COEFFICIENT BOUNDS FOR A CERTAIN SUBCLASS OF ANALYTIC AND BI-UNIVALENT FUNCTIONS

NIZAMI MUSTAFA AND VEYSEL NEZIR

Abstract

In this paper, we introduce and investigate a new subclass of the analytic and bi-univalent functions in the open unit disk in the complex plane. For the functions belonging to this class, we obtain estimates on the first three coefficients in their Taylor-Maclaurin series expansion. Some interesting corollaries and applications of the results obtained here are also discussed.

1. Introduction and Preliminaries

Let A denote the class of all complex-valued analytic functions in the open unit disk $U=\{z \in \mathbb{C}:|z|<1\}$ in the complex plane of the form

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots=z+\sum_{n=2}^{\infty} a_{n} z^{n}, z \in U . \tag{1.1}
\end{equation*}
$$

Furthermore, by S we shall denote the class of all functions in A which are univalent in U. Some of the important and well-investigated subclasses of S include the class $S^{*}(\alpha)$ of starlike functions of order α and the class $C(\alpha)$ of convex functions of order $\alpha(\alpha \in[0,1))$.

By definition

$$
S^{*}(\alpha)=\left\{f \in S: \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, z \in U\right\}, \alpha \in[0,1)
$$

and

$$
C(\alpha)=\left\{f \in S: \operatorname{Re}\left(1+\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, z \in U\right\}, \alpha \in[0,1) .
$$

The above mentioned function classes have been recently investigated rather extensively in [10, 20, 26, 29] and the references therein.

It is well-known that every function $f \in S$ has an inverse f^{-1}, defined by $f^{-1}(f(z))=z, z \in U$ and $f\left(f^{-1}(w)\right)=w, w \in D=\left\{w \in \mathbb{C}:|w|<r_{0}(f)\right\}$, $r_{0}(f) \geq 1 / 4$ where $f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots$.

Received by the editors: February 28, 2018, Accepted: October 08,2018.
2010 Mathematics Subject Classification. Primary 30C45, 30C50.
Key words and phrases. Univalent functions, analytic functions, bi-univalent functions.

An analytic function f is subordinate to an analytic function ϕ, written $f(z) \prec$ $\phi(z)$, provided there is an analytic function $u: U \rightarrow U$ with $u(0)=0$ and $|u(z)|<1$ satisfying $f(z)=\phi(u(z))$ (see, for example, [14]).

Ma and Minda [12] unified various subclasses of starlike and convex functions for which either of the quantity $\frac{z f^{\prime}(z)}{f(z)}$ or $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}$ is subordinate to a more superordinate function. For this purpose, they considered an analytic function ϕ with positive real part in U, with $\phi(0)=1, \phi^{\prime}(0)>0$ and ϕ maps U onto a region starlike with respect to 1 and symmetric with respect to the real axis. The class of Ma-Minda starlike and Ma-Minda convex functions consists of functions $f \in A$ satisfying the subordination $\frac{z f^{\prime}(z)}{f(z)} \prec \phi(z)$ and $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \phi(z)$, respectively. These classes denoted, respectively, by $S^{*}(\phi)$ and $C(\phi)$.

An analytic function $f \in S$ is said to be bi- starlike of Ma-Minda type or biconvex of Ma-Minda type if both f and f^{-1} are, respectively, Ma-Minda starlike or Ma-Minda convex functions. These classes are denoted, respectively, by $S_{\Sigma}^{*}(\phi)$ and $C_{\Sigma}(\phi)$. In the sequel, it is assumed that ϕ is an analytic function with positive real part in U, satisfying $\phi(0)=1, \phi^{\prime}(0)>0$ and $\phi(U)$ is starlike with respect to 1 and symmetric with respect to the real axis. Such a function has a series expansion of the following form:

$$
\begin{equation*}
\phi(z)=1+b_{1} z+b_{2} z^{2}+b_{3} z^{3}+\cdots, b_{1}>0 . \tag{1.2}
\end{equation*}
$$

A function $f \in A$ is said to be bi-univalent in U if both f and f^{-1} are univalent. Let Σ denote the class of bi-univalent functions in U given by 1.1).

Examples of functions in the class Σ are

$$
\frac{z}{1-z}, \quad \ln \frac{1}{1-z}, \quad \ln \sqrt{\frac{1+z}{1-z}}
$$

However, the familiar Koebe function is not a member of Σ. Other common examples of functions in A such as

$$
\frac{2 z-z^{2}}{2} \text { and } \frac{z}{1-z^{2}}
$$

are also not members of Σ.
Earlier, Brannan and Taha [3] introduced certain subclasses of bi-univalent function class Σ, namely bi-starlike function of order α denoted $S_{\Sigma}^{*}(\alpha)$ and bi-convex function of order α denoted $C_{\Sigma}(\alpha)$ corresponding to the function classes $S^{*}(\alpha)$ and $C(\alpha)$, respectively. Thus, following Brannan and Taha [3], a function $f \in \Sigma$ is in the classes $S_{\Sigma}^{*}(\alpha)$ and $C_{\Sigma}(\alpha)$, respectively, if each of the following conditions is satisfied:

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, z \in U, \operatorname{Re}\left(\frac{z g^{\prime}(w)}{g(w)}\right)>\alpha, w \in D
$$

and

$$
\operatorname{Re}\left(1+\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, z \in U, \operatorname{Re}\left(1+\frac{z g^{\prime}(w)}{g(w)}\right)>\alpha, w \in D
$$

For each of the function classes $S_{\Sigma}^{*}(\alpha)$ and $C_{\Sigma}(\alpha)$, they found non-sharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$.

Lewin [11] investigated bi-univalent function class Σ and showed that $\left|a_{2}\right|<1.51$. Subsequently, Brannan and Clunie [2] conjectured that $\left|a_{2}\right|<\sqrt{2}$.

For a brief history and interesting examples of functions which are in the class Σ, together with various other properties of this bi-univalent function class, one can refer the work of Srivastava et al. [22] and references therein. In [22], Srivastava et al. reviewed the study of coefficient problems for bi-univalent functions. Also, various subclasses of bi-univalent function class were introduced and non-sharp estimates on the first two coefficients in the Taylor-Maclaurin series expansion 1.1) were found in several recent investigations (see, for example, [1, 4, 5, 6, 7, 8, 5, 13, (15, 19, 21, 23, 24, 25, 27, 28]. Recently, Orhan et al. [17] reviewed the study of coefficient problems for the subclass $\mathrm{NP}_{\Sigma}^{\mu, \lambda}(\beta, h)$ of bi-univalent functions.

