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CERTAIN SUBCLASSES OF BI-UNIVALENT FUNCTIONS
RELATED TO k-FIBONACCI NUMBERS

H. ÖZLEM GÜNEY, G. MURUGUSUNDARAMOORTHY, AND J. SOKÓŁ

Abstract. In this paper, we introduce and investigate new subclasses of bi-
univalent functions related to k-Fibonacci numbers. Furthermore, we find
estimates of first two coeffi cients of functions in these classes. Also, we obtain
the Fekete-Szegö inequalities for these function classes.

1. Introduction

Let D = {z : |z| < 1} be the unit disc in the complex plane. The class of all
analytic functions

f (z) = z +

∞∑
n=2

anz
n (1)

in the open unit disc D with normalization f(0) = 0, f ′(0) = 1 is denoted by A
and the class S ⊂ A is the class which consists of univalent functions in D. We say
that f is subordinate to F in D, written as f ≺ F , if and only if f(z) = F (ω(z))
for some analytic function ω, |ω(z)| ≤ |z|, z ∈ D.
The Koebe one quarter theorem [5] ensures that the image of D under every

univalent function f ∈ A contains a disk of radius 1/4. Thus every univalent
function f has an inverse f−1 satisfying

f−1(f(z)) = z, (z ∈ D) and f(f−1(w)) = w, (|w| < r0(f), r0(f) ≥ 1

4
).

A function f ∈ A is said to be bi-univalent in D if f is univalent in D and f−1 has an
univalent extension to D. Let Σ denote the class of bi-univalent functions defined in
the unit disk D. Someone can see a short history and examples of functions in the
class Σ in [14]. Since f ∈ Σ has the Maclaurin series given by (1), a computation
shows that its inverse g = f−1 has the expansion

g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 + · · · . (2)
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The work of Srivastava et al. [14] essentially revived the investigation of various
subclasses of the bi-univalent function class in recent years. In a considerably
large number of sequels to the aforementioned work of Srivastava et al. [14], several
different subclasses of the bi-univalent function class Σ were introduced and studied
analogously by many authors (see, for example, [1, 2, 4, 8, 3, 15, 9]), but only non-
sharp estimates on the initial coeffi cients |a2| and |a3| in the Taylor-Maclaurin
expansion (1) were obtained in these recent papers.
The object of the present work is to introduce a new subclass of the function

class Σ and find estimates on the coeffi cients |a2| and |a3| for functions in this new
subclass of the function class Σ using the technique of Srivastava et al. [14]
Recently,Yilmaz Özgür and Sokół[10] introduced the class SLk of starlike func-

tions connected with k− Fibonacci numbers as the set of functions f ∈ A which is
described in the following definition.

Definition 1. Let k be any positive real number. The function f ∈ A belongs to
the class SLk if it satisfies the condition that

zf ′(z)

f(z)
≺ p̃k(z), z ∈ D,

where

p̃k(z) =
1 + τ2

kz
2

1− kτkz − τ2
kz

2
, τk =

k −
√
k2 + 4

2
, z ∈ D. (3)

Later in [7], Güney et al. defined the class KSLk as follows:
Definition 2. Let k be any positive real number. The function f ∈ A belongs to
the class KSLk if it satisfies the condition that

1 +
zf ′′(z)

f ′(z)
≺ p̃k(z), z ∈ D,

where the function p̃k is defined in (3).

For k = 1, the classes SL and KSL of shell-like functions were defined in [12]
(see also [13]).
It was proved in [10] that functions in the class SLk are univalent in D. Moreover,

the class SLk is a subclass of the class of starlike functions S∗, even more, starlike
of order k(k2 + 4)−1/2/2. The name attributed to the class SLk is motivated by
the shape of the curve

C =
{
p̃k(eit) : t ∈ [0, 2π) \ {π}

}
.

