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Abstract. In this paper, we construct Bernstein type operators that repro-
duce exponential functions on simplex with one moved curved side. The opera-
tor interpolates the function at the corner points of the simplex. Used function
sequence with parameters � and � not only are gained more modeling �ex-
ibility to operator but also satis�ed to preserve some exponential functions.
We examine the convergence properties of the new approximation processes.
Later, we also state its shape preserving properties by considering classical
convexity. Finally, a Voronovskaya-type theorem is given and our results are
supported by graphics.

1. Introduction

Over the last 60 years, the study of linear approximation has been revealed
powerful and important tools in approximation theory, mainly due to their possible
applications not only in mathematics but also in other �elds such as statistics,
engineering and computer science. One of the most vital aspects of the linear
approximation is the construction of sequences of linear positive operators to obtain
a new approximation process. One of them is Bernstein-type operators on a triangle
with a curved side. The operators have been studied extensively and have important
applications in many areas such as computer-aided geometric design (see e.g [6]
and [7]). In particular, several bivariate extensions of Bernstein operators have been
proposed in literature (see for instance Refs., [9], [1], [11] and references therein).
Remember that given n 2 N, the bivariate Bernstein polynomial of order n on the

2020 Mathematics Subject Classi�cation. 41A36, 41A25.
Keywords and phrases. Bernstein operators, exponential functions, classical and exponential

convexity, Voronovskaya-type theorem.
kenanbozkurt06@gmail.com, �rat_ozsarac@hotmail.com-Corresponding author;

aliaral73@yahoo.com
0000-0001-9714-4729; 0000-0001-7170-9613; 0000-0002-2024-8607.

c2021 Ankara University
Communications Facu lty of Sciences University of Ankara-Series A1 Mathematics and Statistics

541



542 K. BOZKURT, F. ÖZSARAÇ, A. ARAL

simplex S �
�
(x; y) 2 R2;x; y � 0; x+ y � 1

	
is given, for f 2 C (S), by

Bnf (x; y) =
nX
k=0

n�kX
l=0

f

�
k

n
;
l

n

�
pn;k;l (x; y) , (1)

where

pn;k;l (x; y) =

�
n

k

��
n� k
l

�
xkyl (1� x� y)n�k�l :

To obtain an improvement of the error of convergence in certain subsets of the
simplex, in [9], authors generalized the operators Bnf (x; y) as

Bn;�;�f (x; y) := Bnf (tn;� (x) ; tn;� (y)) ; (2)

where

tn; (z) =
�1� n+

q
(n+ 1)

2
+ 4n (n� 1) (z2 + z)

2 (n� 1) ,

with  2 [0;1) and n 2 N; n > 1. The operators Bn;�;�f (x; y) �x the polynomials
of the form p21+�p1 and p

2
2+�p2 for �; � 2 [0;1), where p0 (x; y) = 1, p1 (x; y) = x

and p2 (x; y) = y. These operators can be considered as generalization of the
operators de�ned in [8] for the two variable function.
On the other hand, in recent years, there is an increasing interest in modifying

linear operators so that the new versions reproduce certain exponential functions.
Corresponding modi�cations of the di¤erent operators have been extensively stud-
ied nowadays, among the others, we refer the readers to [4], [14], [15], [2], [5].
In [3], the authors proposed the modi�cation of Bernstein operators to reproduce
some exponential functions and perform better compared to the classical Bernstein
operators, under su¢ cient conditions. These operators are de�ned by

Gnf (x) = Gn (f ;x) =
nX
k=0

f

�
k

n

�
e��k=ne�xpn;k (an;� (x)) ; x 2 [0; 1] ; n 2 N; (3)

where

an;� (x) =
e�x=n � 1
e�=n � 1 :

In this paper, motivated by the operators (2) and (3), we modify the operators
(1) so that they preserve some exponential functions.
The present work is organized as follows. In the second section, we give de�ni-

tion of a new family of generalized Bernstein operators and their certain elementary
properties. In the third section, certain shape preserving properties including gen-
eralized convexity for bivariate functions are obtained. Uniform and quantitative
type convergence of the mentioned operators and a Voronovskaya type theorem are
given in fourth section. In the last two section, we have an inequality showing that
the new operator is closer to function f and present examples of graphics supporting
the results.
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2. The new generalized Bernstein operators

For each integer n > 1, let rn : (0;1)� [0; 1]! [0; 1] be the function de�ned by

rn (; z) :=
e
z
n � 1
e

n � 1

,

for  2 (0;1) and z 2 [0; 1]. We introduce a new family of operators as follows.

