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INVESTIGATION OF THE DEPENDENCE STRUCTURE IN
SEISMIC HAZARD ANALYSIS: AN APPLICATION FOR

TURKEY

SERPIL ÜNAL KARAÇAM

Abstract. In this study, using the earthquake occurrence data (Richter mag-
nitude is equal to 4 or greater than 4 in the years 1901-2014) of the areas
limited by 39.5◦−42◦ N latitudes and 26◦−45◦ E longitudes of North Anato-
lia and 36◦ − 39.5◦ N latitudes and 26◦ − 31◦ E longitudes of West Anatolia,
it is aimed to model the dependence structure of Semi-Markov model via con-
ditional copulas in which the copula is parametric and its parameter varies as
the covariate, based on the assumption that the successive earthquakes in the
same structural discontinuity should not be independent events and the oc-
currence of the earthquakes should be influenced by the elapsed time between
them. From the results obtained for these regions with high seismicity, it is
seen that the variation in the strength of dependence between the time elapsed
from the previous seismic event and the magnitude of the next seismic event
at different magnitudes of previous seismic event is highly significant and a us-
age of the parametric linear form in the copula parameter will be adequately
characterized.

1. Introduction

Turkey takes part on the Alpine-Himalayan (Mediterranean) seismic belt, one of
the important seismic belts of the world and its tectonic framework shows abundant
evidence of past and continuing mobility. The tectonic inequilibrium of Turkey is
reflected by numerous active faults. The north Anatolian fault (NAF) is the most
important and active of these. The NAF was reactivated on 17 August (Mw = 7.4)
and 12 November (Mw = 7.2) 1999 with two destructive earthquakes in the eastern
Marmara region as a result of the westward migrating large earthquake series in
the 20th century. West Anatolia also takes part among the significant mechanizm
of active tectonics in Turkey. The area was exposed to continuous earthquakes due

Received by the editors: December 19, 2017; Accepted: September 06, 2018.
Key words and phrases. Unconditional and conditional copulas, semi-Markov model, seismic

gap theory, seismic hazard, seismicity of North and West Anatolia.
2010 Mathematics Subject Classifications: 62H20, 60K15, 86A15.

c©2019 Ankara University
Communications Facu lty of Sciences University of Ankara-Series A1 Mathematics and Statistics

1528



INVESTIGATION OF THE DEPENDENCE STRUCTURE IN SHA 1529

to its highly mixed tectonic appearance and it also creates a region with a high
potential for earthquakes in the future.
Nowadays it is accepted that it is impossible either to know where the earth-

quakes occur or when they occur, their magnitudes, and to prevent these dev-
astating natural events. However, the statistical studies existing in the fields of
geophysical, geological and earthquake engineering show that the parameters of
possible earthquakes and the severity of ground motions they created can only be
estimated probabilistically. In other words, since earthquakes demonstrate ran-
domness according to parameters and there are various uncertainties (such as some
deficiencies in the earthquake records), seismic hazard estimation with probabilistic
methods is seen as the most appropriate method. Semi-markov model, one of the
most commonly used probabilistic model, is based on the assumption that although
the earthquakes are dependent on the space dimension, they are independent from
the unit-time on the time dimension. According to the model, the magnitude of
an earthquake depends on the magnitude of the previous earthquake and the time
interval between them. This may indicate that a long period seismic quiescence
may end with an earthquake of large magnitude [6, 7, 8, 33].
Long-term or short-term prediction of the earthquakes has been a real challenge

in science for decades and several papers have appeared for and/or against the
ability to do so. The contributed papers vary with respect to the time horizon of
their prediction, the magnitude range that can be predicted, the area covered and of
course the method upon which prediction is based. Parallel to this, there are also
some theories that try to provide information towards the prediction challenge.
One, rather controversial, such theory is the so-called ‘seismic gap’ theory that
relates the time elapsed from the previous seismic event to the magnitude of the
next seismic event. According to this theory, there is a positive relation, which
implies that an area without seismicity for a time period increases its probability
to have a major earthquake. If such a relationship exists then by modeling these
two parameters we can predict (in statistical sense) the size of a future earthquake
[27].
Whenever we are dealing with the issue of modeling dependencies among ran-