Now we define the classes SLMk
α and SLGkγ , as follows:

Definition 3. Let k be any positive real number. The function f ∈ A belongs to
the class SLMk

α, (0 ≤ α ≤ 1) if it satisfies the condition that

α

(
1 +

zf ′′(z)

f ′(z)

)
+ (1− α)

zf ′(z)

f(z)
≺ p̃k(z), z ∈ D,



CERTAIN SUBCLASSES OF BI-UNIVALENT FUNCTIONS 1911

where the function p̃k is defined in (3).

Definition 4. Let 0 ≤ γ ≤ 1, and k be any positive real number. The function
f ∈ A belongs to the class SLGkγ if the following conditions are satisfied:(

zf ′(z)

f(z)

)γ (
1 +

zf ′′(z)

f ′(z)

)1−γ
≺ p̃k(z), z ∈ D,

where the function p̃k is defined in (3).

For k ≤ 2, note that we have

p̃k

(
e±i arccos(k2/4)

)
= k(k2 + 4)−1/2,

and so the curve C intersects itself on the real axis at the point w1 = k(k2 + 4)−1/2.
Thus C has a loop intersecting the real axis also at the point w2 = (k2 + 4)/(2k).
For k > 2, the curve C has no loops and it is like a conchoid, see for details [10].
Moreover, the coeffi cients of p̃k are connected with k-Fibonacci numbers.
For any positive real number k, the k-Fibonacci number sequence {Fk,n}∞n=0 is

defined recursively by

Fk,0 = 0, Fk,1 = 1 and Fk,n+1 = kFk,n + Fk,n−1 for n ≥ 1.

When k = 1, we obtain the well-known Fibonacci numbers Fn. It is known that
the nth k-Fibonacci number is given by

Fk,n =
(k − τk)

n − τnk√
k2 + 4

,

where τk = (k −
√
k2 + 4)/2. If p̃k(z) = 1 +

∑∞
n=1 p̃k,nz

n, then we have

p̃k,n = (Fk,n−1 + Fk,n+1)τnk , n = 1, 2, 3, . . . .

Also, Özgür and Sokółshowed in [10] that

p̃k(z) =
1 + τ2

kz
2

1− kτkz − τ2
kz

2
= 1 +

∞∑
n=1

p̃k,nz
n

= 1 + (Fk,0 + Fk,2)τkz + (Fk,1 + Fk,3)τ2
kz

2 + · · ·
= 1 + kτkz + (k2 + 2)τ2

kz
2 + (k3 + 3k)τ3

kz
3 + · · · .

where τk = k−
√
k2+4
2 , z ∈ D, (see [10]).

Let P(β), 0 ≤ β < 1, denote the class of analytic functions p in D with p(0) = 1
and Re{p(z)} > β. Especially, we use P(0) = P as β = 0.
Now we give the following lemma which will use in proving.

Lemma 5. ([11]) Let p ∈ P with p(z) = 1 + c1z + c2z
2 + · · · , then

|cn| ≤ 2 for n ≥ 1. (4)
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2. Bi-Univalent function class SLMk
α,Σ(p̃k(z))

In this section, we introduce three new subclasses of Σ associated with shell-like
functions connected with Fibonacci numbers and obtain the initial Taylor coeffi -
cients |a2| and |a3| for the function classes by subordination.
Firstly, let p(z) = 1+p1z+p2z

2 + · · · , and p ≺ p̃k. Then there exists an analytic
function u such that |u(z)| < 1 in U and p(z) = p̃k(u(z)). Therefore, the function

h(z) =
1 + u(z)

1− u(z)
= 1 + c1z + c2z

2 + . . . (5)

is in the class P(0). It follows that

u(z) =
c1z

2
+

(
c2 −

c21
2

)
z2

2
+

(
c3 − c1c2 +

c31
4

)
z3

2
+ · · · (6)

and

p̃k(u(z)) = 1 + p̃k,1

{
c1z

2
+

(
c2 −

c21
2

)
z2

2
+

(
c3 − c1c2 +

c31
4

)
z3

2
+ · · ·

}
+ p̃k,2

{
c1z

2
+

(
c2 −

c21
2

)
z2

2
+

(
c3 − c1c2 +

c31
4

)
z3

2
+ · · ·

}2

+ p̃k,3

{
c1z

2
+

(
c2 −

c21
2

)
z2

2
+

(
c3 − c1c2 +

c31
4

)
z3

2
+ · · ·

}3

+ · · ·

= 1 +
p̃k,1c1z

2
+

{
1

2

(
c2 −

c21
2

)
p̃k,1 +

c21
4
p̃k,2

}
z2

+

{
1

2

(
c3 − c1c2 +

c31
4

)
p̃k,1 +

1

2
c1

(
c2 −

c21
2

)
p̃k,2 +

c31
8
p̃k,3

}
z3 + · · · .