De�nition 1. Let S�;� �
�
(x; y) 2 R2;x; y � 0; rn (�; x) + rn (�; y) � 1

	
� S for

each integer n and �; � > 0: We de�ne the Bernstein operators on C (S�;�) as

B�;�n f (x; y) :=
nX
k=0

n�kX
l=0

f

�
k

n
;
l

n

�
p�;�n;k;l (x; y) ,

where

p�;�n;k;l (x; y) =

�
n

k

��
n� k
l

�
rn (�; x)

k
rn (�; y)

l
(1� rn (�; x)� rn (�; y))n�k�l :

It is obvious that 0 � rn (�; x) � x and 0 � rn (�; y) � y: For each n > 1 and
x; y 2 [0; 1], if we accept rn (�; x) = x and rn (�; y) = y (it can be take as n!1),
then B�;�n f (x; y) becomes to Bnf (x; y) on S:
Throughout the paper, �; � > 0 represent �xed real parameters and exp�;�i;j

represents the exponential function de�ned by exp�;�i;j (t1; t2) := e
i�t1+j�t2 for i; j =

0; 1; 2. The inverse of the exponential function with respect to �rst variable t1 is
denoted by log�� and for second variable t2, we use the representation log

�
� .

Note that, for the B�;�n f (x; y) to be positive operator, it must be de�ned on the
triangular region S�;� with curved side. This situation is shown in the Figure 1.
The equalities

rn (; 0) = 0 and rn (; 1) = 1

are hold. The bivariate Bernstein operators B�;�n f (x; y) interpolate f (x; y) at the
corner points of the simplex, namely

B�;�n f (0; 0) = f (0; 0) ; B�;�n f (1; 0) = f (1; 0) and B�;�n f (0; 1) = f (0; 1) .

Let �; � 2 (0;1) and n > 1. Proceeding as it is usually done for the classical
Bernstein polynomials, it is easily attained that

B�;�n exp�;�0;0 (x; y) = 1, B�;�n exp�;�1;0 (x; y) = e
�x, B�;�n exp�;�0;1 (x; y) = e

�y, (4)

B�;�n exp�;�2;0 (x; y) =
��
e
�
n + 1

� �
e
�x
n � 1

�
+ 1
�n
, (5)

B�;�n exp�;�0;2 (x; y) =
��
e
�
n + 1

��
e
�y
n � 1

�
+ 1
�n
. (6)

On the other hand, for each  2 (0;1), z 7! rn (; z) is an increasing and convex
real function satisfying rn (; 0) = 0, rn (; 1) = 1 and 0 < rn (; z) < z < 1 for
0 < z < 1. As a direct consequence, for �; � 2 (0;1), B�;�n is a positive operator
which interpolates f at the vertices of S�;� .
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Figure 1. The domain areas of B�;�n (f ;x; y) with di¤erent values of n:

3. Shape Preserving Properties

In this section, it is convenient to recover these visual shape preserving proper-
ties and add some others, in terms of generalized convexities with respect to the
functions exp�;�0;0 ; exp

�;�
1;0 and exp

�;�
0;1 .

In addition, for use in other shape preserving properties, we �rst remind a clas-
sical de�nition of convexity for bivariate functions:
For f 2 C (S), (x; y) 2 S�;� and h 2 R+, we de�ne (whenever it has sense):

�
(1;0)
h f (x; y) = f (x+ h; y)� f (x; y) ; �

(0;1)
h f (x; y) = f (x; y + h)� f (x; y) ;

�
(1;1)
h f (x; y) = f (x+ h; y + h) + f (x; y)� f (x+ h; y)� f (x; y + h) ;

�
(2;0)
h f (x; y) = f (x+ 2h; y)� 2f (x+ h; y) + f (x; y) ;

�
(0;2)
h f (x; y) = f (x; y + 2h)� 2f (x; y + h) + f (x; y) :

De�nition 2. If for h 2 R+, �(i;j)h f � 0, then f (x; y) is convex of order (i; j),
i; j 2 N, 0 < i+ j � 2.

Now, with the aim of obtaining the shape preserving properties that the oper-
ator B�;�n possesses, we investigate expressions of �rst two partial derivatives of
B�;�n f according to both x and y. To derive them needs tedious but elementary
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computation (for details see Ref. [11]).

