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A NEW LIFETIME DISTRIBUTION: TRANSMUTED
EXPONENTIAL POWER DISTRIBUTION

Buğra SARACOĞLU and Caner TANIŞ

Department of Statistics, Selcuk University,Konya, TURKEY

Abstract. In this paper, we have introduced a new statistical distribution
called as transmuted Exponential Power (TEP) distribution using the qua-
dratic rank transmutation map proposed by Shaw and Buckley [25,26] in order
to generate new distributions. We have also studied some statistical properties
such as descriptive statistics (moments, variance, coeffi cient of skewness (CS)
and kurtosis (CK)), point estimation (maximum likelihood estimation) and
real data applications to illustrate usefulness of TEP distribution.

1. Introduction

In statistical literature, several lifetime distributions are introduced. Most of
these distributions are generally obtained by compounding or mixing methodolo-
gies. In the other case, distributions are given through including an extra parameter
to well-known distribution. By the way, family of distributions obtained using qua-
dratic rank transmutation map (QRTM) proposed by Shaw and Buckley [25,26] is
defined with cumulative distribution function (cdf) and probability density function
(pdf)

F (x) = (1 + λ)G(x)− λ [G(x)]2 (1)

and
f(x) = (1 + λ)g(x)− 2λG(x)g(x), (2)

respectively, where G(x) denotes cdf of baseline distribution and λ ∈ [−1, 1] is
transmuting parameter. If λ = 0, cdf of the base distribution is obtained. In last
decade, there are many studies about transmuted distributions in literature. For
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example; Aryal and Tsokos [3,4] introduced transmuted Weibull and transmuted ex-
treme value distributions. Ashour and Eltehiwy [5,6] proposed transmuted Lomax
and transmuted exponentiated Lomax distributions, Merovci [18—21] introduced
transmuted Rayleigh, transmuted Lindley, transmuted generalized Rayleigh and
transmuted exponentiated Exponential distributions, Mahmoud and Mandouh [17]
suggested transmuted Frechet distribution, Hussian [13] has introduced transmuted
exponentiated Gamma distribution, Elbatal and Aryal [10] studied transmuted ad-
ditive Weibull distribution, Khan et al. [14—16] introduced transmuted Weibull
distribution, transmuted Kumaraswamy distribution and transmuted generalized
Gompertz distribution, Shahzad and Asghar [24] proposed transmuted Dagum dis-
tribution, Al-Babtain et.al. [2] introduced the Kumaraswamy-transmuted exponen-
tiated modified Weibull distribution.
Over two decades before, Smith and Bain [23] introduced the Exponential Power

(EP) distribution by compounding exponential and Weibull distribution functions.
The cdf and pdf of EP distribution are given

G (x;α, β) = 1− exp
[
1− exp

((x
α

)β)]
(3)

and

g (x;α, β) =
β

α

(x
α

)β−1
exp

((x
α

)β)
exp

[
1− exp

((x
α

)β)]
, (4)

respectively, where α > 0, β > 0 and x > 0. Many authors have focused on EP
distribution recently. Some of these studies can be listed as follows; Chen [8],
Barriga et al. [7], Akdam et al. [1].
The main purpose of this study is to suggest a new lifetime distribution as

an alternative EP distribution by using QRTM. In Section 2, TEP distribution
and its some statistical properties (moments, variance, CS, CK) are introduced.
The maximum likelihood estimators (MLEs) for unknown parameters of introduced
distribution are derived in Section 3. In Section 4, a Monte Carlo simulation study
is performed to evaluate the performances of these estimators in terms of mean
square errors (MSEs) and bias. In Section 5, two real data illustrations are given to
show the applicability of this distribution in real life. In Section 6, the conclusion
remarks are given.