dom variables, copula models come into play. Copulas are functions which link
multivariate distribution functions to their one-dimensional marginal distribution
functions. Their use in several scientific fields has a long history dating back to,
in economics [13]; in survival analysis [14, 15, 20, 29, 34]; in finance [10, 12]; in
insurence [18, 24] and in geology [25, 27]. Although copulas have been used in the
applied statistical literature for long years, the covariate adjustment for copulas has
been considered only recently. In [31], Patton proposed the concept of conditional
copula in which the correlation is affected by covariate(s). To our knowledge, so far
conditional copula have been applied only in finance [9, 23, 30, 31, 32], in survival
analysis [2, 3, 4, 19].
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In the present paper, based on the seismic gap theory, we aim to estimate the
seismic hazard by modeling the dependence structure of Semi-Markov model with
conditional copula, based on the assumption that the successive earthquakes in the
same structural discontinuity should not be independent events and the occurrence
of the earthquakes should be influenced by the elapsed time between them.

2. Unconditional and conditional copulas

A copula is a function which joins or couples a multivariate distribution function
to its one-dimensional marginal distribution functions. More formally, the following
definition can be given.

Definition 1. A two-dimensional copula is a mapping C : [0, 1]
2 → [0, 1] satisfying

the conditions:
1) For ∀u, v ∈ [0, 1] ,

C (u, 0) = C (0, v) = 0 and C (u, 1) = u, C (1, v) = v

2)For ∀u1, u2, v1, v2 ∈ [0, 1] such that u1 ≤ u2 and v1 ≤ v2,

C (u2, v2)− C (u1, v2)− C (u2, v1) + C (u1, v1) ≥ 0.

The informal and formal definitions are connected by the following theorem
which also elucidates the role that copulas play in the relationship between multi-
variate distribution functions and their univariate margins.

Theorem 2. (Sklar’s theorem) Let H be a joint distribution function with margins
F1 and F2.Then there exists a copula C such that for all x1, x2 in IR,

H (x1, x2) = C (F1 (x1) , F2 (x2)) . (1)

If F1 and F2 are continuous, then C is unique; otherwise, C is uniquely determined
on RanF1 × RanF2. Conversely, if C is a copula and F1 and F2 are distribution
functions, then the function H defined by (1) is a joint distribution function with
margins F1 and F2 [26].
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Table 1. Some of one parametric families of copulas

Family Distribution function (Cθ (u, v)) Range of θ

Clayton
(
u−θ + v−θ − 1

)−1
θ (0,∞)

Frank −θ−1 ln

(
[(e−θ−1)+(e−θu−1)(e−θv−1)]

(e−θ−1)

)
(−∞,∞)− {0}

Gumbel exp

(
−
(

(− lnu)
θ

+ (− ln v)
θ
) 1
θ

)
[1,∞)

Çelebioğlu-Cuadras uv exp (θ (1− u) (1− v)) [−1, 1]
FGM uv + θuv (1− u) (1− v) [−1, 1]

Galambos uv exp

{[
(− lnu)

−θ
+ (− ln v)

−θ
]−1
θ

}
[0,∞)

Tawn uv exp
(
−θ lnu ln v

ln(uv)

)
(0, 1)

Joe 1−
[

(1− u)
θ

+ (1− v)
θ

− (1− u)
θ

(1− v)
θ

] 1
θ

[1,∞)

2.1. Estimation (Inference functions for margins method). The log-likelihood
function is given by

l(ϑ) =

T∑
t=1

ln c (F1 (x1t;ϑ1) , F2 (x2t;ϑ2) ; θ) +

T∑
t=1

2∑
i=1

ln fi (xit;ϑi) . (2)

In the first stage of the method, the parameters of the marginal distributions Fi are
estimated and in the second stage, the copula parameters conditioned to the previ-
ous estimates of marginal distributions are estimated. In each stage the maximum
likelihood method is used [30].