However, the problem to find the coefficient bounds on $\left|a_{n}\right|, n=3,4, \ldots$ for functions $f \in \Sigma$ is presumably still an open problem (see, for example [2, 11, 16]).

Inspired by the aforementioned works, we define a subclass of Σ as follows.
Definition 1.1. A function $f \in \Sigma$ given by (1.1) is said to be in the class $M_{\Sigma}(\phi, \beta)$, $\beta \geq 0$, where ϕ is an analytic function given by 1.2 , if the following conditions are satisfied:

$$
\begin{aligned}
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\beta}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{1-\beta} & \prec \phi(z), z \in U \\
\left(\frac{z g^{\prime}(w)}{g(w)}\right)^{\beta}\left(1+\frac{z g^{\prime \prime}(w)}{g^{\prime}(w)}\right)^{1-\beta} & \prec \phi(w), w \in D
\end{aligned}
$$

where $g=f^{-1}$.
Remark 1.2. Taking $\beta=1$, we have $M_{\Sigma}(\phi, 1)=S_{\Sigma}^{*}(\phi)$; that is,

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \phi(z), z \in U \text { and } \frac{z g^{\prime}(w)}{g(w)} \prec \phi(w), w \in D
$$

if and only if $f \in S_{\Sigma}^{*}(\phi)$, where $g=f^{-1}$.
Remark 1.3. Taking $\beta=0$, we have $M_{\Sigma}(\phi, 0)=C_{\Sigma}(\phi)$; that is,
$1+\frac{z f^{\prime}(z)}{f(z)} \prec \phi(z), z \in U$ and $1+\frac{z g^{\prime}(w)}{g(w)} \prec \phi(w), w \in D$ if and only if $f \in C_{\Sigma}(\phi)$, where $g=f^{-1}$.

Remark 1.4. These classes $S_{\Sigma}^{*}(\phi)$ and $C_{\Sigma}(\phi)$ were investigated by Ma and Minda 12.

The object of this paper is to introduce a new subclass $M_{\Sigma}(\phi, \beta)$ of the function class Σ that is wider (respect to β) to the subclasses examined so far and to find
estimates on the first three Taylor-Maclaurin coefficients $\left|a_{2}\right|,\left|a_{3}\right|$ and $\left|a_{4}\right|$ for the functions in this class.

To prove our main results, we have to recall the following well-known Lemma 18.

Lemma 1.5. Let P be the class of all analytic functions $p(z)$ of the form

$$
p(z)=1+p_{1} z+p_{2} z^{2}+\cdots=1+\sum_{n=1}^{\infty} p_{n} z^{n}
$$

satisfying $\operatorname{Re}(p(z))>0, z \in U$ and $p(0)=1$. Then,

$$
\begin{gathered}
2 p_{2}=p_{1}^{2}+\left(4-p_{1}^{2}\right) x \\
4 p_{3}=p_{1}^{3}+2\left(4-p_{1}^{2}\right) p_{1} x-\left(4-p_{1}^{2}\right) p_{1} x^{2}+2\left(4-p_{1}^{2}\right)\left(1-|x|^{2}\right) z
\end{gathered}
$$

for some x, z with $|x| \leq 1,|z| \leq 1$ and $p_{1} \in[0,2]$.

2. Coefficient bounds for the function class $M_{\Sigma}(\phi, \beta)$

In this section, we will try to find the estimates on the coefficients $\left|a_{2}\right|,\left|a_{3}\right|$ and $\left|a_{4}\right|$ for the functions in the class $M_{\Sigma}(\phi, \beta)$.
Theorem 2.1. Let the function $f(z)$ given by (1.1) be in the class $M_{\Sigma}(\phi, \beta), \beta \in$ $[0,1]$, where ϕ is an analytic function given by 1.2). Then,

$$
\left|a_{2}\right| \leq \frac{b_{1}}{2-\beta},\left|a_{3}\right| \leq \begin{cases}\frac{b_{1}^{2}}{(2-\beta)^{2}}, & \text { if } b_{1} \leq \frac{(2-\beta)^{2}}{2(3-2 \beta)} \\ \frac{b_{1}}{2(3-2 \beta)}, & \text { if } b_{1}>\frac{(2-\beta)^{2}}{2(3-2 \beta)}\end{cases}
$$

and

$$
\left|a_{4}\right| \leq \min \left\{\frac{\left|b_{1}^{3} \varphi(\beta)-6(2-\beta)^{3} \Lambda\right|+6(2-\beta)^{3}\left|2 b_{2}-b_{1}\right|}{18(2-\beta)^{3}(4-3 \beta)}, \frac{b_{1}}{3(4-3 \beta)}\right\}
$$

where $\varphi(\beta)=\beta^{3}-3 \beta^{2}-46 \beta+60>0$ and $\Lambda=\Lambda\left(b_{1}, b_{2}, b_{3}\right)=b_{1}-2 b_{2}+b_{3}$.
Proof. Let $f \in M_{\Sigma}(\phi, \beta), \beta \in[0,1]$, where ϕ is an analytic function given by 1.2 and $g=f^{-1}$. Then, there are analytic functions $u: U \rightarrow U, v: D \rightarrow D$ with $u(0)=0=v(0),|u(z)|<1,|v(w)|<1$ and satisfying

$$
\begin{align*}
& \left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\beta}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{1-\beta}=\phi(u(z)) \\
& \text { and }\left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\beta}\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)^{1-\beta}=\phi(v(w)) . \tag{2.1}
\end{align*}
$$

Let us define the functions $p(z)$ and $q(w)$ by
$p(z)=\frac{1+u(z)}{1-u(z)}=1+\sum_{n=1}^{\infty} p_{n} z^{n}, z \in U$ and $q(w)=\frac{1+v(w)}{1-v(w)}=1+\sum_{n=1}^{\infty} q_{n} w^{n}, w \in D$.
It follows that

$$
\begin{equation*}
u(z)=\frac{p(z)-1}{p(z)+1}=\frac{1}{2}\left\{p_{1} z+\left[p_{2}-\frac{p_{1}^{2}}{2}\right] z^{2}+\left[p_{3}-p_{1} p_{2}+\frac{p_{1}^{3}}{4}\right] z^{3}+\cdots\right\} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
v(w)=\frac{q(w)-1}{q(w)+1}=\frac{1}{2}\left\{q_{1} w+\left[q_{2}-\frac{q_{1}^{2}}{2}\right] w^{2}+\left[q_{3}-q_{1} q_{2}+\frac{q_{1}^{3}}{4}\right] w^{3}+\cdots\right\} \tag{2.3}
\end{equation*}
$$