2. Transmuted Exponential Power (TEP) Distribution

Let X be a random variable having TEP distribution with α, β and λ parameters
denoted by TEP(α, β, λ). The cdf and pdf of this random variable are

F (x;α, β, λ) = (1 + λ)
[
1− exp

(
1− exp

((
x
α

)β))]
−λ
[
1− exp

(
1− exp

((
x
α

)β))]2 (5)
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and

f(x;α, β, λ) = β
α

(
x
α

)β−1
exp

((
x
α

)β)
exp

[
1− exp

((
x
α

)β)]
×
[
1 + λ− 2λ

(
1− exp

(
1− exp

((
x
α

)β)))] , (6)

respectively. Where −1 ≤ λ ≤ 1, α, β > 0 and x > 0. The cdf of EP distribution
for λ = 0 in Eq. (5) is derived. Figure 1 shows the possible shapes of the pdf of
TEP distribution for various parameter values.

Figure 1. Plots of the TEP density function for various values of
α, β and λ

The reliability function (rf ) and hazard function (hf ) of TEP distribution are
defined as

R(t) = 1− (1 + λ)
[
1− exp

(
1− exp

((
t
α

)β))]
+λ
[
1− exp

(
1− exp

((
t
α

)β))]2 (7)

and

h(t) =
β
α (

t
α )

β−1
exp

(
( tα )

β
)
k(t,α,β)

1−(1+λ)[1−k(t,α,β)]+λ[1−k(t,α,β)]2

× [1 + λ− 2λ (1− k(t, α, β))] ,
(8)

respectively. Where k(t, α, β) = exp
[
1− exp

((
t
α

)β)]
. Figure 2 shows that the

possible shapes of (hf ) for TEP distribution at different parameter values.



4 B. SARACOĞLU, C. TANIŞ

Figure 2. Plots of the TEP hazard function for various values of
α, β and λ

2.1. Moments of TEP distribution. The rth moment of TEP distribution is

E(Xr) =
∫∞
0
xr ((1 + λ)g(x)− 2λG(x)g(x)) dx

= ((1 + λ)I1 − 2λI2)
(9)

where I1 and I2 are

I1 =

∫ ∞
0

xrg(x)dx

=

∫ ∞
0

xr
β

α

(x
α

)β−1
exp

((x
α

)β)
s(x, α, β)dx

=

∞∑
n=0

1

n!
αr
∫ ∞
1

(ln(u))
n+(r/β) e

1−u

u
du (10)

and

I2 =

∫ ∞
0

xrG(x)g(x)dx

=

∫ ∞
0

xr [1− s(x, α, β)] β
α

(x
α

)β−1
exp

((x
α

)β)
s(x, α, β)dx

= I1 −
∞∑
n=0

1

n!
αr
∫ ∞
1

(ln(u))
n+(r/β) e

2−2u

u
du, (11)
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respectively. Where s(x, α, β) = exp
(
1− exp

((
x
α

)β))
. Figure 3 illustrates the

plots of some descriptive statistics such as expected value, variance, CS and CK at
selected parameter values for TEP distribution.

Figure 3. Descriptive statistics for α = 2, β ∈ {1, 1.5, 2} , λ ∈ [−1, 1].

2.2. Random Number Generator. The method of inversion transformation to
generate random numbers from TEP distribution with parameters α, β and λ is
used as follows;

F (x;α, β, λ) = (1 + λ) [1− s(x, α, β)]− λ [1− s(x, α, β)]2 = u, (12)

where s(x, α, β) = exp
(
1− exp

((
x
α

)β))
and u is a number generated from Uni-

form distribution shown as U(0, 1). Solution of Eq. (12) is given by

x = α

ln
1− ln

1−
1 + λ−

√
(λ+ 1)

2 − 4λu
2λ

1/β . (13)

Maximum Likelihood Estimation



6 B. SARACOĞLU, C. TANIŞ

Let X1, X2, ..., Xn be a random sample having TEP distribution with parameters
α, β and λ. Then the log-likelihood function is given by

`

(
α, β, λ

∣∣∣∣x−
)

= n ln (β)− n ln (α) +
∑n
i=1

(
xi
α

)β
+ n

−
(∑n

i=1 exp
((

xi
α

)β))
+ (β − 1)