@B�;�n f

@x
(x; y) = n

@rn (�; x)

@x

n�1X
k=0

n�k�1X
l=0

�
f

�
k + 1

n
;
l

n

�
� f

�
k

n
;
l

n

��
p�;�n�1;k;l (x; y) ,

@2B�;�n f

@x2
(x; y) = n

@2rn (�; x)

@x2

n�1X
k=0

n�k�1X
l=0

�
f

�
k + 1

n
;
l

n

�
� f

�
k

n
;
l

n

��
p�;�n�1;k;l (x; y)

+n (n� 1)
�
@rn (�; x)

@x

�2 n�2X
k=0

n�k�2X
l=0

p�;�n�2;k;l (x; y)

�
�
f

�
k + 2

n
;
l

n

�
� 2f

�
k + 1

n
;
l

n

�
+ f

�
k

n
;
l

n

��
,

@B�;�n f

@y
(x; y) = n

@rn (�; y)

@y

n�1X
k=0

n�k�1X
l=0

�
f

�
k

n
;
l + 1

n

�
� f

�
k

n
;
l

n

��
p�;�n�1;k;l (x; y) ,

@2B�;�n f

@y2
(x; y) = n

@2rn (�; y)

@y2

n�1X
k=0

n�k�1X
l=0

p�;�n�1;k;l (x; y)

�
f

�
k

n
;
l + 1

n

�
� f

�
k

n
;
l

n

��

+n (n� 1)
�
@rn (�; y)

@y

�2 n�2X
k=0

n�k�2X
l=0

p�;�n�2;k;l (x; y)

�
�
f

�
k

n
;
l + 2

n

�
� 2f

�
k

n
;
l + 1

n

�
+ f

�
k

n
;
l

n

��
and

@2B�;�n f

@x@y
(x; y) = n (n� 1) @rn (�; x)

@x

@rn (�; y)

@y

n�2X
k=0

n�k�2X
l=0

p�;�n�2;k;l (x; y)

�
�
f

�
k + 1

n
;
l + 1

n

�
� f

�
k

n
;
l + 1

n

�
� f

�
k + 1

n
;
l

n

�
+ f

�
k

n
;
l

n

��
.

Also, following equality should not be forgotten:

r00n (; z) =


n
r0n (; z) .

From these expressions, taking into account the aforementioned properties of the
function z 7! rn (; z), the following results follows:

Proposition 3. Let �; � 2 (0;1) and f 2 C (S).
(1) If f (x; y) is convex of order (1; 0) (resp. (0; 1)), then so is B�;�n f .
(2) The convexity of order (2; 0) (resp. (0; 2)) of the function f (x; y) does not

imply the one of B�;�n f .
(3) If f (x; y) is synchronically positive, decreasing and convex of order (2; 0)

(resp. (0; 2)), then B�;�n f is convexity of order (2; 0) (resp. (0; 2)).
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(4) If f (x; y) is simultaneously classical convex of order(1; 0) and (2; 0) (resp.
(0; 1) and (0; 2)), then B�;�n f is classical convex of order (2; 0) (resp. (0; 2)).

(5) If f (x; y) is convex of order (1; 1), then so is B�;�n f .

4. Convergence Properties

We dedicate this section to go through some usual topics related to the conver-
gence of linear approximation processes.

Theorem 4. Let �; � 2 (0;1) and f 2 C (S). Then, we get

lim
n!1

B�;�n (f ;x; y) = f (x; y) :

Proof. It is enough to verify the conditions

lim
n!1

B�;�n

�
exp�;�i;j ;x; y

�
= exp�;�i;j (x; y)

for the pairs of (i; j) 2 f(0; 0) ; (1; 0) ; (0; 1) ; (2; 0) ; (0; 2)g : We have previously
shown that B�;�n

�
exp�;�0;0 ;x; y

�
= 1; B�;�n

�
exp�;�1;0 ;x; y

�
= e�x, B�;�n

�
exp�;�0;1 ;x; y

�
=

e�y. For (0; 0) ; (1; 0) ; (0; 1) ;the conditions follows from above equalities. For
(i; j) = (0; 2) and (i; j) = (2; 0), we get

lim
n!1

B�;�n

�
exp�;�2;0 + exp

�;�
0;2 ;x; y

�
= lim

n!1

h�
e
�
n (x+1) + e

�x
n � e�n

�n
+
�
e
�
n (y+1) + e

�y
n � e

�
n

�ni
= e2�x + e2�y

and

sup
x2S�;�

���B�;�n

�
exp�;�2;0

�
� e2�x

��� = sup
0�x�1

e2�x sup
0�x�1

����e�n��x
n + e�

�x
n � e�n� 2�x

n

�n
� 1
��� :