Using 2.2 and 2.3 in 1.2 , we can easily write

$$
\begin{align*}
\phi(u(z))= & 1+\frac{b_{1} p_{1}}{2} z+\left[\frac{b_{1}}{2}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{1}{4} b_{2} p_{1}^{2}\right] z^{2} \tag{2.4}\\
& +\left[\frac{b_{1}}{2}\left(p_{3}-p_{1} p_{2}+\frac{p_{1}^{3}}{4}\right)+\frac{b_{2} p_{1}}{2}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{b_{3} p_{1}^{3}}{8}\right] z^{3}+\cdots
\end{align*}
$$

and

$$
\begin{align*}
\phi(v(w))= & 1+\frac{b_{1} q_{1}}{2} w+\left[\frac{b_{1}}{2}\left(q_{2}-\frac{q_{1}^{2}}{2}\right)+\frac{1}{4} b_{2} q_{1}^{2}\right] w^{2} \\
& +\left[\frac{b_{1}}{2}\left(q_{3}-q_{1} q_{2}+\frac{q_{1}^{3}}{4}\right)+\frac{b_{2} q_{1}}{2}\left(q_{2}-\frac{q_{1}^{2}}{2}\right)+\frac{b_{3} q_{1}^{3}}{8}\right] w^{3}+\cdots . \tag{2.5}
\end{align*}
$$

Also, using 2.4 and 2.5 in 2.1 and equating the coefficients, we get

$$
\begin{gather*}
(2-\beta) a_{2}=\frac{b_{1} p_{1}}{2} \tag{2.6}\\
2(3-2 \beta) a_{3}+\frac{1}{2}\left(\beta^{2}+5 \beta-8\right) a_{2}^{2}=\frac{b_{1}}{2}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{1}{4} b_{2} p_{1}^{2} \tag{2.7}\\
3(4-3 \beta) a_{4}+\left(4 \beta^{2}+11 \beta-18\right) a_{2} a_{3}-\frac{1}{6}\left(\beta^{3}+21 \beta^{2}+20 \beta-48\right) a_{2}^{3} \\
=\frac{b_{1}}{2}\left(p_{3}-p_{1} p_{2}+\frac{p_{1}^{3}}{4}\right)+\frac{b_{2} p_{1}}{2}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{b_{3} p_{1}^{3}}{8} \tag{2.8}
\end{gather*}
$$

and

$$
\begin{gather*}
-(2-\beta) a_{2}=\frac{b_{1} q_{1}}{2} \tag{2.9}\\
-2(3-2 \beta) a_{3}+\frac{1}{2}\left(\beta^{2}-11 \beta+16\right) a_{2}^{2}=\frac{b_{1}}{2}\left(q_{2}-\frac{q_{1}^{2}}{2}\right)+\frac{1}{4} b_{2} q_{1}^{2} \tag{2.10}\\
-3(4-3 \beta) a_{4}+\left(4 \beta^{2}-34 \beta+42\right) a_{2} a_{3}+\frac{1}{6}\left(\beta^{3}-27 \beta^{2}+158 \beta-192\right) a_{2}^{3} \\
=\frac{b_{1}}{2}\left(q_{3}-q_{1} q_{2}+\frac{p_{1}^{3}}{4}\right)+\frac{b_{2} q_{1}}{2}\left(q_{2}-\frac{q_{1}^{2}}{2}\right)+\frac{b_{3} q_{1}^{3}}{8} \tag{2.11}
\end{gather*}
$$

From (2.6) and (2.9), we have

$$
\begin{equation*}
a_{2}=\frac{b_{1} p_{1}}{2(2-\beta)}=\frac{-b_{1} q_{1}}{2(2-\beta)} \tag{2.12}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
p_{1}=-q_{1} . \tag{2.13}
\end{equation*}
$$

By subtracting from (2.7) to 2.10 and considering 2.12 and 2.13 , we can easily obtain

$$
\begin{equation*}
a_{3}=\frac{b_{1}^{2} p_{1}^{2}}{4(2-\beta)^{2}}+\frac{b_{1}\left(p_{2}-q_{2}\right)}{8(3-2 \beta)} \tag{2.14}
\end{equation*}
$$

On the other hand, subtracting (2.11) from 2.8 and considering (2.12 and (2.14), we get

$$
\begin{align*}
a_{4}= & \frac{b_{1}^{3} p_{1}^{3} \varphi(\beta)}{144(2-\beta)^{3}(4-3 \beta)}+\frac{5 b_{1}^{2} p_{1}\left(p_{2}-q_{2}\right)}{32(2-\beta)(3-2 \beta)}+\frac{b_{1}\left(p_{3}-q_{3}\right)}{12(4-3 \beta)} \tag{2.15}\\
& +\frac{\left(b_{2}-b_{1}\right) p_{1}\left(p_{2}+q_{2}\right)}{12(4-3 \beta)}-\frac{p_{1}^{3} \Lambda}{24(4-3 \beta)}
\end{align*}
$$

where $\varphi(\beta)=\beta^{3}-3 \beta^{2}-46 \beta+60>0$ and $\Lambda=\Lambda\left(b_{1}, b_{2}, b_{3}\right)=b_{1}-2 b_{2}+b_{3}$.
Since $p_{1}=-q_{1}$, according to Lemma 1.5 we write

$$
\begin{equation*}
p_{2}-q_{2}=\frac{4-p_{1}^{2}}{2}(x-y), p_{2}+q_{2}=p_{1}^{2}+\frac{4-p_{1}^{2}}{2}(x+y) \tag{2.16}
\end{equation*}
$$

