=1,...,ℓ

1 +
∑

(d1,...,dℓ)
di>z

for some i=1,...,ℓ

µ(d1) · · ·µ(dℓ)
∑
p⩽x

dk
i |⌊αip⌋
i=1,...,ℓ

1,

where z ⩽ x1/k will be chosen later. It follows from Lemma 1 that for all i =
1, 2, . . . , ℓ there exists a positive constant ci = ci(αi) depending on αi such that

τ(⌊αip⌋) ≪ e
ci log x

log log x

for every p ⩽ x. Then, for all i = 1, 2, . . . , ℓ and p ≤ x

τ(⌊αip⌋) ≪ e
c log x

log log x , (4)

where c = max{c1, . . . , cℓ}. Set C = c(ℓ − 1). Then, by (4) and using partial
summation in the last step, we get

∑
(d1,...,dℓ)

di>z
for some i=1,...,ℓ

µ(d1) · · ·µ(dℓ)
∑
p⩽x

dk
i |⌊αip⌋
i=1,...,ℓ

1

<
∑

(d1,...,dℓ)
d1>z

∑
p⩽x

dk
i |⌊αip⌋
i=1,...,ℓ

1 + · · ·+
∑

(d1,...,dℓ)
dℓ>z

∑
p⩽x

dk
i |⌊αip⌋
i=1,...,ℓ

1

=
∑
p⩽x

 ∑
dk
1 |⌊α1p⌋
d1>z

1

 · · ·

 ∑
dk
ℓ |⌊αℓp⌋

1

+ · · ·+
∑
p⩽x

 ∑
dk
1 |⌊α1p⌋

1

 · · ·

 ∑
dk
ℓ |⌊αℓp⌋
dℓ>z

1
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⩽
∑
p⩽x

 ∑
dk
1 |⌊α1p⌋
d1>z

1


(

ℓ∏
i=2

τ(⌊αip⌋)

)
+ · · ·+

∑
p⩽x

 ∑
dk
ℓ |⌊αℓp⌋
dℓ>z

1


(

ℓ−1∏
i=1

τ(⌊αip⌋)

)

≪ e
C log x
log log x

∑
p⩽x

∑
dk
1 |⌊α1p⌋
d1>z

1 + · · ·+
∑
p⩽x

∑
dk
ℓ |⌊αℓp⌋
dℓ>z

1



≪ e
C log x
log log x

∑
d1>z

∑
p⩽x

dk
1 |⌊α1p⌋

1 + · · ·+
∑
dℓ>z

∑
p⩽x

dk
ℓ |⌊αℓp⌋

1



⩽ e
C log x
log log x

∑
d1>z

∑
m⩽α1x

dk
1 |m

1 + · · ·+
∑
dℓ>z

∑
m⩽αℓx

dk
ℓ |m

1


⩽ e

C log x
log log x

(∑
d1>z

α1x

dk1
+ · · ·+

∑
dℓ>z

αℓx

dkℓ

)
≪ e

C log x
log log xx

zk−1
.

Therefore,

π(x, k,α) =
∑

(d1,...,dℓ)
di⩽z

i=1,...,ℓ

µ(d1) · · ·µ(dℓ)
∑
p⩽x

dk
i |⌊αip⌋
i=1,...,ℓ

1 +O

(
e

C log x
log log xx

zk−1

)
. (5)

Next, we will study the sum above appearing in (5) which runs over all tuples
(d1, . . . , dℓ) of positive integers where di ⩽ z for all i = 1, . . . , ℓ.
So, let d = (d1, . . . , dℓ) be such a tuple and set

D =

ℓ∏
j=1

dkj , Di =

ℓ∏
j=1
j ̸=i

dkj and Id =

[
0,

1

dk1

)
× · · · ×

[
0,

1

dkℓ

)
(6)

for all i = 1, . . . , ℓ. For a positive integer i, let pi denote the ith prime. Observing
that

⌊αp⌋ ≡ 0 (mod d) if and only if
{αp
d

}
<

1

d
, (7)
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we have∑
p⩽x

dk
i |⌊αip⌋
i=1,...,ℓ

1 =
∑
p⩽x

⌊αip⌋≡0 (mod dk
i )

i=1,...,ℓ

1 =
∑
p⩽x{

αip

dk
i

}
< 1

dk
i

i=1,...,ℓ

1 =
∑
p⩽x({

α1p

dk1

}
,...,
{

αℓp

dk
ℓ

})
∈Id

1

= #{i ⩽ π(x) : ti ∈ Id},

(8)

where

ti =

({α1pi
dk1

}
, . . . ,

{αℓpi
dkℓ

})
.