(7)

And similarly, there exists an analytic function v such that |v(w)| < 1 in D and
p(w) = p̃k(v(w)). Therefore, the function

k(w) =
1 + v(w)

1− v(w)
= 1 + d1w + d2w

2 + . . . (8)

is in the class P(0). It follows that

v(w) =
d1w

2
+

(
d2 −

d2
1

2

)
w2

2
+

(
d3 − d1d2 +

d3
1

4

)
w3

2
+ · · · (9)

and

p̃k(v(w)) = 1 +
p̃k,1d1w

2
+

{
1

2

(
d2 −

d2
1

2

)
p̃k,1 +

d2
1

4
p̃k,2

}
w2

+

{
1

2

(
d3 − d1d2 +

d3
1

4

)
p̃k,1 +

1

2
d1

(
d2 −

d2
1

2

)
p̃k,2 +

d3
1

8
p̃k,3

}
w3 + · · · .

(10)
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Definition 6. For 0 ≤ α ≤ 1, a function f ∈ Σ of the form (1) is said to be in the
class SLMk

α,Σ(p̃k(z)) if the following subordination hold:

α

(
1 +

zf ′′(z)

f ′(z)

)
+ (1− α)

(
zf ′(z)

f(z)

)
≺ p̃k(z) =

1 + τ2
kz

2

1− kτkz − τ2
kz

2
, (11)

and

α

(
1 +

wg′′(w)

g′(w)

)
+ (1− α)

(
wg′(w)

g(w)

)
≺ p̃k(w) =

1 + τ2
kw

2

1− kτkw − τ2
kw

2
, (12)

where τk = k−
√
k2+4
2 where z, w ∈ D and g is given by (2).

Specializing the parameter α = 0 and α = 1 we have the following:

Definition 7. A function f ∈ Σ of the form (1) is said to be in the class SLkΣ(p̃k(z))
if the following subordination hold:

zf ′(z)

f(z)
≺ p̃k(z) =

1 + τ2
kz

2

1− kτkz − τ2
kz

2
, (13)

and
wg′(w)

g(w)
≺ p̃k(w) =

1 + τ2
kw

2

1− kτkw − τ2
kw

2
, (14)

where τk = k−
√
k2+4
2 , z, w ∈ D and g is given by (2).

Definition 8. A function f ∈ Σ of the form (1) is said to be in the class KSLkΣ(p̃k(z))
if the following subordination hold:

1 +
zf ′′(z)

f ′(z)
≺ p̃k(z) =

1 + τ2
kz

2

1− kτkz − τ2
kz

2
, (15)

and

1 +
wg′′(w)

g′(w)
≺ p̃k(w) =

1 + τ2
kw

2

1− kτkw − τ2
kw

2
, (16)

where τk = k−
√
k2+4
2 , z, w ∈ D and g is given by (2).

In the following theorem we determine the initial Taylor coeffi cients |a2| and |a3|
for the function class SLMk

α,Σ(p̃k(z)). Later we state the bounds to other classes
as a special cases.