and

$$
\begin{align*}
p_{3}-q_{3}= & \frac{p_{1}^{3}}{2}+\frac{p_{1}\left(4-p_{1}^{2}\right)}{2}(x+y)-\frac{p_{1}\left(4-p_{1}^{2}\right)}{4}\left(x^{2}+y^{2}\right) \tag{2.17}\\
& +\frac{4-p_{1}^{2}}{2}\left[\left(1-|x|^{2}\right) z-\left(1-|y|^{2}\right) w\right]
\end{align*}
$$

for some x, y, z, w with $|x| \leq 1,|y| \leq 1,|z| \leq 1,|w| \leq 1$. In this case, since $p_{1} \in[0,2]$, we may assume without any restriction that $t \in[0,2]$, where $t=\left|p_{1}\right|$. Hence, we find from 2.12 that

$$
\left|a_{2}\right| \leq \frac{b_{1}}{2-\beta}
$$

Substituting the first expression (2.16) in 2.14, we obtain

$$
a_{3}=\frac{b_{1}^{2} p_{1}^{2}}{4(2-\beta)^{2}}+\frac{b_{1}\left(4-p_{1}^{2}\right)}{16(3-2 \beta)}(x-y)
$$

Applying triangle inequality on the last equation and taking $\xi=|x|, \eta=|y|$, we have

$$
\begin{equation*}
\left|a_{3}\right| \leq c_{1}(t)+c_{2}(t)(\xi+\eta) \tag{2.18}
\end{equation*}
$$

where

$$
c_{1}(t)=\frac{b_{1}^{2} t^{2}}{4(2-\beta)^{2}} \geq 0, c_{2}(t)=\frac{b_{1}\left(4-t^{2}\right)}{16(3-2 \beta)} \geq 0, t \in[0,2]
$$

Let us define the function $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ as follows:

$$
\begin{equation*}
F(\xi, \eta, t)=c_{1}(t)+c_{2}(t)(\xi+\eta), \quad(\xi, \eta) \in \Omega, t \in[0,2] \tag{2.19}
\end{equation*}
$$

where $\Omega=\{(\xi, \eta): \xi, \eta \in[0,1]\}$.
From 2.18 and 2.19, we can write

$$
\begin{equation*}
\left|a_{3}\right| \leq \min \{\max \{F(\xi, \eta, t):(\xi, \eta) \in \Omega\}: t \in[0,2]\} \tag{2.20}
\end{equation*}
$$

We can easily show that

$$
\begin{equation*}
\max \{F(\xi, \eta, t):(\xi, \eta) \in \Omega\}=F(1,1, t)=c_{1}(t)+2 c_{2}(t), t \in[0,2] \tag{2.21}
\end{equation*}
$$

Now, let us define the function $H: \mathbb{R} \rightarrow \mathbb{R}$ as follows:

$$
H(t)=c_{1}(t)+2 c_{2}(t), t \in[0,2]
$$

Substituting the value of $c_{1}(t)$ and $c_{2}(t)$ in the above function, we have

$$
\begin{equation*}
H(t)=\frac{b_{1}}{2(3-2 \beta)}+\frac{\Delta\left(\beta, b_{1}\right)}{8(3-2 \beta)(2-\beta)^{2}} t^{2} \tag{2.22}
\end{equation*}
$$

where $\Delta\left(\beta, b_{1}\right)=2(3-2 \beta) b_{1}^{2}-(2-\beta)^{2} b_{1}$.
Differentiating both sides of 2.22 , we get

$$
H^{\prime}(t)=\frac{\Delta\left(\beta, b_{1}\right)}{4(3-2 \beta)(2-\beta)^{2}} t
$$

It is clear that $H^{\prime}(t) \leq 0$ if $0<b_{1} \leq \frac{(2-\beta)^{2}}{2(3-2 \beta)}$; that is, $H(t)$ is a decreasing function. Therefore,

$$
\begin{equation*}
\min \{H(t): t \in[0,2]\}=H(2)=\frac{b_{1}^{2}}{(2-\beta)^{2}} \tag{2.23}
\end{equation*}
$$

Let $b_{1}>\frac{(2-\beta)^{2}}{2(3-2 \beta)}$, then $H^{\prime}(t)>0$, so $H(t)$ is a strictly increasing function.
Therefore,

$$
\begin{equation*}
\min \{H(t): t \in[0,2]\}=H(0)=\frac{b_{1}}{2(3-2 \beta)} \tag{2.24}
\end{equation*}
$$

Consequently, from $2.21-2.24$ and 2.20 , we have

$$
\left|a_{3}\right| \leq \begin{cases}\frac{b_{1}^{2}}{(2-\beta)^{2}}, & \text { if } b_{1} \leq \frac{(2-\beta)^{2}}{2(3-2 \beta)} \tag{2.25}\\ \frac{b_{1}}{2(3-2 \beta)}, & \text { if } b_{1}>\frac{(2-\beta)^{2}}{2(3-2 \beta)}\end{cases}
$$

Substituting the expressions 2.16 and 2.17 in 2.15, we obtain

$$
\begin{aligned}
a_{4}= & \frac{b_{1}\left(4-p_{1}^{2}\right)}{24(4-3 \beta)}\left[\left(1-|x|^{2}\right) z-\left(1-|y|^{2}\right) w\right]-\frac{b_{1}\left(4-p_{1}^{2}\right) p_{1}}{48(4-3 \beta)}\left(x^{2}+y^{2}\right) \\
& +\frac{b_{2}\left(4-p_{1}^{2}\right) p_{1}}{24(4-3 \beta)}(x+y)+\frac{5 b_{1}^{2}\left(4-p_{1}^{2}\right) p_{1}}{64(2-\beta)(3-2 \beta)}(x-y) \\
& +\frac{b_{1}^{3} \varphi(\beta)-6(2-\beta)^{3} \Lambda+6(2-\beta)^{3}\left(2 b_{2}-b_{1}\right)}{144(2-\beta)^{3}(4-3 \beta)} p_{1}^{3} .
\end{aligned}
$$

