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Abstract. The study of two operators local function and the set operator
 on the ideal topological spaces are likely to be the same as the study of
closure and interior operator of the topological spaces. However, they are not
exactly equal to the interior and closure operator of the topological spaces.
In this context, we introduce two new set operators on the ideal topological
spaces. Detailed properties of these two operators are the part of this article.
Furthermore, the operators interior (resp.  ) and closure (local function) obey
the relation Int(A) = X nCl(X nA) (resp.  (A) = X n (X nA)�). We search
the general method of these relations, through this manuscript.

1. Introduction and Preliminaries

LetX be a set and }(X) be the power set ofX. A sub-collection I of }(X) is said
to be an ideal [9,21] onX if I has hereditary and �nite additivity property. If I is an
ideal on a setX and � is the topology on the same setX, then the triplicate (X; �; I)
is said to be an ideal topological space [3]. We, throughout the paper denoted, it
by G. Since G deals with two mathematical structures: ideal I and topology �
simultaneously, thus the condition � \ I = f;g has played important role for the
study of the ideal topological space. This condition termed as codense ideal [4] or
� -boundary [5,17] or Hayashi-Samuel space [3]. Common representation of various
types limit points like condensation point, accumulation point, !-accumulation
point of the topological space is the local function [6, 7, 9] of the ideal topological
space G. For a subset A of X, the local function is: A� = fx 2 X j U \ A =2 Ig,
where U 2 �(x) = fx 2 U j U 2 �g. For the detail study of the local function,
Natkaniec [18] had introduced another set operator which is called  operator.
This operator is de�ned as: for an ideal topological space G and for A � X,
 (A) = X n (X n A)�. This relation is similar to the well know relation of the
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topological space (X; �): Int(A) = X n Cl(X n A), where A � X, and �Int�and
�Cl� denoted as the interior and closure operator respectively of the topological
space. Note that the �local function� is not a closure operator and the operator
 is not an interior operator. However, the operator l(A) = A [ A� makes a
closure operator [6, 7, 9] and it induces a topology on X. This topology is called
�-topology [17,19] on X and it is denoted as ��(I) [8, 10,14,16,20] (or simply ��).
The closure operator of the �-topology is denoted as Cl� and the interior operator
of the �-topology is denoted as Int�. Furthermore, Int�(A) = A\ (A) [2,5,14,16].
This present paper has divided into two parts: one part is some new type of

set operators on the ideal topological spaces and their relations. Characterizations
of the Hayashi-Samuel spaces is also included in this part. The another part of
this paper is related to the set-theory. Actually through this part we search the
generalization of the following relations:  (A) = X n(X nA)�, Int(A) = X nCl(X n
A) and A�M = X n  M(X nA) [13] etc.
Before starting main section we need following tools from the literature:

Proposition 1. [8] Let G be an ideal topological space. The followings are equiva-
lent.

(1) X� = X;
(2) � \ I = f;g;
(3) If I 2 I, then int(I) = ;;
(4) For every U 2 � ; U � U�.

Lemma 2. [14] Let G be a Hayashi-Samuel space. Then for A � X,  (A) � A�.

Proposition 3. [5, 8] Let G be an ideal topological space, and A and B be two
subsets of X. Then the following properties hold:

(1) If A � B, then A� � B�;
(2) A� = Cl(A�) � Cl(A),
(3) (A�)� � A�,
(4) (A [B)� = A� [B�,
(5) If I 2 I, then (A [ I)� = A� = (A n I)�,
(6) If U 2 ��, then U �  (U).

De�nition 4. A set-valued set function p : }(X) ! }(X) is said to be grounded
(resp. idempotent) if p(;) = ; (resp. p(p(A)) = p(A)), where A 2 }(X).

2. The operator r1
We de�ne the operator r1 on an ideal topological space (X; �; I) in the following

way: for a subset A of X, r1(A) = Y(A) \ ^(A), where Y(A) =  (A) n A� and
^(A) =  (A) nA.
For the ideal topological space G, if I = f;g (resp. I = }(X)), then r1(;) = ;

(resp. (A) = X nA for any subset A of X).
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Lemma 5. Let G be an ideal topological space and A be a subset of X. Then
r1(A) =  (A) n (A� [A).