Since the critical point of the function
�
e
�
n�

�x
n + e�

�x
n � e�n� 2�x

n

�n
is x0 = n

� ln
�
2e

�
n

1+e
�
n

�
;

we obtain that

sup
0�x�1

����e�n��x
n + e�

�x
n � e�n� 2�x

n

�n
� 1
��� = e���e�n + 1

2

�2n
� 1;

sup
x2S�;�

���B�;�n

�
exp�;�2;0

�
� e2�x

��� � e2�

 
e��

�
e
�
n + 1

2

�2n
� 1
!

! 0 as n!1:

Consider the sequence of operators

Bn (f ;x; y) =
�

B�;�n (f ;x; y) ; (x; y) 2 S�;�
f (x; y) ; (x; y) 2 [0; 1]� [0; 1]r S�;� :
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Then, we obtain

kBn (f ;x; y)� f (x; y)kC([0;1]�[0;1]) =
B�;�n (f ;x; y)� f (x; y)


C(S�;�)

: (7)

Therefore, we get

lim
n!1

B�;�n

�
exp�;�i;j ;x; y

�
� exp�;�i;j (x; y)


C(S�;�)

= 0

for the pairs of (i; j) 2 f(0; 0) ; (1; 0) ; (0; 1) ; (2; 0) ; (0; 2)g : Applying Korovkin the-
orem to sequence Bn (f), we have

lim
n!1

kBn (f ;x; y)� f (x; y)kC([0;1]�[0;1]) = 0:

Therefore, from (7), we have desired result. �

When it comes to quantitative sight, Censor�s result yields the estimate

jBnf (x; y)� f (x; y)j �
�
1 +

x (1� x) + y (1� y)
n�2

�
! (f; �) .

Herein, ! (f; �) is the bivariate Euclidean modulus of continuity which is de�ned
by

! (f; �) = sup
n
jf (x1; y1)� f (x2; y2)j : (xi; yi) 2 S; (x2 � x1)2 + (y2 � y1)2 � �

o
.

Theorem 5. Let f 2 C (S) : Then, following inequality holds��B�;�n (f ;x; y)� f (x; y)
�� � �1 + 1

�2
+
1

�2

�
�!

�
f ;

q��
e
�
n + 1

� �
e
�x
n � 1

�
+ 1
�n � e2�x + ((e �n + 1)(e �yn � 1) + 1)n � e2�y� :

Proof. We have

��B�;�n (f ;x; y)� f (x; y)
�� �

0@1 + B�;�n

�
(t1 � x)2 + (t2 � y)2

�
(x; y)

�2

1A! (f; �) :
Using mean value theorem, we get��B�;�n (f ;x; y)� f (x; y)

�� �
�
1 +

�
1

�2
+
1

�2

�

�
B�;�n

��
exp�;�1;0 � e�x

�2
+
�
exp�;�0;1 � e�y

�2�
(x; y)

�2

1CCA
�! (f; �) :
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Letting

�2 = B�;�n

��
exp�;�1;0 � e�x

�2
+
�
exp�;�0;1 � e�y

�2�
(x; y)

= B�;�n

�
exp�;�2;0

�
(x; y)� e2�x + B�;�n

�
exp�;�0;2

�
(x; y)� e2�y

=
��
e
�
n + 1

� �
e
�x
n � 1

�
+ 1
�n � e2�x + ((e �n + 1)(e �yn � 1) + 1)n � e2�y;

we have��B�;�n (f ;x; y)� f (x; y)
�� � �1 + 1

�2
+
1

�2

�
�!

�
f ;

q��
e
�
n + 1

� �
e
�x
n � 1

�
+ 1
�n � e2�x + ((e �n + 1)(e �yn � 1) + 1)n � e2�y� :

�
We are going to prove a Voronovskaya-type theorem for B�;�n .