Theorem 9. Let f given by (1) be in the class SLMk
α,Σ(p̃k(z)). Then

|a2| ≤
k
√
k|τk|√

(1 + α)2k − (1 + α)(2(1 + α) + αk2)τk
(17)

and

|a3| ≤
k|τk|

{
(1 + α)2k −

[
(k2 + 2)α2 + (5k2 + 4)α+ 2(k2 + 1)

]
τk
}

2(1 + 2α)(1 + α) [(1 + α)k − (2(1 + α) + αk2)τk]
. (18)
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Proof. Let f ∈ SLMk
α,Σ(p̃k(z)) and g = f−1. Considering (11) and (12), we have

α

(
1 +

zf ′′(z)

f ′(z)

)
+ (1− α)

(
zf ′(z)

f(z)

)
= p̃k(u(z)) (19)

and

α

(
1 +

wg′′(w)

g′(w)

)
+ (1− α)

(
wg′(w)

g(w)

)
= p̃k(v(w)), (20)

where τk = k−
√
k2+4
2 , z, w ∈ D and g is given by (2). We have also

α

(
1 +

zf ′′(z)

f ′(z)

)
+ (1− α)

(
zf ′(z)

f(z)

)
= 1 + (1 + α)a2z + (2(1 + 2α)a3 − (1 + 3α)a2

2)z2 + . . .

= 1 +
p̃k,1c1z

2
+

[
1

2

(
c2 −

c21
2

)
p̃k,1 +

c21
4
p̃k,2

]
z2

+

[
1

2

(
c3 − c1c2 +

c31
4

)
p̃k,1 +

1

2
c1

(
c2 −

c21
2

)
p̃k,2 +

c31
8
p̃k,3

]
z3 + · · · (21)

and

α

(
1 +

wg′′(w)

g′(w)

)
+ (1− α)

(
wg′(w)

g(w)

)
= 1− (1 + α)a2w + ((3 + 5α)a2

2 − 2(1 + 2α)a3)w2 + . . .

= 1 +
p̃k,1d1w

2
+

[
1

2

(
d2 −

d2
1

2

)
p̃k,1 +

d2
1

4
p̃k,2

]
w2

+

[
1

2

(
d3 − d1d2 +

d3
1

4

)
p̃k,1 +

1

2
d1

(
d2 −

d2
1

2

)
p̃k,2 +

d3
1

8
p̃k,3

]
w3 + · · · .(22)

It follows from (21) and (22) that

(1 + α)a2 =
c1kτk

2
, (23)

2(1 + 2α)a3 − (1 + 3α)a2
2 =

1

2

(
c2 −

c21
2

)
kτk +

c21
4

(k2 + 2)τ2
k, (24)

and

− (1 + α)a2 =
d1kτk

2
, (25)

(3 + 5α)a2
2 − 2(1 + 2α)a3 =

1

2

(
d2 −

d2
1

2

)
kτk +

d2
1

4
(k2 + 2)τ2

k. (26)

From (23) and (25), we have
c1 = −d1, (27)

and

2a2
2 =

(c21 + d2
1)

4(1 + α)2
k2τ2

k. (28)



CERTAIN SUBCLASSES OF BI-UNIVALENT FUNCTIONS 1915

Now, by summing (24) and (26), we obtain

2(1 + α)a2
2 =

1

2
(c2 + d2)kτk −

1

4
(c21 + d2

1)kτk +
1

4
(c21 + d2

1)(k2 + 2)τ2
k. (29)

By putting (28) in (29), we have

2(1 + α)
[
(−2(1 + α)− αk2)τk + (1 + α)k

]
a2

2 =
1

2
(c2 + d2)k3τ2

k. (30)

Therefore, using Lemma 5 we obtain

|a2| ≤
k
√
k|τk|√

(1 + α)2k − (1 + α)(2(1 + α) + αk2)τk
. (31)

Now, so as to find the bound on |a3|, let’s subtract from (24) and (26). So, we find

4(1 + 2α)a3 − 4(1 + 2α)a2
2 =

1

2
(c2 − d2) kτk. (32)

Hence, we get
4(1 + 2α)|a3| ≤ 2k|τk|+ 4(1 + 2α)|a2|2.

Then, in view of (31), we obtain

|a3| ≤
k|τk|

{
(1 + α)2k −

[
2(1 + α)2 + (α2 + 5α+ 2)k2

]
τk
}

2(1 + 2α)(1 + α) [(1 + α)k − (2(1 + α) + αk2)τk]
.