∑n
i=1 ln

(
xi
α

)
+
∑n
i=1 ln

(
xi
α

)
ln (1 + λ− 2λ (1− s(xi, α, β)))

(14)

Diferentiating the `
(
α, β, λ

∣∣∣∣x−
)
with respect to α, β and λ parameters, then equat-

ing to zero, non-linear equations is obtained as follows;

∂`

(
α,β,λ/x

−

)
∂α = 0 ⇒ −nα −

∑n
i=1

(
β
α

) (
xi
α

)β
−
∑n
i=1

(
β
α

) (
xi
α

)β
exp

((
xi
α

)β) − n(β−1)
α

+
∑n
i=1 2λ

β
α

(
xi
α

)β
exp

((
xi
α

)β)
×s(xi, α, β) (1 + λ− 2λ (1− s(xi, α, β)))−1 = 0

(15)

∂`

(
α,β,λ/x

−

)
∂β = 0 ⇒ n

β +
∑n
i=1

(
xi
α

)β
ln
(
xi
α

)
−
∑n
i=1

(
xi
α

)β
ln
(
xi
α

)
exp

((
xi
α

)β)
+
∑n
i=1 ln

(
xi
α

)
−
∑n
i=1 2λ

(
xi
α

)β
ln
(
xi
α

)
exp

((
xi
α

)β)
×s(xi, α, β) (1 + λ− 2λ (1− s(xi, α, β)))−1 = 0

(16)

∂`

(
α,β,λ/x

−

)
∂λ = 0⇒−1 + 2

(
1− exp

((
xi
α

)β))
(1 + λ− 2λ (1− s(xi, α, β)))−1 = 0.

(17)
The MLEs of α, β and λ are obtained by solving of Eqs. [15-17] via some numerical
methods.
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Table 1. The MSEs and biases of α,β and λ.
bias MSE

n parameter values α̂ β̂ λ̂ α̂ β̂ λ̂
5 -0.4738 0.7255 -0.8020 0.5023 1.1866 0.7368
10 -0.3492 0.2620 -0.6064 0.2502 0.1958 0.4855
20 -0.3460 0.1159 -0.4095 0.1858 0.0498 0.2452
50 (2,0.8,0.1) -0.3439 0.0578 -0.2558 0.1510 0.0126 0.0796
100 -0.3314 0.0433 -0.2167 0.1320 0.0061 0.0532
300 -0.2863 0.0275 -0.1834 0.1052 0.0022 0.0428
5 0.0533 0.5609 0.6402 0.0274 0.7886 0.4485
10 0.0698 0.3201 0.5680 0.0195 0.2037 0.3830
20 0.0689 0.2132 0.4810 0.0138 0.0872 0.3277
50 (0.4,0.6,-0.8) 0.0582 0.1328 0.3541 0.0099 0.0398 0.2559
100 0.0424 0.0886 0.2503 0.0071 0.0241 0.1916
300 0.0198 0.0382 0.1148 0.0035 0.0101 0.0961
5 -0.3532 0.7178 -0.3549 0.3446 2.5125 0.2176
10 -0.2487 0.2176 -0.3094 0.1959 0.5131 0.2248
20 -0.1759 0.0386 -0.2589 0.1183 0.1932 0.2212
50 (3,2,0.5) -0.1123 -0.0391 -0.1976 0.0746 0.0882 0.1997
100 -0.0832 -0.0620 -0.1645 0.0608 0.0610 0.1821
300 -0.0273 -0.0457 -0.0754 0.0403 0.0308 0.1183
5 -0.0513 0.1908 -0.6024 0.0257 0.1503 0.4549
10 -0.0563 0.0490 -0.4850 0.0173 0.0248 0.3634
20 -0.0671 0.0091 -0.4005 0.0137 0.0080 0.3027
50 (0.3,0.4,0.8) -0.0630 -0.0041 -0.2968 0.0104 0.0031 0.2163
100 -0.0516 -0.0052 -0.2235 0.0082 0.0017 0.1495
300 -0.0310 -0.0047 -0.1314 0.0058 0.0006 0.0783