Applying triangle inequality on the last equation, we have

$$
\begin{equation*}
\left|a_{4}\right| \leq d_{1}(t)\left(\xi^{2}+\eta^{2}\right)+d_{2}(t)(\xi+\eta)+d_{3}(t) \tag{2.26}
\end{equation*}
$$

where

$$
\begin{gathered}
d_{1}(t)=\frac{b_{1}\left(4-t^{2}\right)(t-2)}{48(4-3 \beta)} \leq 0 \\
d_{2}(t)=\frac{\left(4-t^{2}\right) t\left[8\left|b_{2}\right|(2-\beta)(3-2 \beta)+15 b_{1}^{2}(4-3 \beta)\right]}{192(2-\beta)(3-2 \beta)(4-3 \beta)} \geq 0 \\
d_{3}(t)=\frac{\left|b_{1}^{3} \varphi(\beta)-6(2-\beta)^{3} \Lambda\right|+6(2-\beta)^{3}\left|2 b_{2}-b_{1}\right|}{144(2-\beta)^{3}(4-3 \beta)} t^{3}+\frac{b_{1}\left(4-t^{2}\right)}{12(4-3 \beta)} \geq 0
\end{gathered}
$$

Let us define the function $G: \mathbb{R}^{3} \rightarrow \mathbb{R}$ as follows:

$$
\begin{equation*}
G(\xi, \eta, t)=d_{1}(t)\left(\xi^{2}+\eta^{2}\right)+d_{2}(t)(\xi+\eta)+d_{3}(t),(\xi, \eta) \in \Omega, t \in[0,2] \tag{2.27}
\end{equation*}
$$

From 2.26 and 2.27, we can write

$$
\begin{equation*}
\left|a_{4}\right| \leq \min \{\max \{G(\xi, \eta, t):(\xi, \eta) \in \Omega\}: t \in[0,2]\} \tag{2.28}
\end{equation*}
$$

Firstly, we need investigate maximum of the function $G(\xi, \eta, t)$ on the closed square Ω for each $t \in[0,2]$. Since the coefficients of the function $G(\xi, \eta, t)$ is dependent to variable t, we must investigate this maximum respect to t taking into account these cases: $t=0, t \in(0,2)$ and $t=2$.

For $t=0$ we have

$$
G_{0}(\xi, \eta)=G(\xi, \eta, 0)=\frac{-b_{1}}{6(4-3 \beta)}\left(\xi^{2}+\eta^{2}\right)+\frac{b_{1}}{3(4-3 \beta)},(\xi, \eta) \in \Omega
$$

We can easily show that the maximum of the function $G_{0}(\xi, \eta)$ occurs at $(\xi, \eta)=$ $(0,0)$, and

$$
\begin{equation*}
\max \left\{G_{0}(\xi, \eta):(\xi, \eta) \in \Omega\right\}=G_{0}(0,0)=\frac{b_{1}}{3(4-3 \beta)} \tag{2.29}
\end{equation*}
$$

In the case $t \in(0,2)$, by simple differentiation, we get

$$
\begin{aligned}
& G_{\xi}^{\prime}(\xi, \eta, t)=2 d_{1}(t) \xi+d_{2}(t), G_{\eta}^{\prime}(\xi, \eta, t)=2 d_{1}(t) \eta+d_{2}(t) \\
& G_{\xi \xi}^{\prime \prime}(\xi, \eta, t)=G_{\eta \eta}^{\prime \prime}(\xi, \eta, t)=2 d_{1}(t), G_{\xi \eta}^{\prime \prime}(\xi, \eta, t)=G_{\eta \xi}^{\prime \prime}(\xi, \eta, t)=0
\end{aligned}
$$

From the first and second equations above, we see that $\left(\xi_{0}, \eta_{0}\right)$, where $\xi_{0}=\eta_{0}=$ $\frac{-d_{2}(t)}{2 d_{1}(t)}$, is critical and likely a extremal point for of the function $G(\xi, \eta, t)$.

Since

$$
\Delta\left(\xi_{0}, \eta_{0}\right)=G_{\xi \xi}^{\prime \prime}\left(\xi_{0}, \eta_{0}, t\right) G_{\eta \eta}^{\prime \prime}\left(\xi_{0}, \eta_{0}, t\right)-\left[G_{\xi \xi}^{\prime \prime}\left(\xi_{0}, \eta_{0}, t\right)\right]^{2}=4 d_{1}^{2}(t)>0
$$

and $G_{\xi \xi}^{\prime \prime}(\xi, \eta, t)=G_{\eta \eta}^{\prime \prime}(\xi, \eta, t)=2 d_{1}(t)<0,\left(\xi_{0}, \eta_{0}\right)$ is a likely maximum point for the function $G(\xi, \eta, t)$. But, it is clear that $\left(\xi_{0}, \eta_{0}\right)$ is not a local maximum point if $\frac{-d_{2}(t)}{2 d_{1}(t)}>0$; that is if $\left(\xi_{0}, \eta_{0}\right) \notin \Omega$. We assume that $\left(\xi_{0}, \eta_{0}\right) \in \Omega$. In this case $\left(\xi_{0}, \eta_{0}\right)$ is a local maximum point for the function $G(\xi, \eta, t)$.

Therefore,

$$
\max \{G(\xi, \eta, t):(\xi, \eta) \in \Omega\}=G\left(\xi_{0}, \eta_{0}, t\right)=d_{3}(t)-\frac{-d_{2}^{2}(t)}{2 d_{1}(t)}
$$

Let us define the function $h: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
h(t)=d_{3}(t)-\frac{-d_{2}^{2}(t)}{2 d_{1}(t)}, t \in(0,2)
$$

Substituting the value $d_{1}(t), d_{2}(t)$ and $d_{3}(t)$ in the above function, we have

$$
\begin{equation*}
h(t)=h_{1} t^{3}+h_{2} t^{2}+h_{3}, t \in(0,2), \tag{2.30}
\end{equation*}
$$

where

$$
\begin{gathered}
h_{1}=\frac{\left|b_{1}^{3} \varphi(\beta)-6(2-\beta)^{3} \Lambda\right|+6(2-\beta)^{3}\left|2 b_{2}-b_{1}\right|}{144(2-\beta)^{3}(4-3 \beta)} \\
+\frac{\left[8\left|b_{2}\right|(2-\beta)(3-2 \beta)+15 b_{1}^{2}(4-3 \beta)\right]^{2}}{1536(2-\beta)^{2}(3-2 \beta)^{2}(4-3 \beta) b_{1}}>0, \\
h_{2}=\frac{\left[8\left|b_{2}\right|(2-\beta)(3-2 \beta)+15 b_{1}^{2}(4-3 \beta)\right]^{2}}{768(2-\beta)^{2}(3-2 \beta)^{2}(4-3 \beta) b_{1}}-\frac{b_{1}}{12(4-3 \beta)}, \\
h_{3}=\frac{b_{1}}{3(4-3 \beta)}>0 .
\end{gathered}
$$