�

If we can take the parameter α = 0 and α = 1 in the above theorem, we have
the following the initial Taylor coeffi cients |a2| and |a3| for the function classes
SLkΣ(p̃k(z)) and KSLkΣ(p̃k(z)), respectively.

Corollary 10. Let f given by (1) be in the class SLkΣ(p̃k(z)). Then

|a2| ≤
k
√
k|τk|√

k − 2τk

and

|a3| ≤
k|τk|

{
k − 2(k2 + 1)τk

}
2(k − 2τk)

.

Corollary 11. Let f given by (1) be in the class KSLkΣ(p̃k(z)). Then

|a2| ≤
k
√
k|τk|√

4k − 2(4 + k2)τk

and

|a3| ≤
k|τk|

{
k − 2(k2 + 1)τk

}
3(2k − (4 + k2)τk)

.
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If we can take the parameter k = 1 in the above corollaries, we have the following
the initial Taylor coeffi cients |a2| and |a3| for the function classes SLΣ(p̃(z)) and
KSLΣ(p̃(z)), respectively, which were obtained in [6] by Güney et.al.

Corollary 12. Let f given by (1) be in the class SLΣ(p̃(z)). Then

|a2| ≤
|τ |√

1− 2τ

and

|a3| ≤
|τ |(1− 4τ)

2(1− 2τ)
.

Corollary 13. Let f given by (1) be in the class KSLΣ(p̃(z)). Then

|a2| ≤
|τ |√

4− 10τ

and

|a3| ≤
|τ |(1− 4τ)

3(2− 5τ)
.

3. Bi-Univalent function class SLGkγ,Σ(p̃k(z))

In this section, we define a new class SLGkγ,Σ(p̃k(z)) of γ− bi-starlike functions
associated with shell-like domain.

Definition 14. Let 0 ≤ γ ≤ 1, and k be any positive real number. A function
f ∈ Σ of the form (1) is said to be in the class SLGkγ,Σ(p̃k(z)) if the following
subordination hold: (

zf ′(z)

f(z)

)γ (
1 +

zf ′′(z)

f ′(z)

)1−γ
≺ p̃k(z) (1)

and (
wg′(w)

g(w)

)γ (
1 +

wg′′(w)

g′(w)

)1−γ
≺ p̃k(w), (2)

where the function p̃k is defined in (3) and z, w ∈ D.

Remark 15. Taking γ = 1, we get SLGk1,Σ(p̃k(z)) ≡ SLkΣ(p̃k(z)) the class as given
in Definition 7 satisfying the conditions given in (13) and (14).

Remark 16. Taking γ = 0, we get SLGk0,Σ(p̃k(z)) ≡ KSLkΣ(p̃k(z)) the class as
given in Definition 8 satisfying the conditions given in (15) and (16).

Theorem 17. Let f given by (1) be in the class SLGkγ,Σ(p̃k(z)). Then

|a2| ≤
k
√

2k|τk|√
2(2− γ)2k − (4(2− γ)2 + (γ2 − 5γ + 4)k2)τk
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and

|a3| ≤
k|τk|

[
2(2− γ)2k − (4(2− γ)2 + (γ2 − 13γ + 16)k2)τk

]
2(3− 2γ) [2k(2− γ)2 − (4(2− γ)2 + (γ2 − 5γ + 4)k2)τk]

.

Proof. Let f ∈ SLGkγ,Σ(p̃k(z)) and g = f−1 given by (2). Considering (1) and (2),
we have (

zf ′(z)

f(z)

)γ (
1 +

zf ′′(z)

f ′(z)

)1−γ
= p̃k(u(z)) (3)

and (
wg′(w)

g(w)

)γ (
1 +

wg′′(w)

g′(w)

)1−γ
= p̃k(v(w)), (4)

where the function p̃k is defined in (3), z, w ∈ D and g is given by (2). We also
have

(
zf ′(z)

f(z)

)γ (
1 +

zf ′′(z)

f ′(z)

)1−γ
(5)

= 1 + (2− γ)a2z +

(
2(3− 2γ)a3 +

1

2
[(γ − 2)2 − 3(4− 3γ)]a2

2

)
z2 + . . .

and (
wg′(w)

g(w)

)γ (
1 +

wg′′(w)

g′(w)

)1−γ
(6)

= 1− (2− γ)a2w +

(
[8(1− γ) +

1

2
γ(γ + 5)]a2

2 − 2(3− 2γ)a3

)
w2 + . . . .