3. Simulation Study

In this section, a Monte Carlo simulation study is performed to evaluate the
performances of MLEs according to MSEs and biases. Algorithm steps regarding
to simulation study are as follows;
Step 1. Random numbers are generated from TEP distribution with parameters

α, β and λ by using Eq. (13).
Step 2. MLEs of α, β and λ are calculated by using Eqs. (15)-(17) as based on

10000 replicates.
Step 3. The biases and MSEs of these estimators are simulated for different

sample sizes as 5,10, 20, 50, 100 and 300 at selected parameter values ((α, β, λ) =
(2, 0.8, 0.1), (0.4, 0.6,−0.8),
(3, 2.0.5), and (0.3, 0.4, 0.8)).The results of simulation study are presented in

Table 1.
According to Table 1, it is clearly seen that the MSEs and biases of MLEs for

all parameter cases decrease as sample sizes increases. This case indicates that
estimate values approach to true values as sample size n increases.
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4. Real Data Analysis

In this section, we aim to compare TEP distribution with other distributions
in terms of goodness of fit measures to demonstrate the applicability of TEP dis-
tribution. Two real data sets have been used for these purposes. We have con-
sidered some goodness of fit measures such as the Akaike’s Information Criterion
(AIC), corrected Akaike’s Information Criterion (AICc), -2×log-likelihood value,
Kolmogorov-Smirnov (KS) statistics and its p-value to compare the fits of the dis-
tributions for two data sets. These statistics are given as follows;

AIC = −2`+ 2k, (18)

AICc = AIC +

(
2k(k + 1)

n− k − 1

)
, (19)

KS = sup (|F (x)− Fn(x)|) . (20)

where k is number of parameters, n is sample size, ` is the value of log-likelihood
function.

4.1. Operation and empirical data. The first real data set consist of 50 obser-
vations has been obtained by Dasgupta [9]. This data set relates to holes operation
on jobs made of iron sheet is given by in Table 2.

Table 2. Operation and empirical data
0.04 0.02 0.06 0.12 0.14 0.08 0.22 0.12 0.08 0.26
0.24 0.04 0.14 0.16 0.08 0.26 0.32 0.28 0.14 0.16
0.24 0.22 0.12 0.18 0.24 0.32 0.16 0.14 0.08 0.16
0.24 0.16 0.32 0.18 0.24 0.22 0.16 0.12 0.24 0.06
0.02 0.18 0.22 0.14 0.06 0.04 0.14 0.26 0.18 0.16

These data have been fitted to TEP, generalized Gompertz (GG) [11], transmuted
generalized Gompertz (TGG) [16], transmuted Kumaraswamy (TKw) [14], trans-
muted Rayleigh (TR) [18], transmuted exponentiated exponential (TEE) [21] and
transmuted Weibull (TW) [3] distributions. The density functions of the fitted
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Table 3. Parameter estimates(standard errors) for operation and empirical data
Distribution MLEs

TEP
α̂ = 0.2400 (0.0327) , β̂ = 1.5996 (0.4081) ,

λ̂ = −0.0234 (0.7000)

TGG
â = 3.0808 (3.2536) , b̂ = 7.5224 (4.2694) ,

α̂ = 1.3521 (0.5060) , λ̂ = −0.1075 (0.9151)

GG â = 2.5012 (1.6916) , b̂ = 8.3737 (3.0939) ,
α̂ = 1.2784 (0.4692)

TKw
â = 1.9335 (0.3524) , b̂ = 30.1864 (13.7921) ,

λ̂ = −0.2911 (0.4408)
TR σ̂ = 0.1211 (0.0110) , λ̂ = −0.2645 (0.3086)

TW
µ̂ = 1.9917 (0.3310) , σ̂ = 0.1708 (0.0236) ,

λ̂ = −0.2722 (0.4308)

TEE
θ̂ = 2.6946 (0.8398) , α̂ = 12.4959 (1.6663) ,

λ̂ = −0.5468 (0.3189)

distributions are given by;