Proof. r1(A) = ( (A) nA�)\ ( (A) nA) = [ (A)\ (X nA�)]\ [ (A)\ (X nA))] =
 (A) \ [(X nA�) \ (X nA)] =  (A) \ [X n (A� [A)] =  (A) n (A� [A). �

Theorem 6. Let G be an ideal topological space. Then following statements hold:
(1) for all A; B � X,  (A [B) � r1(A) \r1(B).
(2) for all A � X, r1(A) =  (A) n (Cl(A�) [A).
(3) for all A � X, r1(A) �  (A) n (Cl(A) [A).
(4) for all A � X, r1(A) =  (A) n Cl�(A).
(5) for all U 2 ��, r1(U) = ;.
(6) for all U 2 � , r1(U) = ;.
(7) for all A � X, r1(X nA) = Y(A) \ Z(A), where Z(A) = (A nA�).
(8) for all A � X,  (r1(A)) = A [X�.
(9) for all A � X, r1(A) 2 ��.

Proof. 1. We know  (A) n A� �  (A [ B) n A� and  (A) n A �  (A [ B) n A
then [ (A) n A�] \ [ (A) n A] � [ (A [ B) n A�] \ [ (A [ B) n A]. Therefore
r1(A) �  (A[B). Similarly r1(B) �  (A[B). Hence r1(A)\r1(B) �  (A[B)
i.e.,  (A [B) � r1(A) \r1(B).
2. From Lemma 5, r1(A) =  (A) n (A� [ A) and from Proposition 3, A� =

Cl(A�). Therefore r1(A) =  (A) n (Cl(A�) [A).
3. From Lemma 5, r1(A) =  (A) n (A� [A) and from Proposition 3, Cl(A�) �

Cl(A). Therefore r1(A) �  (A) n (Cl(A) [A).
4. From Lemma 2, r1(A) =  (A) n (A� [ A). This implies that r1(A) =

 (A) n Cl�(A).
5. We have r1(U) = ( (U) nU�)\ ( (U) nU) and ^(U) =  (U) nU . Hence for

U 2 ��, r1(U) �  (U) n U = ;, U �  (U) [5].
7. r1(X nA) = [ (X nA) n (X nA)�] \ [ (X nA) n (X nA)] = [(X nA�) n (X n

A)�] \ [(X nA�) n (X nA)] = ( (A) nA�) \ (A nA�) = Y(A) \ Z(A).
8. We have,  (r1(A)) = X n (X n r1(A))�. Now X n [ (A) n Cl�(A)] =

X n [X n (X nA)� nCl�(A)] = X n [X nCl�(A) [ (X nA)�] = Cl�(A) [ (X nA)� =
A [A� [ (X nA)� = A [ [A [ (X nA)]� = A [X�. �

Corollary 7. Let G be an ideal topological space. Then for any A � X, r1(A) �
 (r1(A)).

Now we search the answer of the question that any �-open set can be expressed
as U = r1(A) for some A 2 }(X). The answer is negative and it is followed by the
following example.

Example 8. Let X = fa; bg; I = f;; fagg and � = f;; Xg. Then G = (X; �; I) is
an ideal topological space and �� = f;; X; fbgg.
r1(;) =  (;) n Cl�(;) = X nX� = ;.
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r1(X) =  (X) n Cl�(X) = X n ;� nX = ;.
r1(fag) =  (fag) n Cl�(fag) = X n fbg� n fag = X n fa; bg n fag = ;.
r1(fbg) =  (fbg) n Cl�(fbg) = X n fag� nX = ;.
Therefore, the �-open set X can�t be expressed as r1(A) for some A 2 }(X).