Theorem 6. Let f 2 C (S). Then, we have

lim
n!1

2n
�
B�;�n (f ;x; y)� f (x; y)

�
=

�
@2f (x; y)

@x2
� �@f (x; y)

@x

�
x (1� x)

�2xy@f (x; y)
@y@x

+

�
@2f (x; y)

@y2
� � @f (x; y)

@y

�
y (1� y)

uniformly in (x; y) 2 S�;�.

Proof. Let (x; y) 2 S�;� . By the Taylor�s theorem, we get

f (t1; t2) = f (x; y) +
@f
�
log��; �

� �
e�x; e�y

�
@x

�
e�t1 � e�x

�
+
@f
�
�; log��

� �
e�x; e�y

�
@y

�
e�t2 � e�y

�
(8)

+
1

2

8<:@
2f
�
log��; �

� �
e�x; e�y

�
@x2

�
e�t1 � e�x

�2

+ 2
@2f

�
log��; log

�
�

� �
e�x; e�y

�
@y@x

�
e�t1 � e�x

� �
e�t2 � e�y

�
+
@2f

�
�; log��

� �
e�x; e�y

�
@y2

�
e�t2 � e�y

�2)
+ � (t1; t2;x; y)

n�
e�t1 � e�x

�2
+
�
e�t2 � e�y

�2o
; (9)
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where � (t1; t2;x; y)! 0, as (t1; t2)! (x; y).
Operating B�;�n (:;x; y) on both sides of (9), we obtain

B�;�n (f ;x; y) = f (x; y) +
@f
�
log��; �

� �
e�x; e�y

�
@x

B�;�n

��
e�t1 � e�x

�
;x; y

�
+
@f
�
�; log��

� �
e�x; e�y

�
@y

B�;�n

��
e�t2 � e�y

�
;x; y

�
+
1

2

8<:@
2f
�
log��; �

� �
e�x; e�y

�
@x2

B�;�n

��
e�t1 � e�x

�2
;x; y

�

+2
@2f

�
log��; log

�
�

� �
e�x; e�y

�
@y@x

B�;�n

��
e�t1 � e�x

� �
e�t2 � e�y

�
;x; y

�
+
@2f

�
�; log��

� �
e�x; e�y

�
@y2

B�;�n

��
e�t2 � e�y

�2
;x; y

�)
+B�;�n

�
� (t1; t2;x; y)

n�
e�t1 � e�x

�2
+
�
e�t2 � e�y

�2o
;x; y

�
. (10)

Since

@f
�
log��; �

� �
e�x; e�y

�
@x

= ��1e��x
@f (x; y)

@x
,

@2f
�
log��; �

� �
e�x; e�y

�
@x2

= e�2�x
�
��2

@2f (x; y)

@x2
� ��1 @f (x; y)

@x

�
;

@2f
�
log��; log

�
�

� �
e�x; e�y

�
@y@x

= ��1��1e�(�x+�y)
@f (x; y)

@y@x

and

lim
n!1

nB�;�n

��
e�t1 � e�x

�2
;x; y

�
= lim

n!1
n
��
e
�
n (x+1) + e

�x
n � e�n

�n
� e2�x

�
= �x (x� 1)�2e2�x;

lim
n!1

nB�;�n

��
e�t1 � e�x

� �
e�t2 � e�y

�
;x; y

�
= lim

n!1
n
��
e
�
nx + e

�y
n � 1

�n
� e�x+�y

�
= �xy��e�x+�y;

directly from (9), (4), (5), (6), we get

lim
n!1

2n
�
B�;�n (f ;x; y)� f (x; y)

�
=

�
@2f (x; y)

@x2
� �@f (x; y)

@x

�
x (1� x)

�2xy@f (x; y)
@y@x
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+

�
@2f (x; y)

@y2
� � @f (x; y)

@y

�
y (1� y)

+ lim
n!1

2nB�;�n (� (t1; t2;x; y)

�
n�
e�t1 � e�x

�2
+
�
e�t2 � e�y

�2o
;x; y

�
:

Now, by applying Cauchy-Schwarz inequality to the last term of (10), we attain

B�;�n

�
� (t1; t2;x; y)

n�
e�t1 � e�x

�2
+
�
e�t2 � e�y

�2o
;x; y

�
�

�
B�;�n

�
�2 (t1; t2;x; y) ;x; y

�	1=2
�
(r

B�;�n

�
(e�t1 � e�x)4 ;x; y

�
+

r
B�;�n

�
(e�t2 � e�y)4 ;x; y

�)
.