2.2. Goodness of fit test for copulas. Given that we have followed IFM ap-
proach to estimate the parameters of a set of copulas, if the number of estimated
parameters is the same across all maximum likelihood functions and in the estima-
tion process the same data is used for each model specification, an obvious criterion
is to compare the maximized value of the log likelihood function l(ϑ̂) [17].

2.3. Model selection. In [5], Allcroft and Glasbey proposed a bootstrap method
for testing the hypothesis, for k = 1, ...,m,

H0 : C = Ck versus H1 : C 6= Ck. (3)

Since the joint distributions of the log-likelihoods are approximately multivariate
normal based on the central limit theorem, Mahalanobis squared distance is ap-
propriate for making the above comparisons. This distance between the vector of
log-likelihoods λ at the original data and the vector of average log-likelihoods λ̄k
at the simulated data from the kth copula is obtained as, for k = 1, ...,m,
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D2
k =

(
λ− λ̄k

)
S−1

(
λ− λ̄k

)
, (4)

where S is the sample covariance matrix for these log-likelihoods. Based on the
normality of the log-likelihoods, the quantity D2

k follows an mFm,B−1 , distribution
under the null hypotheses that kth copula distribution is correct [27, 28].
When the covariate is added to the model in the issue of modeling dependence

between two or more random variables, you need to model the conditional copulas
whose copula parameter varies according to the values of a measured covariate.

Definition 3. The conditional copula of (Y1, Y2) |X = x , where Y1|X = x ≈
F1|X (.|x) and Y2|X = x ≈ F2|X (.|x), is the joint distribution function of U1 ≡
F1|X (.|x) and U2 ≡ F2|X (.|x) given X = x.

Proposition 4. A two-dimensional conditional copula is a function C : [0, 1] ×
[0, 1]× χ→ [0, 1] with the following properties:
1) For ∀u, v ∈ [0, 1] and ∀x ∈ χ,

C (u, 0|x) = C (0, v|x) = 0 and C (u, 1|x) = u, C (1, v|x) = v

2) For ∀u1, u2, v1, v2 ∈ [0, 1] such that u1 ≤ u2 and v1 ≤ v2 and ∀x ∈ χ,
C (u2, v2|x)− C (u1, v2|x)− C (u2, v1|x) + C (u1, v1|x) ≥ 0.

Theorem 5. Let F1|X (.|x) be the conditional distribution of Y1|X = x, F2|X (.|x)
be the conditional distribution of Y2|X = x, HX (., .|x) be the joint distribution of
(Y1, Y2) |X = x and χ be the support of X. Then, there exists a unique conditional
copula C (., .|x) , whenever F1|X (.|x) and F2|X (.|x) are continuous in y1 and y2,
for all x ∈ χ , such that

HX (y1, y2|x) = C
(
F1|X (y1|x) , F2|X (y2|x) |x

)
. (5)

Conversely, if we let F1|X (.|x) be the conditional distribution of Y1|X = x, F2|X (.|x)
be the conditional distribution of Y2|X = x and {C (., .|x)} be a family of condi-
tional copulas measurable in x, then the function HX (., .|x) defined in (5) is a
conditional bivariate distribution function with conditional marginal distributions
F1|X (.|x) and F2|X (.|x) [31, 32].

2.4. Local copula-likelihood estimation. Since the main focus is on the depen-
dence structure, it is assumed that the conditional marginal distributions F1|X (.|x)
and F2|X (.|x) are known and consider the following model:

(U1i, U2i) |Xi ≈ C (u1i, u2i|θ (x)) , (6)

for i = 1, 2, ..., n, where θ (x) = g−1 (η (x)) and g−1 : IR → Θ is the known
inverse link function, which ensures that the copula parameter has the correct
range, and η is the unknown calibration function to be estimated. As inverse
link functions we use g−1 (t) = et, θ ∈ (0,∞) for Clayton and Galambos families,
g−1 (t) = t, θ ∈ (−∞,∞) − {0} for Frank family, g−1 (t) = et + 1, θ ∈ [1,∞) for
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Gumbel and Joe families, g−1 (t) = sin(t), θ ∈ [−1, 1] for Çelebioğlu-Cuadras and

FGM families, g−1 (t) = arctan

(
(t+(π2 ))

π

)
, θ ∈ (0, 1) for Tawn family, respectively.