The following example shows that the operator r1 is not grounded:

Example 9. Let X = fa; b; cg; � = f;; X; fa; bg; fcgg and I = f;; fag; fcg; fa; cgg.
Then  (;) = X nX� = X n fa; bg = fcg, ;� = ;. Hence, r1(;) = fcg. Therefore
r1 is not grounded.

The following example shows that the operator r1 operator is not an idempotent
operator.

Example 10. Let X = fa; b; cg; � = f;; X; fa; bg; fcgg and I = f;; fag; fcg; fa; cgg.
Let A = fbg. Then  (A) = X n fa; cg� = X n ; = X, and A� = fbg� = fa; bg.
Thus, r1(A) =  (A) n (A [ A�) = X n (fbg [ fa; bg) = X n fa; bg = fcg.
Now  (fcg) = X n fa; bg� = X n fa; bg = fcg, fcg� = ;. So, r1(r1(A)) =
 (fcg)n(fcg�[fcg) = fcgn(;[fcg) = fcgnfcg = ; and hence r1(r1(A)) 6= r1(A).

If we consider the collection In = fA 2 }(X) j Int(Cl(A)) = ;g for a topological
space (X; �), then In is an ideal on X and this ideal is called the ideal of nowhere
dense sets.

Remark 11. Let G be an ideal topological space, where I = In. Then r1(A) = ;.

However, r1(A) = ; is not true always and it is followed by the following exam-
ple:

Example 12. In Example 10, we consider A = fbg. Then  (A) = X n fa; cg� =
X n ; = X, and A� = fbg� = fa; bg. Thus, r1(A) =  (A) n (A [A�) = X n (fbg [
fa; bg) = X n fa; bg = fcg.

Theorem 13. Let G be a Hayashi-Samuel space. Then for A � X, r1(A) = ;.

Proof. We have, r1(A) = ( (A)nA�)\( (A)nA). Also from Lemma 2,  (A) � A�.
Therefore r1(A) � (A� nA�) \ (A� nA) � ;. Thus r1(A) = ;. �

For converse of the theorem we have following:

Theorem 14. Let G be an ideal topological space. If r1(A) = ;, for all A 2 }(X),
then the space G is Hayashi-Samuel.

Proof. Given that r1(X) = ;. Then  (X)nCl�(X) = ;. So,  (X) � X[X� � X.
Again, X �  (X) � X [X� � X, since X is open. Thus, X = X [X�. Therefore,
X = X�. Thus from Proposition 1, the space G is Hayashi-Samuel. �

Corollary 15. An ideal topological space G is Hayashi-Samuel if and only if, for
each A 2 }(X), r1(A) = ;.
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r1(A) = ;, for all A 2 }(X) is true only when the ideal topological space is
Hayashi-Samuel and it is justi�ed by the Example 10.
More simpli�ed Characterization of the Hayashi-Samuel space is:

Theorem 16. An ideal topological space G is Hayashi-Samuel if and only if r1(;) =
;.

Proof. Let (X; �; I) be a Hayashi-Samuel space. Then I \ � = f;g. Now r1(;) =
( (;)n;�)\( (;)n;) = (XnX�)\(XnX�) = XnX�. Therefore, r1(;) = XnX� = ;
(by Proposition 1).
Again, if r1(;) = ;, then X nX� = ; implies X � X� and hence X = X�. Thus

the ideal topological space G is Hayashi-Samuel. �
Theorem 17. Let G be an ideal topological space. Then for any A 2 }(X), X n
r1(A) = A nX�.

Proof. Given that r1(A) = ( (A) n A�) \ ( (A) n A). Therefore, r1(X n A) =
( (XnA)n(XnA)�)\( (XnA)n(XnA)) = [(XnA�)n(XnA)�]\[(XnA�)n(XnA)] =
[X n(A[(X nA))�]\(AnA�) = (X nX�)\(AnA�) = (AnA�)nX� = An(A[X)� =
A nX�. �
Remark 18. Given that r1(A) is open for any A 2 }(X). But the collection
fr1(A) j A 2 }(X)g does not form a basis for a topology on X. It is justi�ed by
the Example 8.

