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Abstract. In the present paper, we propose a new method to construct a
surface interpolating a given curve as the geodesic curve of it. Also, we ana-
lyze the conditions when the resulting surface is a ruled surface. In addition,
developablity along the common geodesic of the members of surface family are
discussed. Finally, we illustrate this method by presenting some examples.

1. Introduction

One of the frames de�ned for a space curve is the rotation minimizing frame,
denoted by fT;U; V g. Here T, the tangent of the curve; U and V are normal
plane vectors that do not show instantaneous rotation around T . RMF�s have a
very important place in practice due to their minimum bending such that; curve
constrained free form deformation [1-6], sweeping surface modeling [7-10], modeling
of generalized cylinders and tree branches [11 - 14] are very interesting in computer
graphics, including visualization. In addition, streamlines and tubes [15�17] play
an important role in simulation of ropes and strings [18] and motion design and
control [19]. One of the alternative frames that can be installed on the curve is the
Bishop frame [20]. As it is known, the most known frame that can be installed on
a curve in di¤erential geometry is the Frenet frame (see [21] for details). However,
since the Frenet frame can not be de�ned if the curvature is zero, the RMF frame
is more useful than this frame [22].
One of the important curves on the surface is geodesic curves, and geodesic curves

are closely related to Einstein�s theory of relativity. In this sense, geodesics repre-
sent the paths of free falling objects. The concept of geodesic also �nds its place
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in various industrial applications, such as tent manufacturing, cutting and painting
path, �berglass tape windings in pipe manufacturing, textile manufacturing [23-28].
Deng, B., expressed the use of geodesic curves on the surface in architecture with
various examples (for details, see [29] ). It is known by most people that the short-
est distance between two points is a straight line. However, in di¤erential geometry,
this is said di¤erently such that the shortest distance according to the Euclidean
metric is expressed in geodesics. Geodesic curves are expressed as the extreme
value of the distance function in some spaces. Geodesics are curves along which
geodesic curvature vanishes. Contrary to traditional studies, the problem of �nding
a surface that passes through a given curve and accepts this curve as a special curve
was �rst introduced by Wang et.al. [28] in Euclidean 3-space. A common geodesic
surface family is de�ned by giving necessary and su¢ cient conditions for a given
curve to be geodesic on a surface. Wang et al. stated that the data they obtained
as a result of this study can be used in shoe and dress design in real life. Kasap
et.al. [30] generalized the work of Wang by introducing new types of marching-scale
functions, coe¢ cients of the Frenet frame appearing in the parametric representa-
tion of surfaces. Also, surfaces with common geodesic in Minkowski 3-space have
been the subject of many studies. In [31], Kasap and Aky¬ld¬z de�ned surfaces
with a common geodesic in Minkowski 3-space and gave the su¢ cient conditions
on marching-scale functions so that the given curve is a common geodesic on that
surfaces. Şa¤ak and Kasap [32, 33] studied family of surfaces with a common null
geodesic and null asymptotic. Bayram et al. [34] studied parametric surfaces which
possess a given curve as a common asymptotic. In [35], Bayram and Bilici studied
surface family possessing an involute of a given curve as an asymptotic curve. In ad-
dition, they speci�cally stated their work for ruled surfaces and gave the conditions
to be developable within them. Also, recently Atalay [36, 37] studied surface family
possessing a Mannheim pair of a given curve as an asymptotic and geodesic curve.
She, express necessary and su¢ cient conditions for that curve with above property
and present natural results for such ruled surfaces. In addition, she specially pro-
vided the necessary and su¢ cient conditions to be developable through these ruled
surfaces. In [38], Ayvac¬�nded a surface family possessing the Mannheim-B pair
of given curve as an asymptotic and geodesic curve in Euclidean 3-space. She used
Bishop frame of the given curve to solve this problem. Atalay and Ayvac¬ [39],
derived the necessary and su¢ cient condition for Bertrand B-pair of a given curve
to be geodesic curve on a surface in Euclidean 3-space. However, they solved the
problem using Bishop-II frame of the given curve.
In this paper, we obtain the necessary and su¢ cient condition for a given curve

to be both isoparametric and geodesic on a parametric surface depending on the
RMF. Furthermore, we show that there exists ruled surfaces possessing a given curve
as a common geodesic curve and present a criteria for these ruled surfaces to be
developable ones. We only study curves with an arc length parameter because such
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a study is easy to follow; if necessary, one can obtain similar results for arbitrarily
parameterised regular curves.