Since, for most copula families, the form of the calibration function η (.) char-
acterizing the underlying dependence structure is diffi cult to discern by inspection,
for a nonparametric approach in estimating the target function see [1, 2, 3].

2.5. Choice of bandwidth (Leave-one-out cross-validation). Choice of band-
width parameter is an important issue in local estimation. A too small bandwidth
parameter will yield an estimator with a smaller bias but a greater variance, and
the calibration function will be undersmoothed. A too large bandwidth will pro-
duce a less variance but a larger bias, and an oversmoothed calibration function.
For chosing of optimum bandwidth see [2, 3].

2.6. Conditional copula selection. Suppose we have a (finite) set of candidate
families C = {Cq : q = 1, ..., Q} with copula parameter function θq (.) , q = 1, ...Q
from which we want to choose the one that best represents the data at hand. Since
the estimation depends on the bandwidth parameter h, these estimates are denoted
by θ̂hq (X), q = 1, ...Q. Hence, from each family there is a candidate model and we
face the task of choosing the family whose representative best fits the data. For
selecting to copula family see [2, 3].

2.7. Generalized likelihood ratio test for copula functions. Suppose that
{(U11, U21, X1) , ..., (U1n, U2n, Xn)} is a random sample from the conditional copula
model (6). The null hypothesis of interest restricts the space of calibration functions
to a subspace f that is fully specified parametrically, such as the set of all linear
functions on χ.Then we are interested in testing

H0 : η (.) ∈ f versus H1 : η (.) /∈ f. (7)

For testing a parametric null hypothesis versus a nonparametric alternative hy-
pothesis, e.g. (7), in [16], Fan et al. developed exploration of the asymptotic
distribution of the ratio test falls within the scope of the generalized likelihood
ratio test (GLRT). According to the test, the log-likelihood function under the null
hypothesis is given by

Ln (H0, η̃) =

n∑
i=1

ln c{U1i, U2i|g−1 (η̃ (Xi))}, (8)

and the alternative hypothesis is given by

Ln (H1, η̂h) =

n∑
i=1

ln c{U1i, U2i|g−1 (η̂h (Xi))}. (9)
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The difference between the two log-likelihoods allows us to evaluate the evidence in
the data in favor of (or against) the null model. Hence, GLRT statistic is given by

λn (h) = Ln (H1, η̂h)− Ln (H0, η̃) . (10)

Since nonparametric maximum likelihood estimators are diffi cult to obtain and may
not even exist, in [16], Fan et al. suggested using any reasonable nonparametric
estimator under the alternative model. In particular, using a local polynomial esti-
mator to specify the alternative model of a number of hypothesis testing problems,
in [16], Fan et al. showed that the null distribution of the GLRT statistic follows
asymptotically a chi-square distribution with the number of degrees of freedom in-
dependent of the nuisance parameters. Namely, let |χ| be the range of the covariate
X and define

rK =

(
K − 1

2K ∗K
)

(0)∫ (
K − 1

2K ∗K
)2

(t) dt
, cK =

(
K − 1

2
K ∗K

)
(0) . (11)

Then, rKλn (h) ∼= χ2

rKcK
|χ|
h

[2, 4]. Also, for simplicity, according to the Epanech-

nikov kernel, some values in identifying the degrees of freedom are given in the
following table [37]:

Table 2. Kernel-Dependent Constants from the pth Degree Local Polynomial Fit

p K ∗K (0) K (0) (2K −K ∗K) (0) rK
0,1 0.60 0.75 0.90 2.1153
2,3 1.25 1.4062 1.5625 1.9755
4,5 1.8930 2.0508 2.2085 1.9336

3. Application to earthquake data

In this study, it is investigated the following two regions of Turkey by the con-
siderations of earthquake zones map in geographic information system, the seismic
activity maps to Turkey, its vicinity in the Integrated Homogeneous Earthquake
Catalog and Turkey’s fault lines (North Anatolia, Eastern Anatolia, Western Ana-
tolia), as follows [35, 36]:

Figure 1. Separation of regions of Turkey.
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Region 1, if latitude ≥ 39.5◦; Region 2, if latitude < 39.5◦ and longitude ≤
31◦; and using the earthquake occurrence data (Richter magnitude is equal to 4
or greater than 4 in the years 1901-2014) of these regions, it is aimed to model
the dependence structure of Semi-Markov model via conditional copulas in which
the copula is parametric and its parameter varies as the covariate, based on the
assumption that the successive earthquakes in the same structural discontinuity
should not be independent events and the occurrence of the earthquakes should be
influenced by the elapsed time between them.
In the modeling process with conditional copula, firstly, conditional marginals

are estimated by the following equations:

P
(
Yi−1 ≤ y|Xti−1 = x

)
=
∂C (F (x) , G (y))

∂F (x)
, (12)

P
(
Xti ≤ x1|Xti−1 = x

)
=
∂C (F (x) , F (x1))

∂F (x)
, (13)

where Xti−1 , Xti and Yi−1 = ti − ti−1 are respectively the earthquake magnitude
at time ti−1, the earthquake magnitude at time ti and the elapsed time between
successive earthquakes.
The first step in specifying the conditional marginal distributions given by equa-

tions (12) and (13) is to find the marginal distributions of the elapsed time between
successive earthquakes and the earthquake magnitude at time ti. Accordingly, the
distributions determined are as follows:

Table 3. The marginal distributions of the elapsed time between successive
earthquakes and the earthquake magnitudes

Region 1 Region 2

Yi−1 ≈Weibull

 α = 0.3910
β = 0.0396
γ = 0

 Yi−1 ≈Weibull

 α = 0.4237
β = 0.0232
γ = 0


Xti ≈ Gen− Pareto

 k = −0.2371
σ = 0.7564
µ = 3.9296

 Xti ≈ Gen− Pareto

 k = −0.1455
σ = 0.5741
µ = 3.9454


The next and final step in specifying the conditional marginal distributions is the
selection of the most appropriate copula which describe the dependence between
variables Xti−1 and Yi−1 and Xti−1 and Xti . Accordingly, copula parameter esti-
mation, the log-likelihood value l(ϑ̂) and simulation results regarding each region
are as follows:
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Table 4.Copula parameter estimation, the log-likelihood value and
simulation results for Region 1

Copula θ̂ (Xti−1 , Yi−1) l(ϑ̂)(Xti−1 , Yi−1) θ̂(Xti−1 , Xti) l(ϑ̂)(Xti−1 , Xti)

CClaytonθ 0.0228 -123.240 0.8511 -1170.04
CFrankθ 0.2912 -121.998 2.9303 -1171.55
CGumbelθ 1.0311 -122.007 1.2671 -1240.14
CCelebioğluθ 0.1330 -122.099 0.9990 -1183.40
CFGMθ 0.1390 -122.065 0.9990 -1189.90
CGalambosθ 0.0009 -123.508 0.0009 -1308.78
CTawnθ 0.1750 -116.974 0.6240 -1225.25
CJoeθ 1.8810 -330.186 2.0080 -1421.09
Regarding Region 1, goodness of fit measure hint towards the conclusion that

the Tawn copula with θ̂ = 0.1750 best represents the dependence structure be-
tween Xti−1 and Yi−1 (p = 0.2768) . Also, the Clayton copula with θ̂ = 0.8511 best
represents the dependence structure between Xti−1 and Xti (p = 0.0413) .