Equating the coeffi cients in (5) and (6), with (7)-(10), respectively, we get,

(2− γ)a2 =
c1kτk

2
(7)

2(3− 2γ)a3 +
1

2
[(γ − 2)2 − 3(4− 3γ)]a2

2 =
1

2

(
c2 −

c21
2

)
kτk +

c21
4

(k2 + 2)τ2
k, (8)

and

−(2− γ)a2 =
d1kτk

2
(9)

−2(3− 2γ)a3 + [8(1− γ) +
1

2
γ(γ + 5)]a2

2 =
1

2

(
d2 −

d2
1

2

)
kτk +

d2
1

4
(k2 + 2)τ2

k

(10)

From (7) and (9), we have

a2 =
c1kτk

2(2− γ)
= − d1kτk

2(2− γ)
,

which implies
c1 = −d1
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and

a2
2 =

(c21 + d2
1)k2τ2

k

8(2− γ)2
.

Now, by summing (8) and (10), we obtain

(γ2 − 3γ + 4)a2
2 =

1

2
(c2 + d2)kτk −

1

4
(c21 + d2

1)kτk +
1

4
(c21 + d2

1)(k2 + 2)τ2
k.

Proceeding similarly as in the earlier proof of Theorem 9 and using Lemma 5, we
obtain

|a2| ≤
k
√

2k|τk|√
2(2− γ)2k − (4(2− γ)2 + (γ2 − 5γ + 4)k2)τk

. (11)

Now, so as to find the bound on |a3|, let’s subtract from (8) and (10). So, we find

4(3− 2γ)a3 − 4(3− 2γ)a2
2 =

1

2
(c2 − d2) kτk.

Hence, we get
4(3− 2γ)|a3| ≤ 2k|τk|+ 4(3− 2γ)|a2|2.

Then, in view of (11), we obtain

|a3| ≤
k|τk|

[
2(2− γ)2k − (4(2− γ)2 + (γ2 − 13γ + 16)k2)τk

]
2(3− 2γ) [2k(2− γ)2 − (4(2− γ)2 + (γ2 − 5γ + 4)k2)τk]

.

�

Remark 18. By taking γ = 1 and γ = 0 in the above theorem, we have the
initial Taylor coeffi cients |a2| and |a3| for the function classes SLkΣ(p̃k(z)) and
KSLkΣ(p̃k(z)), as stated in Corollary 10 and Corollary 11 respectively. Further
note that by taking k = 1 we have the initial Taylor coeffi cients |a2| and |a3| for the
function classes SLΣ(p̃(z)) and KSLΣ(p̃(z)), as stated in Corollary 12 and Corol-
lary 13 respectively.

4. Fekete-Szegö inequalities for the above function classes

Due to Zaprawa [16], we will give Fekete-Szegö inequalities for the above function
classes in this section. The first theorem is the solution of the Fekete-Szegö problem

in SLMk
α,Σ(p̃k(z)) and it looks like the following:

Theorem 19. Let f given by (1) be in the class SLMk
α,Σ(p̃k(z)) and µ ∈ R. Then

we have

|a3−µa2
2| ≤


k|τk|

2(1+2α) , |µ− 1| ≤ 4(1+α)[(1+α)k−(2(1+α)+αk2)τk]
8(1+2α)k2|τk| ,

|1−µ|k3τ2k
(1+α)[(1+α)k−(2(1+α)+αk2)τk] , |µ− 1| ≥ 4(1+α)[(1+α)k−(2(1+α)+αk2)τk]

8(1+2α)k2|τk| .
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Proof. From (30) and (32)we obtain

a3 − µa2
2 = (1− µ)

k3τ2
k(c2 + d2)

4(1 + α) [(1 + α)k − (2(1 + α) + αk2)τk]
+
kτk(c2 − d2)

8(1 + 2α)
(1)

=

(
(1− µ)k3τ2

k

4(1 + α) [(1 + α)k − (2(1 + α) + αk2)τk]
+

kτk
8(1 + 2α)

)
c2

+

(
(1− µ)k3τ2

k

4(1 + α) [(1 + α)k − (2(1 + α) + αk2)τk]
− kτk

8(1 + 2α)

)
d2.