TGG : f(x) = αaebxe(−
a
b (e

(bx)−1))
[
1− e(− ab (e

((bx)−1)))
]α−1

×
[
1 + λ− 2λ

(
1− e(− ab e

((bx)−1))
)α]

, x > 0, a, b, α > 0, λ ∈ [−1, 1]

GG : f(x) = αaebxe(−
a
b (e

(bx)−1))
[
1− e(− ab (e

((bx)−1)))
]α−1

, x > 0, a, b, α > 0

TEE : f(x) = θα (1− e−αx)θ−1 e−αx
[
1 + λ− 2λ (1− e−αx)θ

]
, x > 0, a, θ > 0, λ ∈ [−1, 1]

TKw : f (x) = abxa−1 (1− xa)b−1
[
1− λ+ 2λ (1− xa)b

]
, x ∈ [0, 1] , a, b > 0, ,λ ∈ [−1, 1]

TR : f (x) = x
σ2 e
− x2

2σ2

[
1− λ+ 2λe−

x2

2σ2

]
, x > 0, σ > 0,λ ∈ [−1, 1]

TW : f (x) = µ
σ

(
x
σ

)µ−1
e−(

x
σ )

µ [
1− λ+ 2λe−( xσ )

µ]
, x > 0, µ, σ > 0, λ ∈ [−1, 1]

For operation and empirical data set, the MLEs (standard errors) of fitted distri-
butions are given in Table 3 and the selection criteria statistics are given in Table
4. Furthermore, The plots which shows fits of distributions to this data set can be
examined from Figure 4 and Figure 5.

4.2. Breaking Stress data. The second data set is with regard to breaking stress
of carbon fibers of 50 mm length (GPa) obtained by Nichols and Padgett [22]. This
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Table 4. Selection criteria statistics for operation and empirical data
Distribution -2log AIC AICc K-S p-value

TEP -114.9401 -108.9401 -108.4184 0.0893 0.8199
TGG -114.5400 -106.5400 -105.6520 0.0898 0.8152
GG -114.5924 -108.5924 -108.0707 0.0936 0.7736
TKw -112.5020 -106.5020 -105.9800 0.1052 0.6375
TR -112.1173 -108.1173 -107.8620 0.1070 0.6162
TW -112.1179 -106.1179 -105.5962 0.1070 0.6163
TEE -106.5607 -100.5607 -100.0389 0.1462 0.2357

Figure 4. Empirical cdf and fitted cdfs for operation and empir-
ical data set

data set consist of 66 observations has been used by Yousof et.al. [27]. The breaking
stress data are presented in Table 5.

Table 5. Breaking stress data
0.39 0.85 1.08 1.25 1.47 1.57 1.61 1.61 1.69 1.80 1.84
1.87 1.89 2.03 2.03 2.05 2.12 2.35 2.41 2.43 2.48 2.50
2.53 2.55 2.55 2.56 2.59 2.67 2.73 2.74 2.79 2.81 2.82
2.85 2.87 2.88 2.93 2.95 2.96 2.97 3.09 3.11 3.11 3.15
3.15 3.19 3.22 3.22 3.27 3.28 3.31 3.31 3.33 3.39 3.39
3.56 3.60 3.65 3.68 3.70 3.75 4.20 4.38 4.42 4.70 4.90

This data set has been fitted to TEP, exponential power (EP) [23], exponenti-
ated exponential (EE) [12], transmuted exponentiated exponential (TEE) [21] and



A NEW LIFETIME DISTRIBUTION 11

Figure 5. Fitted pdfs for operation and empirical data set

transmuted Rayleigh (TR) [18] distributions. The density functions of the fitted
distributions are given by;

EP : f (x) = β
α

(
x
α

)β−1
exp

((
x
α

)β)
exp

[
1− exp

((
x
α

)β)]
, x > 0, α, β > 0

EE : f (x) = θα (1− e−αx)θ−1 e−αx , x > 0, α, θ > 0

TR : f (x) = x
σ2 e
− x2

2σ2

[
1− λ+ 2λe−

x2

2σ2

]
, x > 0, σ > 0, λ ∈ [−1, 1]

TEE : f (x) = θα (1− e−αx)θ−1

×e−αx
[
1 + λ− 2λ (1− e−αx)θ

]
, x > 0, α, θ > 0, λ ∈ [−1, 1]

The MLEs of unknown parameters for these distributions and their standard errors
are shown in Table 6.