Since � (t1; t2;x; y)! 0, as (t1; t2)! (x; y), applying Korovkin Theorem, we have

lim
n!1

B�;�n

�
�2 (t1; t2;x; y) ;x; y

�
= 0

uniformly in (x; y) 2 S�;� .
From calculations with Mathematica, we get

B�;�n

��
e�t1 � e�x

�4
;x; y

�
= O

�
1

n2

�
and B�;�n

��
e�t2 � e�y

�4
;x; y

�
= O

�
1

n2

�
uniformly in (x; y) 2 S�;� .
Therefore,

2nB�;�n

�
� (t1; t2;x; y)

n�
e�t1 � e�x

�2
+
�
e�t2 � e�y

�2o
;x; y

�
! 0,

as n!1, uniformly in S�;� .
Thus, the desired result is obtained. �

5. Comparison with Bernstein Operators

In this section, we compare the operators B�;�n (f ;x; y) with Bernstein operators:

De�nition 7. Let f 2 C2 (S) :

i) f (x; y) is ��convex of order (1; 0) if @
2f(x;y)
@x2 � �@f(x;y)@x � 0;

ii) f (x; y) is ��convex of order (0; 1) if @
2f(x;y)
@y2 � � @f(x;y)@y � 0:

Theorem 8. Let f 2 C1 (S�;�) : Suppose that f (x; y) is ��convex of order (1; 0),
��convex of order (0; 1) and (1; 1) concave. Then, there exists n0 2 N such that

B�;�n (f ;x; y) � f (x; y)
for all n � n0 and (x; y) 2 S�;� :
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Theorem 9. Let f 2 C1 (S�;�) : Suppose that there exists n0 2 N such that

f (x; y) � B�;�n (f ;x; y) � Bn (f ;x; y)
for all n � n0 and (x; y) 2 S�;� : Then,

@2f (x; y)

@x2
� �@f (x; y)

@x
� 0; (11)

@2f (x; y)

@y2
� � @f (x; y)

@y
� 0 (12)

and
@f (x; y)

@y@x
� 0: (13)

Conversely, if (11) ; (12) and (13) hold with strict inequalities at a given point
(x; y) 2 S�;�, then there exists n0 2 N such that for all n � n0

f (x; y) < B�;�n (f ;x; y) < Bn (f ;x; y) :

Remark 10. We can easily see that following equality, if f is (1; 0)-convex and
(0; 1)-convex, then the functions � ! B�;�n (f ;x; y) and � ! B�;�n (f ;x; y) are de-
creasing:

@rn (�; x)

@�
=

xe
x�
n

�
e
�
n � 1

�
� e�n

�
e
�x
n � 1

�
n
�
e
�
n � 1

�2 �
xe

x�
n

�
e
�
n � 1

�
� e�xn

�
e
�
n � 1

�
n
�
e
�
n � 1

�2
=

(x� 1) e x�n
�
e
�
n � 1

�
n
�
e
�
n � 1

�2 � 0;

@B�;�n f

@�
(x; y) = n

@rn (�; x)

@�

n�1X
k=0

n�k�1X
l=0

�
f

�
k + 1

n
;
l

n

�
� f

�
k

n
;
l

n

��
p�;�n�1;k;l (x; y) :

Since B�;�n (f ;x; y) converges uniformly in S�;� towards Bn (f ;x; y) as �; � ! 0
and the convergence is decreasing, then B�;�n (f ;x; y) � Bn (f ;x; y) : That is the
operators B�;�n (f ;x; y) provide a better approximation in a certain sense than the
classical Bernstein operator for mentioned class of functions.

6. Graphical and Numerical Analysis

In this section, we give some graphs and numerical examples to show the con-
vergence of B�;�n (f ;x; y) to f (x; y) with the di¤erent values of �; � and n:
Let f (x; y) = ex

2+y2 : The graphs of B�;�n (f ;x; y) with the di¤erent values of n
are shown in Figure 2 and di¤erent values of a and � are demonsrated in Figure 3.
In Figure 2, we intend to show how the operators approximate to f (x; y) =

ex
2+y2 for increasing n: Figure 3 shows that B�;�n (f ;x; y) approximates to f (x; y) =

ex
2+y2 for decreasing � and �:
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Figure 2. The graphic is about how the B�;�n (f ;x; y) approximates
to f(x; y) with di¤erent values of n for � = 100 and � = 100:

Figure 3. The graphs of B�;�n (f ;x; y) with di¤erent values of � and
� for n = 100.