3. The operator r2
We de�ne the operator r2 on an ideal topological space (X; �; I) in the following

way: for a subset A of X, r2(A) = Y(A) \ Z(A), where Y(A) =  (A) n A� and
Z(A) = A nA�.

Lemma 19. Let G be an ideal topological space. Then r2(A) = ( (A) \ A) n A�
for every A 2 }(X).

Proof. r2(A) = [ (A) n A�] \ (A n A�) = ( (A) \ (X n A�)) \ (A \ (X n A�)) =
( (A) \A) \ (X nA�) = ( (A) \A) nA�. �
For the ideal topological space G, if I = f;g (resp. I = }(X)), then r2(;) = ;

(resp. r2(A) = A, for any subset A of X).

Theorem 20. Let G be an ideal topological space. Then followings hold:
(1) for any A 2 }(X), r2(A) = Int�(A) nA�.
(2) for any A 2 }(X), r2(A) = Int�(A) nA� is open in ��.
(3) r2(X) = Y(X).
(4) if U 2 ��, then r2(U) = U n U� = Z(U).
(5) if for any A � X, r2(A) � Y(A).
(6) for any A 2 }(X), r2(X nA) = r1(A).
(7) for any A 2 }(X), r2(A) = r1(X nA).
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(8) X n r2(X nA) = X n r1(A).
(9) X n r2(X nA) = A nX�.

Proof. 1. From Lemma 19, r2(A) = ( (A) \ A) n A�. As Int�(A) =  (A) \ A,
r2(A) = Int�(A) nA�.
2. r2(A) = Int�(A)nA� is open in ��, since Int�(A) is open in �� and Cl�(A�) =

A� [A�� � A� [A� = A� is closed in ��.
3. r2(X) = ( (X) \X) nX� =  (X) nX� = Y(X).
4. r2(U) = ( (U) \ U) n U� = U n U�, since U �  (U)
5. Y(A) =  (A) nA� � ( (A) \A) nA� = r2(A). Thus r2(A) � Y(A).
6. r2(X nA) = [ (X nA) n (X nA)�] \ [(X nA) n (X nA)�] = [(X nA�) n (X n

A)�] \ ( (A) nA) = ( (A) nA�) \ ( (A) nA) = r1(A). �
Corollary 21. Let G be an ideal topological space. Then for any A � X, r2(A) �
 (r2(A)).

We have for any A 2 }(X), r2(A) is �-open, but it is not true that for any
�-open set U , there is some A 2 }(X) such that r2(A) = U . It is justi�ed by the
following example:

Example 22. Consider Example 8.
r2(;) = ;, r2(X) = ;, r2(fag) = ; and r2(fbg) = ;. Thus for X 2 ��, there

is no A 2 }(X) such that r2(A) = X.

Theorem 23. Let G be an ideal topological space. Then for any subset A of X,
X n r2(A) = X� [ [X nA [A�].

Proof. We have ( (A) n A�) \ (A n A�). Now X n [( (A) n A�) \ (A n A�)] =
[X n ( (A) nA�)][ [X n (A nA�)] = [X n (X n (X nA)� nA�)][ [X nA[A�] = [X n
(Xn(XnA)�[A�)][[XnA[A�] = [(XnA)[A]�[[XnA[A�] = X�[[XnA[A�]. �
Theorem 24. Let G be an ideal topological space. Then for any A 2 }(X), r2(X n
A) = X nA [X�.

Proof. Given that r2(A) = ( (A) nA�)\ (A nA�). Now r2(X nA) = [ (X nA) n
(X n A)�] \ [(X n A) n (X n A)�] = [(X n A�) n (X n A)�] \ [(X n A) n (X n A)�] =
[X n (A� [ (X nA)�)]\ [(X nA) n (X nA)�] = (X nA) n (X nA)� n (A� [ (X nA)�) =
(X nA[(X nA)�)n((X nA)[A)� = X n(A[(X nA)�)nX� = X nA[(X nA)�[X� =
X nA [ (X [ (X nA))� = X nA [X�. �
Corollary 25. Let G be an ideal topological space. Then for any subset A of X,
r2(A) = A nX�.