It follows from Erdős-Turán-Koksma Inequality that for all H ⩾ 1,

#{i ⩽ π(x) : ti ∈ Id} −
π(x)

dk1 · · · dkℓ

≪ π(x)

H
+

∑
0<∥h∥⩽H

1

r(h)

∣∣∣∣∣∣
∑

i⩽π(x)

e (⟨h, ti⟩)

∣∣∣∣∣∣
≪ π(x)

H
+

∑
0<∥h∥⩽H

1

r(h)

∣∣∣∣∣∣
∑
p⩽x

e

(
h1D1α1 + · · ·+ hℓDℓαℓ

D
· p
)∣∣∣∣∣∣ .

(9)

Next, we shall prove the following lemma.

Lemma 5.∑
p⩽x

e

(
h1D1α1 + · · ·+ hℓDℓαℓ

D
· p
)

≪ x log3 x
(
x−

1
2(τ+1) (max{|h1|D1, . . . , |hℓ|Dℓ})

τ
2(τ+1)D

1
2(τ+1) + x−

1
5

)
uniformly for all h = (h1, . . . , hℓ) ∈ Zℓ such that ||h|| > 0, where Di and D are
defined in (6).

Proof. Since {αi}ℓi=1 satisfies (1) for some τ > 0, there exists a positive constant
A ≥ 1 such that

(max{|h1|, . . . , |hℓ|})−τ ⩽ A ||h1α1 + h2α2 + · · ·+ hℓαℓ|| (10)

for all (h1, . . . , hℓ) ∈ Zℓ such that max1⩽i⩽ℓ{|hi|} > 0. Let h = (h1, . . . , hℓ) ∈ Zℓ

be such a tuple and set

mh =
h1D1α1 + · · ·+ hℓDℓαℓ

D
.

Let 1 ⩽ Q < x/2 to be determined later. By Dirichlet’s rational approximation

theorem, there exists
r

q
∈ Q such that 1 ⩽ q ⩽

x

Q
and∣∣∣∣mh − r

q

∣∣∣∣ < Q

qx
.
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So,

∥q(h1D1α1 + · · ·+ hℓDℓαℓ)∥ <
QD

x
. (11)

On the other hand, it follows from (10) that

∥q(h1D1α1 + · · ·+ hℓDℓαℓ)∥ ⩾ A−1q−τ (max{|h1D1|, . . . , |hℓDℓ|})−τ . (12)

Combining (11) and (12), we get

q ⩾
x

1
τ

max{|h1D1|, . . . , |hℓDℓ|}A
1
τ D

1
τ Q

1
τ

. (13)

Then it follows from Lemma 2 that∑
p⩽x

e (mh · p) ≪ x log3 x
(
x−

1
2τ M

1
2D

1
2τ Q

1
2τ + x−

1
5 +Q− 1

2

)
, (14)

where for the sake of brevity we set M = max{|h1D1|, . . . , |hℓDℓ|}. By [13, Lemma
2.4], there exists 1 ⩽ Q < x/2 such that the left hand side of (14) is

≪ x log3 x
(
x−

1
2(τ+1)M

τ
2(τ+1)D

1
2(τ+1) + x−

1
2τ M

1
2D

1
2τ + x−

1
5

)
.