2. Preliminaries

A parametric curve �(s); L1 � s � L2 is a curve on a surface � = �(s; t) in
IR3 that has a constant s or t-parameter value. In this paper, �

0
(s) denotes

the derivative of � with respect to arc length parameter s and we assume that
�(s) is a regular curve, i.e. �

0
(s) 6= 0 . For every point of �(s), if �

00
(s) 6= 0,

the set fT (s); N(s); B(s)g is called the Frenet frame along �(s), where T (s) =
�
0
(s); N(s) = �

00
(s)=

�00(s) and B(s) = T (s) �N(s) are the unit tangent, prin-
cipal normal, and binormal vectors of the curve at the point �(s), respectively.
Derivative formulas of the Frenet frame is governed by the relations8<: T 0 (s) = �(s)N(s);

N 0 (s) = ��(s)T (s) + �(s)B(s)
B0(s) = ��(s)N(s)

(1)

where �(s) =
�00(s)and �(s) = det(�0(s);�00(s);�000(s))

k�0(s)� �00(s)k are called the curvature and

torsion of the curve �(s), respectively [40].
Another useful frame along a curve is rotation minimizing frame. They are

useful in animation, motion planning, swept surface constructions and related ap-
plications where the Frenet frame may prove unsuitable or unde�ned. A frame
fT (s); U(s); V (s)g among the frames on the curve �(s) is called rotation minimizing
if it is the frame of minimum twist around the tangent vector T . fT (s); U(s); V (s)g
is an RMF if �

U 0 (s) = �(U(s) � r00(s))r0(s);
V 0 (s) = �(V (s) � r00(s))r0(s)

where � � �denotes the standard inner product in IR3 [41]. Observe that such a pair
U and V is not unique; there exist a one parameter family of RMF�s corresponding
to di¤erent sets of initial values of U and V . According to Bishop [20], a frame is
an RMF if and only if each of U 0 (s) and V 0 (s) is parallel to T (s). Equivalently,�

U 0 (s) � V (s) � 0;
V 0 (s) � U(s) � 0 (2)

is the necessary and su¢ cient condition for the frame to be rotation minimizing
[42].
There is a relation between the Frenet frame (if the Frenet frame is de�ned) and

RMF, that is, U and V are the rotation of N and B of the curve �(s) in the normal
plane. Then, �

U
V

�
=

�
cos � � sin �
sin � cos �

��
N
B

�
(3)
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Figure 1. The Frenet frame fT (s); N(s); B(s)g and the vectors U(s); V (s):

where � = �(s) is the angle between the vectors N and U (see Fig. 1), [43].
Equation (3) implies that fT (s); U(s); V (s)g is an RMF if it satis�es the following

relations

U 0 = �� cos �T; V 0 (s) = � sin �T; �0 = �� : (4)

Note that fT (s); U(s); V (s)g is de�ned along the curve �(s) even if the curvature
vanishes where the Frenet frame is unde�ned.

3. Surfaces pencil with a geodesic curve

Suppose we are given a 3-dimensional parametric curve �(s);K1 � s � K2; in
which s is the arc length (regular and

�0(s) = 1,K1 � s � K2 ).
Surface pencil that interpolates �(s) as a common curve is given in the parametric

form as

�(s; t) = �(s) + p(s; t)T (s) + q(s; t)U(s) + r(s; t)V (s);K1 � s � K2; L1 � t � L2;
(5)

where p(s; t); q(s; t) and r(s; t) are C1 functions. The values of the marching-scale
functions p(s; t); q(s; t) and r(s; t) indicate, respectively; the extension-like, �exion-
like and retortion-like e¤ects, by the point unit through the time t, starting from
�(s):

Remark 1. Observe that choosing di¤erent marching-scale functions yields di¤er-
ent surfaces possessing �(s) as a common curve.