Proof. From above theorem, r2(A) = X n(X nA)[X� = (X n(X nA))\(X nX�) =
A \ (X nX�) = A nX�. �
Corollary 26. Let G be an ideal topological space. Then for any member A of
}(X), r2(A) = X n r2(X nA).
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Proof. Obvious from Theorem 20(9) and Corollary 25. �
Note that the operator r2 is grounded as r2(;) = ;. But it is interesting that

this is an idempotent operator.

Corollary 27. Let G be an ideal topological space. Then for any member A of
}(X), r2(r2(A)) = r2(A).

Proof. From Corollary 25, r2(A) = A n X�. Then (r2(r2(A)) = r2(A n X�) =
(A nX�) nX� = A n (X [X)� = A nX� = r2(A). �
If we consider I = In for the ideal topological space G, then r2(A) = ; for every

A 2 }(X). It is not true that r2(A) = ; for any ideal I on the topological space
(X; �).

Example 28. Let X = fa; b; cg; I = f;; fagg and � = f;; X; fagg. Then G is an
ideal topological space. Let A = fag. Then  (A) = X n fb; cg� = X n fb; cg = fag,
and A� = fag� = ;. Thus, r2(A) = ( (A)\A) nA�) = (fag\ fag) n ; = fag n ; =
fag.

General rule for r2(A) = ; is:

Theorem 29. Let G be a Hayashi-Samuel space. Then for A 2 }(X), r2(A) = ;.

Proof. We have, r2(A) = ( (A) nA�)\ (A nA�). Also from Lemma 2  (A) � A�.
Therefore, r2(A) � (A� nA�) \ (A nA�) � ;. Thus r2(A) = ;. �
For converse of this theorem we have following:

Theorem 30. Let G be an ideal topological space. If r2(X) = ;, for each A 2
}(X), then the space G is Hayashi-Samueel.

Proof. Given that r2(X) = ;. Then  (X) \X nX� = ;. So,  (X) nX� = ; and
hence X n X� = ;. That is X = X�. Thus, from Proposition 1, the space G is
Hayashi-Samuel. �
Corollary 31. An ideal topological space G is Hayashi-Samuel if and only if r2(A) =
; for all A 2 }(X).

More speci�c characterization of the Hayashi-Samuel space is:

Corollary 32. An ideal topological space G is Hayashi-Samuel if and only if r2(X) =
;.

Proof. Suppose that the space G is Hayashi-Samuel. Then r2(X) =  (X) \ X n
X� = X nX = ;.
Converse part is obvious from Theorem 30. �

Remark 33. Given that r2(A) is open in �� for each A 2 }(X). But the collection
fr2(A) j A 2 }(X)g does not form a basis for a topology on X. It is justi�ed by
the Example 22.
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4. Associated functions

In this section we shall give a general method for the relation Int(A) = X n
Cl(X nA).

De�nition 34. A set-valued set function f : }(X)! }(X) is said to be associated
with a set-valued set function g : }(X) ! }(X) if f(A) = X n g(X n A), for each
A 2 }(X).

Suppose a set-valued set function f : }(X) ! }(X) is associated with a set-
valued set function g : }(X) ! }(X), then we called it by f is associated with g
on X and it is denoted as f �X g.

Example 35. (i) For a topological (resp. metrizable) space (X; �), the set operator
interior is associated with the set operator closure.
(ii) For an ideal topological space (X; �; I), the local function ()� is associated

with the set operator  .
(iii) For a m-space (X;M), the interior operator mInt is associated with closure

operator mCl [15].
(iv) For a grill m-space the operator ' is associated with the operator  ' [11].
(v) Let F be a �lter on X. Then F-Int(A) is associated with F-Cl [12].
(vi) For a grill minimal space (X;M;G1), the operator ()�M is associated with

the operator  M [13].
(vii) Let � be a Generalized Topology in X and H a hereditary class on X. Then

the operator �� is associated with ()
� [1].