At this point, we can assume that x−
1
2τ M

1
2D

1
2τ < 1, because otherwise the required

upper bound holds trivially. Therefore, the second term is beaten by the first term
giving the proof of Lemma 5. □

We next proceed by plugging this upper bound into (9). We also use the upper
bound |hi| ⩽ H together with the upper bounds D ⩽ zkℓ and Di ⩽ zk(ℓ−1). Then
the difference in the first line of (9) is

≪ π(x)

H
+
(
x1−

1
2(τ+1)H

τ
2(τ+1) z

k(ℓ−1)τ+kℓ
2(τ+1) log3 x+ x

4
5 log3 x

) ∑
0<∥h∥⩽H

1

r(h)

 .

(15)
Now, by (2)

∑
0<∥h∥⩽H

1

r(h)
⩽

∑
0⩽∥h∥⩽H

1∏ℓ
i=1 (max{|hi|, 1})

⩽

1 + 2
∑

1⩽h⩽H

1

h

ℓ

≪ logℓH,

(16)
where in the last step we use integral test. Here we note that the implied constant
depends on ℓ. Coupling (8), (9), (15) and (16), we arrive at

∑
p⩽x

dk
i |⌊αip⌋
i=1,...,ℓ

1

− π(x)

dk1 · · · dkℓ
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≪ π(x)

H
+ x1−

1
2(τ+1)H

τ
2(τ+1) z

k(ℓ−1)τ+kℓ
2(τ+1) logℓH log3 x+ x

4
5 logℓH log3 x (17)

for every H ⩾ 1 and every (d1, . . . , dℓ) such that di ⩽ z ⩽ x1/k for each i. Noting
π(x) ≪ x and choosing 1 ⩽ H ⩽ x by [13, Lemma 2.4], the left hand side of (17)
is

≪ logℓ+3 x
(
x1−

1
3τ+2 z

k(ℓ−1)τ+kℓ
3τ+2 + x1−

1
2(τ+1) z

k(ℓ−1)τ+kℓ
2(τ+1) + x

4
5

)
.

On summing this over all tuples (d1, . . . , dℓ) of positive integers where di ⩽ z for
all i = 1, . . . , ℓ, we observe from (5) that for all 1 ⩽ z ⩽ x1/k,

π(x, k,α)− π(x)
∑

(d1,...,dℓ)
di⩽z

i=1,...,ℓ

µ(d1) · · ·µ(dℓ)
dk1 · · · dkℓ

≪ logℓ+3 x
(
x1−

1
3τ+2 z

k(ℓ−1)τ+kℓ
3τ+2 +ℓ + x1−

1
2(τ+1) z

k(ℓ−1)τ+kℓ
2(τ+1)

+ℓ + x
4
5 zℓ
)
+
e

C log x
log log xx

zk−1
.

Here, ∑
(d1,...,dℓ)

di⩽z
i=1,...,ℓ

µ(d1) · · ·µ(dℓ)
dk1 · · · dkℓ

=

∑
d⩽z

µ(d)

dk

ℓ

and using the following inequality∣∣∣∣∣∣
∑
d⩽z

µ(d)

dk
−

∞∑
d=1

µ(d)

dk

∣∣∣∣∣∣ ⩽
∑
d>z

1

dk
≪ 1

zk−1
,

it follows by the mean value theorem that∑
d⩽z

µ(d)

dk

ℓ

−

( ∞∑
d=1

µ(d)

dk

)ℓ

≪ 1

zk−1
.

Therefore, the contribution of the sums running over di ⩽ z for all i = 1, . . . , ℓ is

π(x)

ζℓ(k)
+O

(
π(x)

zk−1

)
yielding for all 1 ⩽ z ⩽ x1/k

π(x, k,α)− π(x)

ζℓ(k)

≪ logℓ+3 x
(
x1−

1
3τ+2 z

k(ℓ−1)τ+kℓ
3τ+2 +ℓ + x1−

1
2(τ+1) z

k(ℓ−1)τ+kℓ
2(τ+1)

+ℓ + x
4
5 zℓ
)
+
e

C log x
log log xx

zk−1
,

(18)
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where C = C(ℓ,α) is positive. On the right hand side of (18), the first term beats
the third term as τ ≥ 1 and the second term whenever

z ⩽ x
1

k(ℓ−1)τ+kℓ

which one can assume since otherwise (18) holds trivially. Using now [13, Lemma
2.4] to choose optimal z ⩽ x1/k, the left hand side of (18) is

≪ e
C′ log x
log log x

(
x1−

1
3τ+2 + x

1
k + x

(k−1)(3τ+1)+k(ℓ−1)τ+kℓ+ℓ(3τ+2)
(k−1)(3τ+2)+k(ℓ−1)τ+kℓ+ℓ(3τ+2)

)
≪ x1−

k−1
(k−1+ℓ)(3τ+2)+k(ℓ−1)τ+kℓ e

C′ log x
log log x

for some constant C ′ depending on ℓ and α, therefore the claim follows.