Our goal is to �nd the necessary and su¢ cient conditions for which the curve �(s)
is isoparametric and geodesic on the surface �(s; t). Firstly, as �(s) is an isopara-
metric curve on the surface �(s; t), there exists a parameter t0 � [L1; L2] such that

p(s; t0) = q(s; t0) = r(s; t0) � 0; K1 � s � K2; L1 � t0 � L2: (6)

Secondly,the curve �(s) is a geodesic curve on the surface �(s; t) there exist a
parameter t0 � [L1; L2] such that
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n(s; t0) k N(s) (7)

where n(s; t0) is a normal along the curve �(s) and N(s) is a normal vector of �(s):
The normal vector of � = �(s; t) can be written as

n(s; t) =
@�(s; t)

@s
� @�(s; t)

@t
:

From equations (1) and (3), the normal vector can be expressed as

n(s; t) =

24 @r(s;t)
@t

�
p(s; t)�(s) cos �(s) + @q(s;t)

ds

�
�@q(s;t)

@t

�
�p(s; t)�(s) sin �(s) + @r(s;t)

ds

� 35T (s)
+

24 @p(s;t)
@t

�
�p(s; t)�(s) sin �(s) + @r(s;t)

ds

�
�@r(s;t)

@t

�
1� q(s; t)�(s) sin �(s) + r(s; t)�(s) sin �(s) + @p(s;t)

ds

� 35U(s)
+

24 @q(s;t)
@t

�
1� q(s; t)�(s) cos �(s) + r(s; t)�(s) sin �(s) + @p(s;t)

ds

�
�@p(s;t)

@t

�
p(s; t)�(s) cos �(s) + @q(s;t)

ds

� 35V (s):
Thus,

n(s; t0) = 	1(s; t0)T (s) + 	2(s; t0)U(s) + 	3(s; t0)V (s) (8)

where

	1(s; t0) =
@r(s;t0)
@t

�
p(s; t0)�(s) cos �(s) +

@q(s;t0)
ds

�
�@q(s;t0)

@t

�
�p(s; t0)�(s) sin �(s) + @r(s;t0)

ds

�
;

	2(s; t0) =
@p(s;t0)
@t

�
�p(s; t0)�(s) sin �(s) + @r(s;t0)

ds

�
�@r(s;t0)

@t

�
1� q(s; t0)�(s) sin �(s) + r(s; t0)�(s) sin �(s) + @p(s;t0)

ds

�
;

	3(s; t0) =
@q(s;t0)
@t

�
1� q(s; t0)�(s) cos �(s) + r(s; t0)�(s) sin �(s) + @p(s;t0)

ds

�
�@p(s;t0)

@t

�
p(s; t0)�(s) cos �(s) +

@q(s;t0)
ds

�
:

Remark 2. Because of equation (6) and by the de�nition of partial di¤erentiation
we have

@p

@s
(s; t0) =

@q

@s
(s; t0) =

@r

@s
(s; t0) � 0; t0 � [L1; L2]; K1 � s � K2:

According to remark above, we should have
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8<:
	1(s; t0) � 0;
	2(s; t0) = �@r

@s (s; t0);

	3(s; t0) =
@q
@s (s; t0):

(9)

Using equations (3), (8) and (9) we obtain

n(s; t0) =

�
�@r
@t
(s; t0) cos �(s)�

@q

@t
(s; t0) sin �(s)

�
N(s)

+

�
@q

@t
(s; t0) cos �(s)�

@r

@t
(s; t0) sin �(s)

�
B(s):

Thus by (7) �(s) is a geodesic on the surface �(s; t) if and only if�
@q
@t (s; t0) sin �(s) +

@r
@t (s; t0) cos �(s) 6= 0;

@q
@t (s; t0) cos �(s)�

@r
@t (s; t0) sin �(s) = 0:

(10)

Hence, we have following theorem:

Theorem 3. The necessary and su¢ cient condition for the curve �(s) to be both
isoparametric and geodesic on the surface �(s; t) is8<:

p(s; t0) = q(s; t0) = r(s; t0) � 0;
@q
@t (s; t0) = �(s) sin �(s);

@r
@t (s; t0) = �(s) cos �(s); �(s) 6= 0;

�0(s) = ��(s):
(11)

Corollary 4. The su¢ cient condition for the curve �(s) to be both isoparametric
and geodesic on the surface �(s; t) is

8<: p(s; t0) = q(s; t0) = r(s; t0) � 0;
q(s; t) = (t� t0)�(s) sin �(s); r(s; t) = (t� t0)�(s) cos �(s); �(s) 6= 0;
�0(s) = ��(s):

(12)

4. Ruled surface pencil with a common geodesic

Theorem 5. Given an arc-length curve �(s), there exists a ruled surface pencil
possessing �(s) as a common geodesic.