Theorem 36. Let f �X g and f �X h. Then g � h.

Proof. Given that for each A 2 }(X), f(A) = Xng(XnA) and f(A) = Xnh(XnA).
Thus, g(X n A) = h(X n A), for all A 2 }(X). Therefore, g(A) = h(A) and hence
g � h. �
Theorem 37. Let f �X g. Then g �X f .

Proof. Given that for any A 2 }(X), f(A) = X ng(X nA). Then g(A) = X nf(X n
A). Therefore, g �X f . �
Theorem 38. If f �X g, then f � g �X g � f .

Proof. Given that for any A 2 }(A), f(A) = X n g(X n A). Then g � f(A) =
g(f(A)) = g(X n g(X n A)) = X n f(X n (X n g(X n A))) = X n f � g(X n A).
Therefore, g � f �X f � g and hence f � g �X g � f . �
Theorem 39. Suppose a set-valued set function f : }(X) ! }(X) is de�ned as
f(A) = A, for all A 2 }(X). Then f �X f .

Proof. Given that f(A) = A = X n f(X nA). Thus, f �X f . �
Theorem 40. If f �X g, then f � f �X g � g.
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Proof. f � f(A) = f(X n g(X n A)) = X n g(g(X n A)) = X n g � g(X n A). So,
f � f �X g � g. �
Theorem 41. If f �X g and f(A) = A for all A 2 }(X). Then g(A) = A, for all
A 2 }(X).
Proof. Given that f(A) = X ng(X nA). This implies that A = X ng(X nA). Thus,
g(A) = A. �
Theorem 42. If f �X g and f(A) = X for all A 2 }(X). Then g(A) = ;, for all
A 2 }(X).
Proof. Given that f(A) = X ng(X nA). This implies that X = X ng(X nA). Thus,
g(X nA) = ;. Therefore, for all A 2 }(X), g(A) = ;. �
Theorem 43. If f �X g and g �X h, then f � h.

Proof. Given that for any S 2 }(X), f(S) = X ng(X nS) and g(S) = X nh(X nS).
Thus g(X n S) = X n h(S) and hence f(S) = X n (X n h(S)) = h(S). Therefore,
f � h. �
Theorem 44. Let f �X g and f(S1 [ S2) = f(S1) [ f(S2), for all S1; S2 2 }(X).
Then g(S1 \ S2) = g(S1) \ g(S2), for all S1; S2 2 }(X).
Proof. g(S1 \ S2) = X n f [X n (S1 \ S2)] = X n f((X n S1)[ (X n S2)) = X n f(X n
S1) [ f(X n S2) = [X n f(X n S1)] \ [X n f(X n S2)] = g(S1) \ g(S2). �
Corollary 45. Let f �X g and g(T1 [ T2) = g(T1) [ g(T2), for all T1; T2 2 }(X).
Then f(T1 \ T2) = f(T1) \ f(T2), for all T1; T2 2 }(X).
Theorem 46. Let f �X g and f(A [ B) = f(A) \ f(B), for all A;B 2 }(X).
Then g(A \B) = g(A) [ g(B), for all A;B 2 }(X).
Proof. Given that g(A \ B) = X n f(X n A \ B) = X n f((X n A) [ (X n B)) =
X n [f(X nA) \ f(X nB)] = [X n f(X nA)] [ [X n f(X nB)] = g(A) [ g(B). �
Corollary 47. Let f �X g. If f(A\B) = f(A)[f(B), then g(A[B) = g(A)\g(B).
Corollary 48. Let f �X g. If g(A\B) = g(A)[g(B), then f(A[B) = f(A)\f(B).
Theorem 49. If f �X g, then f � g � f �X g � f � g.
Proof. Given that f(A) = X n g(X n A) Then g(f(A)) = g(X n g(X n A)) =
X nf(g(X nA)). Therefore f(g(f(A))) = f(X nf(g(X nA))) = X ng(f(g(X nA))).
Thus, f � g � f �X g � f � g. �
Theorem 50. Let f �X g. Then for A 2 }(X), f � g(A) = ; if and only if
g � f(X nA) = X.