2.2. Proof of Theorem 2. The proof will be similar to that of Theorem 1. We
shall therefore be brief. Let α = (α1, α2) and define

πα(x, k) = #{p ⩽ x : ⌊α1 ⌊α2p⌋⌋ is k-free}.

Let 1 ⩽ z ⩽ x1/k be a number to be determined. Using (3), it follows that

πα(x, k) =
∑
p⩽x

∑
dk|⌊α1⌊α2p⌋⌋

µ(d) =
∑
p⩽x

∑
dk|⌊α1⌊α2p⌋⌋

d⩽z

µ(d) +
∑
p⩽x

∑
dk|⌊α1⌊α2p⌋⌋

d>z

µ(d).

As we did before, we have∑
p⩽x

∑
dk|⌊α1⌊α2p⌋⌋

d>z

µ(d) ≪ x

zk−1
,

where the implied constant depends only on α1 and α2. This yields

πα(x, k) =
∑
p⩽x

∑
dk|⌊α1⌊α2p⌋⌋

d⩽z

µ(d) +O
( x

zk−1

)
.

We now proceed to derive the main term. Writing

∑
p⩽x

∑
dk|⌊α1⌊α2p⌋⌋

d⩽z

µ(d) =
∑
d⩽z

µ(d)


 ∑

p⩽x

⌊α1⌊α2p⌋⌋≡0 (mod dk)

1

− π(x)

dk

+π(x)
∑
d⩽z

µ(d)

dk
,

and using partial summation to get∑
d⩽z

µ(d)

dk
=

1

ζ(k)
+O

(
1

zk−1

)
,
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one arrives at

πα(x, k) =
π(x)

ζ(k)
+O

 x

zk−1
+
∑
d⩽z

∣∣∣∣∣∣∣∣
 ∑

p⩽x

⌊α1⌊α2p⌋⌋≡0 (mod dk)

1

− π(x)

dk

∣∣∣∣∣∣∣∣
 (19)

for any 1 ⩽ z ⩽ x1/k. Let us now concentrate on the error term and proceed to
show that it is ≪ x1−ε for some ε > 0. Using observation (7), together with Lemma
3 one ends up with ∑

p⩽x

⌊α1⌊α2p⌋⌋≡0 (mod dk)

1

− π(x)

dk
≪ π(x)

H1
+

∑
1⩽|h1|⩽H1

1

|h1|

∣∣∣∣∣∣
∑
p⩽x

e

(
α1h1 ⌊α2p⌋

dk

)∣∣∣∣∣∣ ,
(20)

where H1 is a positive number to be determined. So, it boils down to estimate the
exponential sum above. To do this, we let K be a sufficiently large number and we
write

⌊α2p⌋ = α2p− {α2p},
yielding∑

p⩽x

e

(
α1h1 ⌊α2p⌋

dk

)
=

∑
0⩽i⩽K−1

∑
p∈Ii(x)

e

(
α1α2h1p

dk
− α1h1{α2p}

dk

)
, (21)

where Ii(x) =
{
p ⩽ x : i

K ⩽ {α2p} < i+1
K

}
. Since

e(t) = 1 +O(|t|)

uniformly for all t ∈ R, we have

e

(
α1α2h1p

dk
− α1h1{α2p}

dk

)
= e

(
−α1h1i

Kdk

)(
e

(
α1α2h1p

dk

)
+O

(
|h1|
Kdk

))
if p ∈ Ii(x). Therefore, the left hand side of (21) is

≪ |h1|π(x)
Kdk

+
∑

0⩽i⩽K−1

∣∣∣∣∣∣
∑

p∈Ii(x)

e

(
α1α2h1p

dk

)∣∣∣∣∣∣ . (22)