Table 5.Copula parameter estimation, the log-likelihood value and
simulation results for Region 2

Copula θ̂(Xti−1 , Yi−1) l(ϑ̂)(Xti−1 , Yi−1) θ̂(Xti−1 , Xti) l(ϑ̂)(Xti−1 , Xti)

CClaytonθ 1.4509E-6 1492.62 0.6674 -1036.31
CFrankθ -0.2770 1494.64 2.5237 -1007.22
CGumbelθ 1.0362 1498.33 1.3156 -1023.04
CCelebioğluθ -0.1100 1494.21 0.9020 -1029.01
CFGMθ -0.1220 1494.41 1.000 -1025.98
CGalambosθ 0.0009 1492.62 0.0009 -1163.93
CTawnθ 0.0920 1497.60 0.6400 -1017.04
CJoeθ 1.7810 1243.94 2.1350 -1221.94
Regarding Region 2, goodness of fit measures hint towards the conclusion that

the Gumbel copula with θ̂ = 1.0362 best represents the dependence structure be-
tween Xti−1 and Yi−1 (p = 0.1296) . Also, the Frank copula with θ̂ = 2.5237 best
represents the dependence structure between Xti−1 and Xti (p = 0.0828) .
After estimating conditional marginals, it is needed to estimate the calibration

function in the local copula-likelihood method for estimating the functional rela-
tionship between the copula parameter and the covariate. For this purpose, firstly,
in the local constant estimation (p = 0) , under the considered copula families, the
optimum bandwidths regarding each region are chosen as follows:
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Table 6. The optimum bandwidths in the local constant estimation

Region Clayton Frank Gumbel Çelebioğlu FGM Galambos Tawn Joe
1 0.20 1.19 0.92 0.33 0.20 1.19 0.55 3.30
2 0.40 0.58 0.40 0.40 0.40 0.40 0.48 0.40
In the local copula-likelihood method, another stage is the selection of the most

appropriate conditional copula regarding each region under the optimum band-
widths. Our copula selection method chooses the FGM family for Region 1, having
the minimum cross-validated prediction error with value 209.4950, the Galambos
family with value 312.5947 for Region 2.
For comparison, we also perform the global estimations regarding each region

with constant forms to be ã01 = 0.449375, ã02 = −1, 164563.Then, under the
chosen copula, for each region, we perform the generalized likelihood ratio test to
check whether the earthquake magnitude at time ti−1 has a significant effect on
the strength of dependence. According to this, results regarding each region are as
follows:
For Region 1, under FGM copula, using optimum bandwidth, we obtain the

degrees of freedom of chi-square distribution as 15.71. The test statistic 35.197
yields a p-value to be 0.003735. Thus, we conclude that the effect of Xti−1 , the
earthquake magnitude at time ti−1, on the strength of dependence between Xti ,the
earthquake magnitude at time ti, and Yi−1, the elapsed time between successive
earthquakes, is statistically significant.
For Region 2, under Galambos copula, using optimum bandwidth, we obtain the

degrees of freedom of chi-square distribution as 7.139. The test statistic 27.6269
yields a p-value to be 0.000257. Thus, we conclude that the effect of Xti−1 , the
earthquake magnitude at time ti−1, on the strength of dependence between Xti ,the
earthquake magnitude at time ti,and Yi−1, the elapsed time between successive
earthquakes, is statistically significant.
Since, for regions 1 and 2, we conclude that the effect of Xti−1 on the strength

of dependence between Xti and Yi−1 is statistically significant, for this regions,
under the chosen copulas, we perform the generalized likelihood ratio test to check
whether the functional relationship between the covariate and the calibration func-
tion is linear when approached the calibration function with local linear estimates.
According to this, in the local linear estimation (p = 1) , the optimum bandwidths
are chosen as follows:

Table 7. The optimum bandwidths in the local linear estimation

Region Clayton Frank Gumbel Çelebioğlu FGM Galambos Tawn Joe
1 1.98 2.56 1.54 0.43 0.33 1.19 0.55 1.19
2 0.58 2.50 0.83 0.40 0.48 0.48 1.20 1.00
Our copula selection method chooses the FGM family for Region 1, having the

minimum cross-validated prediction error with value 209.1614, the Galambos family
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with value 312.6570 for Region 2. For comparison, we also perform the parametric
estimations regarding Region 1 and Region 2 with linear forms to be ã01 = 0.666436
and ã11 = −0.047099, ã02 = −2.676213 and ã12 = 0.325290, respectively. Accord-
ing to the generalized likelihood ratio test, obtained results regarding Region 1 and
Region 2 are as follows:
For Region 1, under the FGM copula, using optimum bandwidth, we obtain the