Also, we consider the function $\bar{h}: \mathbb{R} \rightarrow \mathbb{R}$ as follows:

$$
\begin{equation*}
\bar{h}(t)=h_{1} t^{3}+\bar{h}_{2} t^{2}+h_{3}, t \in(0,2), \tag{2.31}
\end{equation*}
$$

where

$$
\bar{h}_{2}=h_{2}+\frac{b_{1}}{12(4-3 \beta)}=\frac{\left[8\left|b_{2}\right|(2-\beta)(3-2 \beta)+15 b_{1}^{2}(4-3 \beta)\right]^{2}}{768(2-\beta)^{2}(3-2 \beta)^{2}(4-3 \beta) b_{1}}>0
$$

Since $h(t)<\bar{h}(t)$ for all $t \in(0,2)$, we can write

$$
\begin{equation*}
\min \{h(t): t \in(0,2)\} \leq \min \{\bar{h}(t): t \in(0,2)\} \tag{2.32}
\end{equation*}
$$

Now, we will investigate minimum of the function $\bar{h}(t)$ on the open interval $(0,2)$.

Differentiating both sides of 2.31, we have

$$
\bar{h}^{\prime}(t)=\left(3 h_{1} t+2 \bar{h}_{2}\right) t, t \in(0,2) .
$$

Since $h_{1}>0, \bar{h}_{2}>0$, the function $\bar{h}(t)$ is a strictly increasing function on $(0,2)$.
Therefore,

$$
\begin{equation*}
\min \{\bar{h}(t): t \in(0,2)\}=\bar{h}(0+)=\lim _{t \rightarrow 0+} \bar{h}(t)=\frac{b_{1}}{3(4-3 \beta)} \tag{2.33}
\end{equation*}
$$

Finally, let $t=2$. In this case the function $G(\xi, \eta, 2)$ is a constant as follows:

$$
\begin{equation*}
G_{2}(\xi, \eta)=G(\xi, \eta, 2)=d_{3}(2)=\frac{\left|b_{1}^{3} \varphi(\beta)-6(2-\beta)^{3} \Lambda\right|+6(2-\beta)^{3}\left|2 b_{2}-b_{1}\right|}{18(2-\beta)^{3}(4-3 \beta)} \tag{2.34}
\end{equation*}
$$

Thus, from $2.29-2.34$ and 2.28 , we obtain

$$
\left|a_{4}\right| \leq \min \left\{\frac{\left|b_{1}^{3} \varphi(\beta)-6(2-\beta)^{3} \Lambda\right|+6(2-\beta)^{3}\left|2 b_{2}-b_{1}\right|}{18(2-\beta)^{3}(4-3 \beta)}, \frac{b_{1}}{3(4-3 \beta)}\right\}
$$

With this, the proof of Theorem 2.1 is completed.
The following theorems are direct results of Theorem 2.1.
Theorem 2.2. Let the function $f(z)$ given by (1.1) be in the class $S_{\Sigma}^{*}(\phi)$, where ϕ is an analytic function given by 1.2 . Then,

$$
\left|a_{2}\right| \leq b_{1},\left|a_{3}\right| \leq \begin{cases}b_{1}^{2}, & \text { if } b_{1} \leq \frac{1}{2} \\ \frac{b_{1}}{2}, & \text { if } b_{1}>\frac{1}{2}\end{cases}
$$

and

$$
\left|a_{4}\right| \leq \min \left\{\frac{\left|2 b_{1}^{3}-\Lambda\right|+\left|2 b_{2}-b_{1}\right|}{3}, \frac{b_{1}}{3}\right\}
$$

where $\Lambda=\Lambda\left(b_{1}, b_{2}, b_{3}\right)=b_{1}-2 b_{2}+b_{3}$.
Theorem 2.3. Let the function $f(z)$ given by 1.1) be in the class $C_{\Sigma}(\phi)$, where ϕ is an analytic function given by 1.2 . Then,

$$
\left|a_{2}\right| \leq \frac{b_{1}}{2},\left|a_{3}\right| \leq\left\{\begin{array}{l}
\frac{b_{1}^{2}}{4}, \text { if } b_{1} \leq \frac{2}{3} \\
\frac{b_{1}}{6}, \text { if } b_{1}>\frac{2}{3}
\end{array}\right.
$$

and

$$
\left|a_{4}\right| \leq \min \left\{\frac{\left|5 b_{1}^{3}-4 \Lambda\right|+4\left|2 b_{2}-b_{1}\right|}{48}, \frac{b_{1}}{12}\right\}
$$

where $\Lambda=\Lambda\left(b_{1}, b_{2}, b_{3}\right)=b_{1}-2 b_{2}+b_{3}$.

3. Concluding remarks

If the function $\phi(z)$, aforementioned in study, is given by

$$
\begin{equation*}
\phi(z)=\frac{1+a z}{1+b z}=1+(a-b) z-b(a-b) z^{2}+b^{2}(a-b) z^{3}+\cdots \quad(-1 \leq b<a \leq 1) \tag{3.1}
\end{equation*}
$$

then $b_{1}=(a-b), b_{2}=-b(a-b)$ and $b_{3}=b^{2}(a-b)$.