Given 0 ⩽ i ⩽ K − 1, let βi = i/K, γi = (i+1)/K and 0 < ∆ < 1/K be a number
to be chosen. By Lemma 4, there exists a periodic function Ψi(x), with period 1,
satisfying

(i) Ψi(x) = 1 in the interval βi +
1
2∆ ⩽ x ⩽ γi − 1

2∆,

(ii) Ψi(x) = 0 in the interval γi +
1
2∆ ⩽ x ⩽ 1 + βi − 1

2∆,
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(iii) 0 ⩽ Ψi(x) ⩽ 1 in the remainder of the interval βi − 1
2∆ ⩽ x ⩽ 1+βi − 1

2∆,

(iv) Ψi(x) has a Fourier expansion of the form

Ψi(x) =

∞∑
h=−∞

ahe(hx),

where a0 = 1/K and

|ah| ⩽ c ·min

{
|h|−1, |h|−2∆−1

}
for every |h| ⩾ 1 and some c fixed.

Let ψi(x) be 1 if βi ⩽ {x} ⩽ γi and ψi(x) = 0 otherwise. It follows that Ψi(x) and
ψi(x) agree on [0, 1] except possibly for two subintervals of [0, 1] of length ⩽ ∆.
Therefore,

∑
p∈Ii(x)

e

(
α1α2h1p

dk

)
=
∑
p⩽x

Ψi(α2p)e

(
α1α2h1p

dk

)
+O

 ∑
p⩽x

{α2p}∈I

1

 (23)

where I is a union of two intervals and is of length ∆. Since α2 is of finite type, fol-
lowing the proof of Theorem 5.1 in [8] together with a partial summation argument,
it follows that for some 0 < ε′′ < 1/5, one has∑

p⩽x
{α2p}∈I

1 = ∆π(x) +O
(
x1−ε′′

)
, (24)

uniformly for all 0 < ∆ < 1/K. Therefore, we see that the left hand side of (23) is

=
1

K

∑
p⩽x

e

(
α1α2h1p

dk

)

+O

 ∑
|h2|>0

|ah2
|

∣∣∣∣∣∣
∑
p⩽x

e

(
(α1α2h1 + α2h2d

k)p

dk

)∣∣∣∣∣∣+∆π(x) + x1−ε′′

 .

Letting H2 be a positive integer to be determined, we split the sum running over
h2 at H2. For |h2| > H2, estimating the innermost exponential sum by π(x), and
using the upper bounds ah ≪ 1/(∆h2) and ah ≪ 1/|h|, we obtain that the left
hand side of (23) is

=
1

K

∑
p⩽x

e

(
α1α2h1p

dk

)
+O

 ∑
0<|h2|⩽H2

1

|h2|

∣∣∣∣∣∣
∑
p⩽x

e

(
(α1α2h1 + α2h2d

k)p

dk

)∣∣∣∣∣∣


+O

(
π(x)

∆H2
+∆π(x) + x1−ε′′

)
.
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Plugging this upper bound into (22) yields that∑
p⩽x

e

(
α1h1 ⌊α2p⌋

dk

)

≪

∣∣∣∣∣∣
∑
p⩽x

e

(
α1α2h1p

dk

)∣∣∣∣∣∣+
∑
i⩽K

∑
0<|h2|⩽H2

1

|h2|

∣∣∣∣∣∣
∑
p⩽x

e

(
(α1α2h1 + α2h2d

k)p

dk

)∣∣∣∣∣∣
+
π(x)K

∆H2
+∆Kπ(x) +Kx1−ε′′ +

|h1|π(x)
Kdk

.