We can see from Table 1 the errors of the operator B�;�n (f ;x; y). In the Table 1,
the errors of

B�;�n (f)� f
 for some values of n; � and � are demonstrated.



BIVARIATE BERNSTEIN POLYNOMIALS 553

Table 1. The errors of approximationB�;�n (f)� f
 n = 10 n = 20 n = 50 n = 100 n = 200

� = 1 0.1869760 0.0929331 0.0370372 0.0184957 0.0092420
� = 0:5 0.0170407 0.0085077 0.0033999 0.0016994 0.0008495
� = 0:1 0.0003053 0.0001526 0.0000610 0.0000305 0.0000152
� = 0:05 0.0000690 0.0000345 0.0000138 0.0000069 0.0000034
� = 0:01 0.0000025 0.0000012 0.0000005 0.0000002 0.0000001
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[7] Blaga, P., C¼atinaş, T., Coman, Gh., Bernstein-type operators on a triangle with all curved
sides, Applied Mathematics and Computation., 218 (2011), 3072�3082. https://doi.org/10.
1016/j.amc.2011.08.027

[8] Cárdenas-Morales, D., Garrancho, P., Munoz-Delgado, F.J., Shape preserving approximation
by Bernstein-type operators which �x polynomials, Appl. Math. Comput., 182 (2) (2006),
1615�1622. https://doi.org/10.1016/j.amc.2006.05.046

[9] Cárdenas-Morales, D., Munoz-Delgado, F.J., Improving certain Bernstein-type approxima-
tion processes, Math. and Comp. in Simulation., 77 (2008), 170-178. https://doi.org/10.
1016/j.matcom.2007.08.009

https://doi.org/10.1006/jath.1995.1008
https://doi.org/10.1006/jath.1995.1008
https://doi.org/10.14658/PUPJ-DRNA-2020-1-6
https://doi.org/10.14658/PUPJ-DRNA-2020-1-6
https://doi.org/10.1002/mma.5280
https://doi.org/10.1002/mma.5280
https://doi.org/10.33205/cma.450708
https://doi.org/10.33205/cma.450708
https://doi.org/10.1007/s00009-011-0156-2
https://doi.org/10.1016/j.amc.2011.08.027
https://doi.org/10.1016/j.amc.2011.08.027
https://doi.org/10.1016/j.amc.2006.05.046
https://doi.org/10.1016/j.matcom.2007.08.009
https://doi.org/10.1016/j.matcom.2007.08.009


554 K. BOZKURT, F. ÖZSARAÇ, A. ARAL

[10] Censor, E., Quantitative results for positive linear approximation operators, J. Approx. The-
ory., 4 (1971), 442�450. https://doi.org/10.1016/0021-9045(71)90009-8

[11] Ditzian, Z., Inverse theorems for multidimensional Bernstein operators, Pac. J. Math., 121
(2) (1986), 293�319. https://doi.org/10.2140/pjm.1986.121.293

[12] Karlin, S., Studden, W.J., Tchebyche¤ Systems: with Applications in Analysis and Statistics,
Interscience, New York, 1966. https://doi.org/10.1137/1009050

[13] King, J.P., Positive linear operators which preserve x2, Acta Math. Hungar., 99 (3) (2003),
203�208. https://doi.org/10.1023/A:1024571126455

[14] Ozsarac, F., Acar, T., Reconstruction of Baskakov operators preserving some exponential
functions, Math. Meth. Appl. Sci., 42 (16) (2018), 5124-5132. https://doi.org/10.1002/
mma.5228

[15] Ozsarac, F., Aral, A., Karsli, H., On Bernstein�Chlodowsky type operators preserving ex-
ponential functions, Mathematical Analysis I: Approximation Theory-Springer., (2018), 121-
138. https://doi.org/10.1007/978-981-15-1153-0_11

https://doi.org/10.1016/0021-9045(71)90009-8
https://doi.org/10.2140/pjm.1986.121.293
https://doi.org/10.1137/1009050
https://doi.org/10.1023/A:1024571126455
https://doi.org/10.1002/mma.5228
https://doi.org/10.1002/mma.5228
https://doi.org/10.1007/978-981-15-1153-0_11

	1. Introduction
	2. The new generalized Bernstein operators
	3. Shape Preserving Properties
	4. Convergence Properties
	5. Comparison with Bernstein Operators
	6. Graphical and Numerical Analysis
	References