For breaking stress data, the comparison statistics of fitted distributions are given
in Table 7. Also, the goodness of fit plots based on the empirical and theoretical
cdfs and pdfs of fitted distributions can be seen from Figure 6 and Figure 7.

Table 7. Selection criteria statistics for breaking stress data



12 B. SARACOĞLU, C. TANIŞ

Table 6. Parameter estimates(standard errors) for breaking stress data
Distribution MLEs

TEP
α̂ = 4.0683 (0.2181) , β̂ = 2.8374 (0.2716) ,

λ̂ = 0.7487 (0.2503)

EP α̂ = 3.6807 (0.1182) , β̂ = 2.3799 (0.2304)

EE θ̂ = 9.1992 (2.1491) , α̂ = 1.0076 (0.1002)

TEE
θ̂ = 7.4605 (2.1903) , α̂ = 1.1195 (0.1089) ,

λ̂ = −0.7773 (0.1812)
TR σ̂ = 1.6957 (0.0825) , λ̂ = −0.9587 (0.0930)

Distribution -2log AIC AICc K-S p-value
TEP 172.4577 178.4577 178.8448 0.0913 0.6408
EP 174.7949 178.7949 178.9854 0.1126 0.3724
EE 190.7447 194.7447 194.9352 0.1550 0.0840
TEE 185.0412 191.0412 191.4283 0.1344 0.1844
TR 177.7488 183.7488 184.1359 0.1410 0.1447

Figure 6. Empirical cdf and fitted cdfs for breaking stress data

5. Conclusion

In this study, we have proposed a new lifetime distribution which can be used
as an alternative of EP distribution called as TEP. This new distribution having
increasing, decrasing and bathtube hazard rate function has more flexibility than
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Figure 7. Fitted pdfs for breaking stress data

EP distribution. From two real data applications, it can have been concluded
that TEP distribution has the best fitting among other fitted distributions. These
real data applications show that TEP distribution is usefullness for modelling real
data such as carbon fibres, operation and empirical data sets. These areas of
application can be extended by using various real data sets which show fitting to
TEP distribution.
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[1] Akdam, N., Kinaci, I., Saracoğlu, B., Statistical inference of stress-strength reliability for the
exponential power (EP) distribution based on progressive type-II censored samples, Hacettepe
Journal of Mathematics and Statistics, 46 (2017), 239-253.

[2] Al-Babtain, A., Fattah, A. A., Ahmed, A. H. N., Merovci, F., The Kumaraswamy-transmuted
exponentiated modified Weibull distribution, Communications in Statistics-Simulation and
Computation, 46 (2017), 3812-3832.

[3] Aryal, G. R., Tsokos, C. P., Transmuted Weibull distribution: A generalization of the Weibull
probability distribution, European Journal of Pure and Applied Mathematics 4 (2011), 89-
102.

[4] Aryal, G. R., Tsokos, C. P., On the transmuted extreme value distribution with application,
Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), 1401-1407.

[5] Ashour, S. K., Eltehiwy, M. A., Transmuted exponentiated Lomax distribution, Aust J Basic
Appl Sci, 7 (2013), 658-667.

[6] Ashour, S. K., Eltehiwy, M. A., Transmuted lomax distribution, American Journal of Applied
Mathematics and Statistics, 1 (2013), 121-127.

[7] Barriga, G. D., Louzada-Neto, F., Cancho, V. G. The complementary exponential power
lifetime model, Computational statistics and data analysis, 55(3) (2011), 1250-1259.

[8] Chen Z. Statistical inference about the shape parameter of the exponential power distribu-
tion.Statistical Papers, 40(1) (1999), 459-468.



14 B. SARACOĞLU, C. TANIŞ
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