So we have

a3 − µa2
2 =

(
h(µ)− k|τk|

8(1 + 2α)

)
c2 +

(
h(µ) +

k|τk|
8(1 + 2α)

)
d2, (2)

where

h(µ) =
(1− µ)k3τ2

k

4(1 + α) [(1 + α)k − (2(1 + α) + αk2)τk]
. (3)

Then, by taking modulus of (2), we conclude that

|a3 − µa2
2| ≤

{
k|τk|

2(1+2α) , 0 ≤ |h(µ)| ≤ k|τk|
8(1+2α) ,

4|h(µ)|, |h(µ)| ≥ k|τk|
8(1+2α) .

Taking µ = 1, we have the following corollary.

Corollary 20. If f ∈ SLMk
α,Σ(p̃k(z)), then

|a3 − a2
2| ≤

k|τk|
2(1 + 2α)

. (4)

The second theorem is the solution of the Fekete-Szegö problem in SLGkγ,Σ(p̃k(z))
and it looks like the following:

Theorem 21. Let f given by (1) be in the class SLGkγ,Σ(p̃k(z)) and µ ∈ R. Then
we have

|a3−µa2
2| ≤


k|τk|

2(3−2γ) , |µ− 1| ≤ 2(2−γ)2k−(4(2−γ)2+(γ2−5γ+4)k2)τk
4(3−2γ)k2|τk| ,

2|1−µ|k3τ2k
2(2−γ)2k−(4(2−γ)2+(γ2−5γ+4)k2)τk

, |µ− 1| ≥ 2(2−γ)2k−(4(2−γ)2+(γ2−5γ+4)k2)τk
4(3−2γ)k2|τk| .

Taking µ = 1, we have the following corollary.

Corollary 22. If f ∈ SLGkγ,Σ(p̃k(z)), then

|a3 − a2
2| ≤

k|τk|
2(3− 2γ)

. (5)
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If we can take the parameter α = 0 and α = 1 in the Theorem 19 or γ = 1 and
γ = 0 in the Theorem 21, we have the following the Fekete-Szegö inequalities for
the function classes SLkΣ(p̃k(z)) and KSLkΣ(p̃k(z)), respectively.

Corollary 23. Let f given by (1) be in the class SLkΣ(p̃k(z)) and µ ∈ R. Then we
have

|a3 − µa2
2| ≤

{
k|τk|

2 , |µ− 1| ≤ k−2τk
2k2|τk| ,

|1−µ|k3τ2k
k−2τk

, |µ− 1| ≥ k−2τk
2k2|τk| .

Corollary 24. Let f given by (1) be in the class KSLkΣ(p̃k(z)) and µ ∈ R. Then
we have

|a3 − µa2
2| ≤

{
k|τk|

6 , |µ− 1| ≤ 2k−(k2+4)τk
3k2|τk| ,

|1−µ|k3τ2k
2(2k−(k2+4)τk) , |µ− 1| ≥ 2k−(k2+4)τk

3k2|τk| .

5. Concluding Remarks and Observations

In our present investigation, we have introduced new classes SLMk
α,Σ(p̃k(z))

and SLGkγ,Σ(p̃k(z)) of bi-univalent functions in the open unit disk U. For the ini-
tial Taylor- Maclaurin coeffi cients of functions belonging to these classes, we have
studied the problem of finding the upper bound associated with the Fekete-Szegö
inequality. We have also considered several results which are closely related to our
investigation in this paper.
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