Proof. Choosing marching-scale functions as

p(s; t) = (t� t0)g(s); q(s; t) = (t� t0)�(s) sin �(s); r(s; t) = (t� t0)�(s) cos �(s);
(13)

�(s) 6= 0 and �0(s) = ��(s) equation (5) takes the following form of a ruled
surface

�(s; t) = �(s) + (t� t0) [g(s)T (s) + �(s) sin �(s)U(s) + �(s) cos �(s)V (s)] ; (14)

which satis�es equation (12) interpolating �(s) as a common geodesic curve. �
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Remark 6. Observe that, changing g(s) and �(s) in equation (14) yields di¤erent
ruled surfaces interpolating �(s) as a common geodesic.

Corollary 7. Ruled surface (14) is developable if and only if �(s) = g(s)�(s) for
some real valued function g(s).

Proof. �(s; t) = �(s) + (t� t0) [g(s)T (s) + sin �(s)U(s) + cos �(s)V (s)] is devel-
opable if and only if det(�0; R;R0) = 0, where R(s) = g(s)T (s) + sin �(s)U(s) +
cos �(s)V (s).
Equations (1), (3) and (4) give

R0 = g0T + gT 0 + �0 cos �U + sin �U 0 � �0 sin �V + cos �V 0

= g0T + (g� cos � � � cos �)U + (�g� sin � + � sin �)V: (15)

Employing equation (15) in the determinant we get � = g� , which completes the
proof. �

5. Examples of generating surfaces with a common geodesic curve

Example 8. Let �(s) =
�
3
5 sin s;

3
5 cos s;

4
5s
�
be a unit speed curve. Then it is easy

to show that

T (s) =

�
3

5
cos s;�3

5
sin s;

4

5

�
; �(s) =

3

5
; �(s) = �4

5
:

If we choose � = 4
5s we have

U 0 =

�
� 9

25
cos s cos(

4s

5
);
9

25
sin s cos(

4s

5
);�12

25
cos(

4s

5
)

�
;

V 0 =

�
9

25
cos s sin(

4s

5
);� 9

25
sin s sin(

4s

5
);
12

25
sin(

4s

5
)

�
satisfying equation (4). By integration, we obtain

U =

�
� 1

10
sin(

9s

5
)� 9

10
sin(

s

5
);� 1

10
cos(

9s

5
)� 9

10
cos(

s

5
);�3

5
sin(

4s

5
)

�
;

V =

�
� 1

10
cos(

9s

5
) +

9

10
cos(

s

5
);� 9

10
sin(

s

5
) +

1

10
sin(

9s

5
);�3

5
cos(

4s

5
)

�
:

Now, fT (s); U(s); V (s)g is an RMF since it satis�es equation (2). If we take
p(s; t) � 0, q(s; t) = sin( 4s5 )(sin t � 1); r(s; t) = cos( 4s5 ) cos t; �(s) � �1 and
t0 =

�
2 ;then equation (11) is satis�ed. Thus, we obtain a member of the surface

pencil with a common geodesic �(s)
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Figure 2. �1(s; t) as a member of the surface pencil and its geodesic.

�1(s; t) =

0BBBB@
3
5 sin(s)� sin(

4s
5 )(sin t� 1)

�
� 1
10 sin(

9s
5 )�

9
10 sin(

s
5 )
�

+cos( 4s5 ) cos t
�
� 1
10 cos(

9s
5 )�

9
10 cos(

s
5 )
�
;

3
5 cos(s)� sin(

4s
5 )(sin t� 1)

�
� 1
10 cos(

9s
5 )�

9
10 cos(

s
5 )
�

+cos( 4s5 ) cos t
�
� 9
10 sin(

s
5 ) +

1
10 sin(

9s
5 )
�
;

4s
5 �

3
5

�
sin2( 4s5 )(sin t� 1) + cos

2( 4s5 ) cos t
�

1CCCCA
where 0 � s � 2� ; 0 � t � 2� (Fig. 2).
In equation. (14), if we take g(s) = �(s)