(25)

We are therefore left with the estimation of∑
p⩽x

e

(
(α1α2h1 + α2h2d

k)p

dk

)
, (26)

whenever max{|h1|, |h2|} > 0. To estimate the exponential sum, by Dirichlet’s
theorem we pick up a rational number a/q satisfying∣∣∣∣ (α1α2h1 + α2h2d

k)

dk
− a

q

∣∣∣∣ < 1

qx1−κ

with 1 ⩽ q ⩽ x1−κ, where 0 < κ < 1 is to be determined. Since {α1α2, α2} is of
finite type, similar to how we obtain (13)

x
1−κ
τ

d
k
τ max{|h1|, |h2dk|}

≪ q ⩽ x1−κ

for some τ ⩾ 1. Then by Lemma 2, the exponential sum (26) is

≪ x log3 x
(
(max{|h1|, |h2dk|})

1
2 d

k
2τ x−

1−κ
2τ + x−

1
5 + x−

κ
2

)
.

At this point, we assume that 0 < max{|h1|, |h2|} ⩽ xε
′
where ε′ is a sufficiently

small number to be determined in terms of κ. Then,∑
p⩽x

e

(
(α1α2h1 + α2h2d

k)p

dk

)
≪
(
d

kτ+k
2τ x1−

1−κ
2τ + ε′

2 + x
4
5 + x1−

κ
2

)
log3 x, (27)

uniformly for

0 < max{|h1|, |h2|} ⩽ xε
′
.

Plugging the upper bound (27) into (25), we arrive at∑
p⩽x

e

(
α1h1 ⌊α2p⌋

dk

)
≪ K

(
d

kτ+k
2τ x1−

1−κ
2τ + ε′

2 + x
4
5 + x1−

κ
2

)
log4 x

+
π(x)K

∆H2
+∆Kπ(x) +Kx1−ε′′ +

H1π(x)

Kdk
,
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uniformly for |h1| ⩽ xε
′
, provided that H2 ⩽ xε

′
, 0 < κ < 1, 0 < ∆ < 1/K and K

is sufficiently large. Plugging this upper bound into (20) and summing over d ⩽ z,
we see that the error term in (19) is

≪ xz

H1
+K

(
z1+

kτ+k
2τ x1−

1−κ
2τ + ε′

2 + zx
4
5 + zx1−

κ
2

)
log5 x

+

(
zxK

∆H2
+ z∆Kx+ zKx1−ε′′ +

H1x

K

)
log x+

x

zk−1
(28)

provided that 0 < H1, H2 ⩽ xε
′
, 0 < κ < 1, 0 < ∆ < 1/K and K is sufficiently

large. We now make all unspecified constants explicit. For 0 < ε1, ε2, ε3, ε4, ε5 < 1
to be determined, we set

K = xε1 , H1 = xε2 , H2 = xε3 ,∆ = x−ε4 and z = xε5 ,

where 0 < ε5 ⩽ 1/k (this assumption is from the beginning of the proof). Examin-
ing each term in (28), the right hand side of (28) is ≪ x1−ε for some ε > 0, if the
following inequalities are satisfied:

(1) ε5 < 1/k,
(2) ε2, ε3 < ε′,
(3) ε5 < ε2 < ε1,
(4) ε1 + ε5 < min{ε4, ε′′, κ/2},
(5) ε1 + ε4 + ε5 < ε3,

(6) ε1 + ε5(1 +
kτ+k
2τ ) + ε′

2 < 1−κ
2τ ,

where ε′′ < 1/5 is a fixed positive number defined in (24), τ ⩾ 1 is a fixed number
and 0 < κ < 1 and 0 < ε′ < 1 are to be chosen. We choose κ = 2/5 and
ε′ = (1 − κ)/(2τ). Then since ε′′ < 1/5, we assume that ε4 < ε′′ so that the
fourth inequality becomes equivalent to ε1 + ε5 < ε4. We next choose ε3 < ε′

and ε4 < min
{
ε3, ε

′′} and ε1 < min
{
ε4, ε3 − ε4, (1− κ)/(4τ)

}
. Finally, we choose

ε2 < min
{
ε1, ε

′} and

ε5 < min

{
ε2, ε4 − ε1, ε3 − ε1 − ε4,

1

k
,

2τ

(k + 2)τ + k

(
1− κ

4τ
− ε1

)}
,

completing the proof.
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