Proof. Given that ; = f � g(A) = X n g � f(X nA). This implies g � f(X nA) = X.
Conversely suppose that g � f(X nA) = X. Then X n g � f(X nA) = ;. Hence,

f � g(A) = ;. �



SET OPERATORS AND ASSOCIATED FUNCTIONS 465

Let f �X g. Then the collection fA � X j f � g(A) = ;g is denoted as If�g.

Theorem 51. Let f �X g. If B � A 2 If�g, then B 2 If�g.
Proof. Suppose B � A 2 If�g. Then f � g(B) � f � g(A) = X n g � f(X n A) =
X nX(by Theorem 50)= ;. Therefore, B 2 If�g. �
Theorem 52. Let f �X g and f(I1 \ I2) = f(I1) [ f(I2), for all I1; I2 2 }(X).
Then for I1; I2 2 If�g, I1 [ I2 2 If�g.
Proof. Let I1; I2 2 If�g. Then f �g(I1[ I2) = X ng �f(X n I1[ I2)) = X ng(f(X n
I1)\ (X n I2)) = X n g(f(X n I1)[ f(X n I2)) = X n [g � f(X n I1)\ g � f(X n I2)] =
[X n g � f(X n I1)] [ [X n g � f(X n I2)]. Hence by Theorem 50, I1 [ I2 2 If�g. �
Remark 53. Let f �X g and f(I1 \ I2) = f(I1) [ f(I2), for all I1; I2 2 }(X).
Then If�g forms an ideal on X.
Corollary 54. Let f �X g and g(A \ B) = g(A) [ g(B); 8A; B 2 }(X). Then
Ig�f forms an ideal on X.
Corollary 55. (i) Let f �X g and f(A\B) = f(A)[ f(B), for all A; B 2 }(X).
Then fA � X j X nA 2 If�gg forms a �lter on X, when X =2 If�g.
(ii) Let f �X g and g(A \ B) = g(A) [ g(B), for all A; B 2 }(X). Then

fA � X j X nA 2 Ig�fg forms a �lter on X, when X =2 Ig�f .
Remark 56. (i) Above Remark 53 gives a method for obtaining an ideal on a partic-
ular set. But this not the only one method for obtaining an ideal on a particular set.
As for example: We consider the interior and closure operators of the topological
space (X; �), then fA � X j Int(Cl(A)) = ;g forms an ideal. Note that Int �X Cl,
but neither Int(A \B) = Int(A) [ Int(B) nor Cl(A \B) = Cl(A) [ Cl(B).
(ii) Further more for an ideal topological space (X; �; I), the operator ()� and  

obey followings:
For A;B � X,
(a) (A [B)� = (A)� [ (B)�.
(b)  (A \B) =  (A) \  (B).
(c) ()� �X  .
But the collection fA � X j ()� �  (A) = ;g (resp. fA � X j  � ()�(A) = ;g )

does not form an ideal on X. It is followed by the following examples.

Example 57. Let X = fa; b; c; dg; � = f;; fag; Xg and I = f;; fagg. Then
 � ()�(;) =  (;�) =  (;) = X n X� = X n fb; c; dg = fag 6= ;. Thus fA � X j
 � ()�(A) = ;g does not form an ideal on X.

Example 58. Let X = R be the set of reals. Suppose Ru is the usual topology on X
and I = f;g is the ideal on X. Consider A = Q and B = R nQ. Then A[B = R.
Now  (A) =  (Q) = R n (R n Q)� = R n R = ; and  (B) =  (R nQ) = R n Q� =
RnR = ;. Thus, ( (A))� = ; = ( (B))�. Again ( (A[B))� = ( (R))� = R� = R.
Thus fA � X j ()� �  (A) = ;g does not form an ideal on X.
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