Taking $a=1-2 \alpha, b=-1$ in 3.1, we have
$\phi(z)=\frac{1+(1-2 \alpha) z}{1-z}=1+2(1-\alpha) z+2(1-\alpha) z^{2}+2(1-\alpha) z^{3}+\cdots \quad(0 \leq \alpha<1)$.
Hence, $b_{1}=b_{2}=b_{3}=2(1-\alpha)$.
Choosing $\phi(z)$ of the form (3.1) and (3.2) in Theorem 2.1 we can readily deduce the following results, respectively.
Corollary 3.1. Let the function $f(z)$ given by 1.1) be in the class $M_{\Sigma}\left(\frac{1+a z}{1+b z}, \beta\right)$ $(-1 \leq b<a \leq 1,0 \leq \beta \leq 1)$. Then,
$\left|a_{2}\right| \leq \frac{a-b}{2-\beta},\left|a_{3}\right| \leq\left\{\begin{array}{ll}\frac{(a-b)^{2}}{(2-\beta)^{2}}, & \text { if } a-b \leq \frac{(2-\beta)^{2}}{2(3-2 \beta)}, \\ \frac{a-b}{2(3-2 \beta)}, & \text { if } a-b>\frac{(2-\beta)^{2}}{2(3-2 \beta)}\end{array} \quad\right.$ and $\left|a_{4}\right| \leq \frac{a-b}{3(4-3 \beta)}$.
Corollary 3.2. Let the function $f(z)$ given by (1.1) be in the class $M_{\Sigma}\left(\frac{1+(1-2 \alpha) z}{1-z}, \beta\right)$ $=M_{\Sigma}(\alpha, \beta), \alpha \in[0,1), \beta \in[0,1]$. Then,
$\left|a_{2}\right| \leq \frac{2(1-\alpha)}{2-\beta},\left|a_{3}\right| \leq\left\{\begin{array}{ll}\frac{1-\alpha}{3-2 \beta}, & \text { if } 0 \leq \alpha<1-\alpha_{0}, \\ \frac{4(1-\alpha)^{2}}{(2-\beta)^{2}}, & \text { if } 1-\alpha_{0} \leq \alpha<1,\end{array} \quad\right.$ and $\left|a_{4}\right| \leq \frac{2(1-\alpha)}{3(4-3 \beta)}$,
where $\alpha_{0}=\frac{(2-\beta)^{2}}{4(3-2 \beta)}$.
Also, taking $\alpha=0$ in 3.2, we get

$$
\begin{equation*}
\phi(z)=\frac{1+z}{1-z}=1+2 z+2 z^{2}+2 z^{3}+\cdots \tag{3.3}
\end{equation*}
$$

Hence, $b_{1}=b_{2}=b_{3}=2$.
Choosing $\phi(z)$ of the form (3.3) in Theorem 2.1, we arrive at the following corollary.

Corollary 3.3. Let the function $f(z)$ given by (1.1) be in the class $M_{\Sigma}\left(\frac{1+z}{1-z}, \beta\right), \beta \in$ $[0,1]$. Then, $\left|a_{2}\right| \leq \frac{2}{2-\beta},\left|a_{3}\right| \leq \frac{1}{3-2 \beta}$ and $\left|a_{4}\right| \leq \frac{2}{3(4-3 \beta)}$.

Choosing $\phi(z)$ of the form (3.1) and 3.2 in Theorem 2.2, we can readily deduce the following results, respectively.
Corollary 3.4. Let the function $f(z)$ given by 1.1) be in the class $S_{\Sigma}^{*}\left(\frac{1+a z}{1+b z}\right)$ $(-1 \leq b<a \leq 1)$. Then, $\left|a_{2}\right| \leq a-b,\left|a_{3}\right| \leq\left\{\begin{array}{ll}(a-b)^{2}, & \text { if } a-b \leq \frac{1}{2}, \\ \frac{a-b}{2}, & \text { if } a-b>\frac{1}{2}\end{array} \quad\right.$ and $\left|a_{4}\right| \leq \frac{a-b}{3}$.
Corollary 3.5. Let the function $f(z)$ given by 1.1$)$ be in the class $S_{\Sigma}^{*}\left(\frac{1+(1-2 \alpha) z}{1-z}\right)$ $=S_{\Sigma}^{*}(\alpha), \alpha \in[0,1)$. Then,
$\left|a_{2}\right| \leq 2(1-\alpha),\left|a_{3}\right| \leq\left\{\begin{array}{ll}1-\alpha, & \text { if } 0 \leq \alpha<\frac{3}{4}, \\ 4(1-\alpha)^{2}, & \text { if } \frac{3}{4} \leq \alpha<1\end{array} \quad\right.$ and $\left|a_{4}\right| \leq \frac{2(1-\alpha)}{3}$.

Remark 3.6. In the special case, we can also obtain Corollary 3.4 from Corollary 3.1 and Corollary 3.5 from Corollary 3.2 for $\beta=1$.

Moreover, taking, for example, $\alpha=\frac{3}{4}$ in (3.2), we have

$$
\begin{equation*}
\phi(z)=\frac{2-z}{2(1-z)}=1+\frac{1}{2} z+\frac{1}{2} z^{2}+\frac{1}{2} z^{3}+\cdots . \tag{3.4}
\end{equation*}
$$

Hence, $b_{1}=b_{2}=b_{3}=\frac{1}{2}$.
Choosing $\phi(z)$ of the form (3.4) in Theorem 2.2, we arrive at the following corollary.
Corollary 3.7. Let the function $f(z)$ given by 1.1$)$ be in the class $S_{\Sigma}^{*}\left(\frac{2-z}{2(1-z)}\right)$. Then,
$\left|a_{2}\right| \leq \frac{1}{2},\left|a_{3}\right| \leq \frac{1}{4}$ and $\left|a_{4}\right| \leq \frac{1}{6}$.
Remark 3.8. In the special case, we can also obtain Corollary 3.7 from Corollary 3.5 for $\alpha=\frac{3}{4}$.

Choosing $\phi(z)$ of the form (3.1) and 3.2 in Theorem 2.3, we can readily deduce the following results, respectively.
Corollary 3.9. Let the function $f(z)$ given by 1.1 be in the class $C_{\Sigma}\left(\frac{1+a z}{1+b z}\right)$ $(-1 \leq b<a \leq 1)$. Then, $\left|a_{2}\right| \leq \frac{a-b}{2},\left|a_{3}\right| \leq\left\{\begin{array}{ll}\frac{(a-b)^{2}}{4}, & \text { if } a-b \leq \frac{2}{3}, \\ \frac{a-b}{6}, & \text { if } a-b>\frac{2}{3}\end{array} \quad\right.$ and $\left|a_{4}\right| \leq \frac{a-b}{12}$.