degrees of freedom of chi-square distribution as 9.4331. The test statistic 20.31946
yields a p-value to be 0.016043. Thus, we conclude that the linear effect of Xti−1 ,
the earthquake magnitude at time ti−1, on the strength of dependence betweenXti ,
the earthquake magnitude at time ti, and Yi−1, the elapsed time between successive
earthquakes, is statistically significant. So, for Region 1, the copula parameter is
calculated to be θ̂1

(
xti−1

)
= sin

(
0.666436− 0.047099xti−1

)
.

For Region 2, under the Galambos copula, using optimum bandwidth, we ob-
tain the degrees of freedom of chi-square distribution as 5.9442. The test statistic
16.81059 yields a p-value to be 0.010004. Thus, we conclude that the linear effect
of Xti−1 , the earthquake magnitude at time ti−1,on the strength of dependence be-
tween Xti ,the earthquake magnitude at time ti, and Yi−1,the elapsed time between
successive earthquakes, is statistically significant. So, for Region 2, the copula pa-
rameter is calculated to be θ̂2

(
xti−1

)
= exp

(
−2.676213 + 0.325290xti−1

)
.

According to the results obtained regarding regions 1 and 2, since the effect
of Xti−1 on the strength of dependence between Xti and Yi−1 is statistically sig-
nificant, the dependence structure of Semi-Markov model will be modeled with
conditional copula. According to this, for Region 1, to be among a number of
copula families the one that best represents dependence structure between Xti−1

and Xti is Clayton (unconditional) copula with θ̂ = 0.8511 and Xti ≈ Gen −
Pareto (k = −0.2371, σ = 0.7564, µ = 3.9296) the conditional marginal distribution
can be written as follows:

P
(
Xti ≤ x1|Xti−1 = x

)
= (F (x))

−1.8511
A, (14)

where A =
(

(F (x))
−0.8511

+ (F (x1))
−0.8511 − 1

)(( −1
0.8511 )−1)

.Additionally, for Re-

gion 1, to be among a number of copula families the one that best represents
dependence structure between Xti−1 and Yi−1 is Tawn (unconditional) copula with
θ̂ = 0.175, Xti ≈ Gen − Pareto (k = −0.2371, σ = 0.7564, µ = 3.9296) and Yi−1 ≈
Weibull (α = 0.3910, β = 0.0396, γ = 0) , the conditional marginal distribution can
be written as follows:

P
(
Yi−1 ≤ y|Xti−1 = x

)
= G (y)B [1− 0.175 ln (G (y))M ] , (15)

where B = exp
[
−0.175(ln(F (x)))(ln(G(y)))

(ln(F (x)G(y)))

]
and M =

[
(ln(F (x)G(y)))−(ln(F (x)))

(ln(F (x)G(y)))2

]
. To

be the conditional marginal distributions given by the equations (14) and (15),
P
(
Yi−1 ≤ y|Xti−1 = x

)
= U1 and P

(
Xti ≤ x1|Xti−1 = x

)
= U2 and among a num-

ber of copula families the one that best represents dependence structure between
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Xti and Yi−1 is FGM (conditional) copula with θ̂1 (x) = sin (0.666436− 0.047099x) ,
the conditional joint distribution can be written as follows:

P
{
Xti ≤ x1, Yi−1 ≤ y|Xti−1 = x

}
= u1u2 + θ̂1 (x)u1u2 (1− u1) (1− u2) . (16)

Similarly, for Region 2, to be among a number of copula families the one that best
represents dependence structure between Xti−1 and Xti is Frank (unconditional)
copula with θ̂ = 2.5237 andXti ≈ Gen−Pareto (k = −0.1455, σ = 0.5741, µ = 3.9454) ,
the conditional marginal distribution can be written as follows:

P
(
Xti ≤ x1|Xti−1 = x

)
=

N (E − 1)