�(s) = �
4
3 , then by Corollary 7, we obtain

the following developable ruled surface with a common geodesic �(s) as

�2(s; t) =

0BBBB@
3
5 sin s+ t

�
� 4
5 cos s+ sin(

4s
5 )
�
� 1
10 sin(

9s
5 )�

9
10 sin(

s
5 )
��

+cos( 4s5 )
�
� 1
10 cos(

9s
5 ) +

9
10 cos(

s
5 )
�
;

3
5 cos s+ t

�
4
5 sin s+ sin(

4s
5 )
�
� 1
10 cos(

9s
5 )�

9
10 cos(

s
5 )
��

+cos( 4s5 )
�
� 9
10 sin(

s
5 ) +

1
10 sin(

9s
5 )
�
;

4s
5 �

3
5 t

1CCCCA
where -2� � s � 2� ; 0 � v � 2� (Fig. 3 ).

Example 9. Let �(s) = (cos s; sin s; 0) be a unit speed curve. It is obvious that
T (s) = (� sin s; cos s; 0) ; �(s) = 1; �(s) = 0:

If we take U(s) = (� cos s;� sin s; 0) ; V (s) = (0; 0; 1) ;then equation (2) is sat-
is�ed and fT (s); U(s); V (s)g is an RMF. By choosing marching-scale functions as
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Figure 3. �2(s; t) as a member of the developable ruled surface
pencil and its geodesic.

p(s; t) � 0, q(s; t) = 1�cos t; r(s; t) = sin t; �(s) � 1 and t0 = � = 0, then equation
(11) is satis�ed. Thus, we immediately obtain a member of the surface pencil with
a common geodesic �(s) as

�3(s; t) =
�
cos s cos t; sin s cos t; sin t

�
;

where 0 � s � 2� ; 0 � t � 2� (Fig. 4).
For the same curve let us �nd a ruled surface. In equation (14), if we take

g(s) = �(s)
�(s) = 0, then we obtain the following developable ruled surface with a

common geodesic �(s) as

�4(s; t) =
�
cos s; sin s; t

�
where �� � s � � ;�1 � t � 1 (Fig. 5 ).
If we take g(s) = 0 and t0 = � = �

3 then, we obtain the following developable
ruled surface with a common geodesic �(s) as

�5(s; t) =
� �

1�
p
3
2

�
t� �

3

��
cos s;

�
1�

p
3
2

�
t� �

3

��
sin s; 12

�
t� �

3

� �
;

where 0 � s � 2� ; 0 � t � 2 (Fig. 6 ).
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Figure 4. �3(s; t) as a member of surface pencil and its geodesic.

Figure 5. �4(s; t) as a member of the developable ruled surface
pencil and its geodesic curve.
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Figure 6. �5(s; t) as a member of the developable ruled surface
pencil and its geodesic curve.

Example 10. Let �(s) =
�p

3
2 sin s;

s
2 ;

p
3
2 cos s

�
be a unit speed curve. Then,

T (s) =

 p
3

2
cos s;

1

2
;

p
3

2
sin s

!
; �(s) =

p
3

2
; �(s) = �1

2
:

Using equations (2) and (4) we obtain � = � s
2 and

U =

 
�1
4
sin(

3s

2
)� 3

4
sin(

s

2
);�

p
3

2
sin(

s

2
);�1

4
cos(

3s

2
)� 3

4
cos(

s

2
)

!
;

V =

 
1

4
cos(

3s

2
)� 3

4
cos(

s

2
);

p
3

2
cos(

s

2
);
3

4
sin(

s

2
)� 1

4
sin(

3s

2
)

!
:

Now, fT (s); U(s); V (s)g is an RMF. If we take p(s; t) � 0, q(s; t) = s2t sin( s2 ); r(s; t) =
s2t cos( s2 ) and t0 = 0, then equation (12) we have a member of the surface pencil
with a common geodesic �(s) as

�6(s; t) =

0BBBBB@

p
3
2 sin(s) + s

2t
�
sin( s2 )

�
� 1
4 sin(

3s
2 )�

3
4 sin(

s
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where 0 < s � 2; �1 � t � 1 (Fig. 7).
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Figure 7. �6(s; t) as a member of the developable ruled surface
pencil and its geodesic curve.
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