Corollary 3.10. Let the function $f(z)$ given by (1.1) be in the class $C_{\Sigma}\left(\frac{1+(1-2 \alpha) z}{1-z}\right)$ $=C_{\Sigma}(\alpha), \alpha \in[0,1)$. Then,
$\left|a_{2}\right| \leq 1-\alpha,\left|a_{3}\right| \leq\left\{\begin{array}{ll}\frac{1-\alpha}{3}, & \text { if } 0 \leq \alpha<\frac{2}{3}, \\ (1-\alpha)^{2}, & \text { if } \frac{2}{3} \leq \alpha<1\end{array} \quad\right.$ and $\left|a_{4}\right| \leq \frac{1-\alpha}{6}$.
Moreover, taking, for example, $\alpha=\frac{2}{3}$ in (3.2), we get

$$
\begin{equation*}
\phi(z)=\frac{3-z}{3(1-z)}=1+\frac{2}{3} z+\frac{2}{3} z^{2}+\frac{2}{3} z^{3}+\cdots . \tag{3.5}
\end{equation*}
$$

Hence, $b_{1}=b_{2}=b_{3}=\frac{2}{3}$.
Choosing $\phi(z)$ of the form (3.5) in Theorem 2.3, we arrive at the following corollary.

Corollary 3.11. Let the function $f(z)$ given by 1.1 be in the class $C_{\Sigma}\left(\frac{3-z}{3(1-z)}\right)$. Then,
$\left|a_{2}\right| \leq \frac{1}{3},\left|a_{3}\right| \leq \frac{1}{9}$ and $\left|a_{4}\right| \leq \frac{1}{18}$.
Remark 3.12. In the special case, we can also obtain Corollary 3.11 from Corollary 3.10 for $\alpha=\frac{2}{3}$.

References

[1] Ali R. M., Lee S. K., Ravichandran V. and Supramanian S., Coefficient estimates for biunivalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25(3), (2012), 334-351.
[2] Brannan D. A. and Clunie J. G., Aspects of Contemporary Complex Analysis, Proceeding of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1-20, 1979, (Academic Press, New York and London, 1980).
[3] Brannan D. A. and Taha T. S., On some classes of bi-univalent functions, Mathematical Analysis and Its Applications 3, (1985), 18-21.
[4] Bulut S., Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Mat. 43(2), 59-65, 2013.
[5] Çağlar M., Orhan H. and Yağmur N., Coefficient bounds for new subclasses of bi-univalent functions, Filomat 27(7), 1165-1171, 2013.
[6] Deniz E., Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Classical Anal. 2(1), (2013), 49-60.
[7] Frasin B. A. and Aouf M. K., New subclasses of bi-univalent functions, Appl. Math. Lett. 24(9), (2011), 1569-1573.
[8] Goyal S. P. and Goswami P., Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc. 20, (2012), 179-182.
[9] Hayami T. and Owa S., Coefficient bounds for bi-univalent functions, Pan Amer. Math. J. $22(4), 15-26,2012$.
[10] Kim Y. C. and Srivastava H. M., Some subordination properties for spirallike functions, Appl. Math. Comput. 203(2), (2008), 838-842.
[11] Lewin M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18, (1967), 63-68.
[12] Ma W. C. and Minda D., A unified treatment of some special classes of functions, in: Proceedings of the Conference on Complex Analysis, Tianjin, , (1992),157-169, Conf. Proc. Lecture Notes anal. I, Int. Press, Cambridge, MA, 1994.
[13] Magesh N. and Yamini J., Coeffcient bounds for certain subclasses of bi-univalent functions, Internat. Math. Forum 8(27), (2013), 1337-1344.
[14] Miller S. S. and Mocanu P. T., Differential subordinations, Monographs and Textbooks in Pure and Applied Mathematics 225, Dekker, New York, 2000.
[15] Murugusundaramoorthy G., Magesh N. and Prameela V., Coefficient bounds for certain subclasses of bi-univalent functions, Abs. Appl. Anal., (2013), Article Id 573017, 3 pages.
[16] Netanyahu E., The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal. 32, (1969), 100-112.
[17] Orhan H., Magesh N. and Balaji V. K., Initial Coefficient Bounds for a General Class of Bi-Univalent Functions, Filomat 29(6), (2015), 1259-1267.
[18] Pommerenke C., Univalent Functions, Vandenhoeck and Rupercht, Göttingen, 1975.
[19] Prema S. and Keerthi B. S., Coefficient bounds for certain subclasses of analytic functions, J. Math. Anal. 4(1), (2013), 22-27.
[20] Ravichandran V., Polatoglu Y., Bolcal M. and Sen A., Certain subclasses of starlike and convex functions of complex order, Hacettepe J. Math. Stat. 34, (2005), 9-15.
[21] Sivaprasad Kumar S., Kumar V. and Ravichandran V., Estimates for the initial coefficients of bi-univalent functions, (2012), arXiv:1203.5480v1.
[22] Srivastava H. M., Mishra A. K. and Gochhayat P., Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23, (2010), 1188-1192.
[23] Srivastava H. M., Some inequalities and other results associated with certain subclasses of univalent and bi-univalent analytic functions, in Nonlinear Analysis: Stability; Approximation; and Inequalities (Panos M. Pardalos, Pando G. Georgiev, and Hari M. Srivastava, Editors),

Springer Series on Optimization and Its Applications Vol. 68, Springer-Verlag, Berlin, Heidelberg and New York, (2012), 607-630.
[24] Srivastava H. M., Bulut S., Çağlar M. and Yağmur N., Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27(5), (2013), 831-842.
[25] Srivastava H. M., Murugusundaramoorthy G. and Magesh N., On certain subclasses of biunivalent functions associated with Hohlov operator, Global J. Math. Anal. 1(2), (2013), 67-73.
[26] Srivastava H. M., Xu Q. H. and Wu G. P., Coefficient estimates for certain subclasses of spiral-like functions of complex order, Appl. Math. Lett. 23(7), (2010), 763-768.
[27] Xu Q. H., Gui Y. C. and Srivastava H. M., Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25(6), (2012), 990-994.
[28] Xu Q. H., Xiao H. G. and Srivastava H. M., A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218(23), (2012), 11461-11465.
[29] Xu Q. H., Cai Q. M. and Srivastava H. M., Sharp coefficient estimates for certain subclasses of starlike functions of complex order, Appl. Math. Comput. 225, (2013), 43-49.

Current address: Nizami Mustafa: Department of Mathematics, Faculty of Science and Letters, Kafkas University, Kars, 36100, Turkey.

E-mail address: nizamimustafa@gmail.com
ORCID Address: http://orcid.org/0000-0001-9640-8526
Current address: Veysel Nezir (Corresponding author): Department of Mathematics, Faculty of Science and Letters, Kafkas University, Kars, 36100, Turkey.

E-mail address: veyselnezir@yahoo.com
ORCID Address: http://orcid.org/0000-0002-2758-0274