(exp (−2.5237)− 1) + (N − 1) (E − 1)
, (17)

where N = exp (−2.5237F (x)) and E = exp (−2.5237F (x1)) . Additionally, for
Region 2, to be among a number of copula families the one that best represents
dependence structure between Xti−1 and Yi−1 is Gumbel (unconditional) copula
with θ̂ = 1.0362, Xti ≈ Gen − Pareto (k = −0.1455, σ = 0.5741, µ = 3.9454) and
Yi−1 ≈ Weibull (α = 0.4237, β = 0.0232, γ = 0), the conditional marginal distribu-
tion can be written as follows:

P
(
Yi−1 ≤ y|Xti−1 = x

)
= exp

(
−J 1

1.0362

)( (− ln (F (x)))
0.0362

F (x)

)(
J(( 1

1.0362 )−1)
)
,

(18)

where J =
(

(− ln (F (x)))
1.0362

+ (− ln (G (y)))
1.0362

)
. To be the conditional mar-

ginal distributions given by the equations (17) and (18), P
(
Yi−1 ≤ y|Xti−1 = x

)
=

U1 and P
(
Xti ≤ x1|Xti−1 = x

)
= U2 and among a number of copula families the

one that best represents dependence structure between Xti and Yi−1 is Galambos
(conditional) copula with θ̂2 (x) = exp (−2.676213 + 0.325290x), the conditional
joint distribution can be written as follows:

P
{
Xti ≤ x1, Yi−1 ≤ y|Xti−1 = x

}
= u1u2I, (19)

where I = exp

((
(− ln (u1))

−θ̂2(x)
+ (− ln (u2))

−θ̂2(x)
)( −1

θ̂2(x)

))
.

As we have already mentioned, it is accepted that it is impossible either to know
where the earthquakes occur or when they occur, their magnitudes. However, the
equations obtained above show that the parameters of possible earthquakes and the
severity of ground motions they created can be estimated probabilistically.

4. Result

Turkey is a country in which earthquake hazard is extremely high in terms of
geological, historical and instrumental earthquake activities since it takes part on
the Alpine-Himalayan (Mediterranean) seismic belt, one of the important seismic
belts of the world. In two destructive earthquakes Marmara, August 17, 1999 and
Düzce, November 12, 1999, thousands of people died and tens of thousands were
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wounded, hundreds of thousands of buildings were destroyed. The experiences we
had in the past indicate that we will face with these type destructive earthquakes
in the future. For this purpose, with some statistical analysis and predictions done
in this study, we tried to show that the casualties and damage occurred in the
results of the earthquakes in Turkey, an earthquake zone, could be prevented to
some extent.
In this study on the basis of seismic gap theory, it is aimed to model the depen-

dence structure of Semi-Markov model via conditional copulas. According to results
obtained, for regions 1 and 2 with high seismicity, we conclude that the variation in
the strength of dependence between the time elapsed from the previous seismic event
and the magnitude of the next seismic event at different magnitudes of previous
seismic event is highly significant and using the parametric linear form in the cop-
ula parameter will be adequately characterized, namely FGM (conditional) copula
parameter θ̂1

(
xti−1

)
= sin

(
0.666436− 0.047099xti−1

)
for Region 1 and Galambos

(conditional) copula parameter θ̂2

(
xti−1

)
= exp

(
−2.676213 + 0.325290xti−1

)
for

Region 2. According to these results, when 1999 Marmara earthquake with a mag-
nitude 7.4 that occurred in region 1 is considered, the probability of an earthquake
with a magnitude greater than 7 in region 1 in the next 20 years is insignificant.
Similarly, when 2017 Bodrum earthquake with a magnitude 6.5 that has occurred
in region 2 recently is also considered, the probability that an earthquake with a
magnitude greater than 7 in region 2 in the next 10 years is insignificant. Further-
more, with these conclusions, we have emphasized the rightfulness of the use of
the Semi-Markov model in the previous studies [6, 7, 8] to obtain the earthquake
occurrence probabilities in the regions 1 and 2.

Acknowledgement. I thank to the reviewers for their comments and suggestions
for the manuscript.
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