COEFFICIENT ESTIMATES FOR A NEW SUBCLASS OF m-FOLD SYMMETRIC ANALYTIC BI-UNIVALENT FUNCTIONS

SERAP BULUT

Abstract

Considering a new subclass of m-fold symmetric analytic bi-univalent functions, we determine estimates the coefficient bounds for the Taylor-Maclaurin coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ of the functions in this class. In certain cases, our estimates improve some of those existing coeffcient bounds.

1. Introduction

Let \mathcal{A} denote the class of all functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z: z \in \mathbb{C}$ and $|z|<1\}$. We also denote by \mathcal{S} the class of all functions in the normalized analytic function class \mathcal{A} which are univalent in \mathbb{U}.

For two functions f and Θ, analytic in \mathbb{U}, we say that the function f is subordinate to Θ in \mathbb{U}, and write

$$
f(z) \prec \Theta(z) \quad(z \in \mathbb{U}),
$$

if there exists a Schwarz function ω, which is analytic in \mathbb{U} with

$$
\omega(0)=0 \quad \text { and } \quad|\omega(z)|<1 \quad(z \in \mathbb{U})
$$

such that

$$
f(z)=\Theta(\omega(z)) \quad(z \in \mathbb{U})
$$

It is well known that every function $f \in \mathcal{S}$ has an inverse f^{-1}, which is defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

[^0]and
$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

In fact, the inverse function $g=f^{-1}$ is given by
$g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots$.
A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}, in the sense that f^{-1} has a univalent analytic continuation to \mathbb{U}. We denote by Σ the class of all bi-univalent functions in \mathbb{U} given by (1.1.

For a brief history and interesting examples of functions in the class Σ, see [15] (see also [3]). In fact, the aforecited work of Srivastava et al. [15] essentially revived the investigation of various subclasses of the bi-univalent function class Σ in recent years; it was followed by such works as those by Bulut et al. [5], Frasin and Aouf [6, Ramachandran et al. (9, Srivastava et al. [10, 13], Xu et al. [18, 19] and the references cited in each of them.

Let $m \in \mathbb{N}=\{1,2,3, \ldots\}$. A domain D is said to be m-fold symmetric if a rotation of D about the origin through an angle $2 \pi / m$ carries D on itself. It follows that, a function $f(z)$ analytic in \mathbb{U} is said to be m-fold symmetric $(m \in \mathbb{N})$ if

$$
f\left(e^{2 \pi i / m} z\right)=e^{2 \pi i / m} f(z)
$$

In particular, every $f(z)$ is 1 -fold symmetric and every odd $f(z)$ is 2-fold symmetric. We denote by \mathcal{S}_{m} the class of m-fold symmetric univalent functions in \mathbb{U}.

A simple argument shows that $f \in \mathcal{S}_{m}$ is characterized by having a power series of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=1}^{\infty} a_{m k+1} z^{m k+1} \quad(z \in \mathbb{U}, m \in \mathbb{N}) \tag{1.3}
\end{equation*}
$$

Srivastava et al. [14] defined m-fold symmetric bi-univalent functions analogues to the concept of m-fold symmetric univalent functions. For normalized form of f given by 1.3 , they obtained the series expansion for f^{-1} as following:

$$
\begin{align*}
g(w)= & f^{-1}(w) \\
= & w-a_{m+1} w^{m+1}+\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right] w^{2 m+1} \\
& -\left[\frac{1}{2}(m+1)(3 m+2) a_{m+1}^{3}-(3 m+2) a_{m+1} a_{2 m+1}+a_{3 m+1}\right] w^{3 m+1} \\
& +\cdots \\
= & : w+\sum_{k=1}^{\infty} A_{m k+1} w^{m k+1} \tag{1.4}
\end{align*}
$$

We denote by Σ_{m} the class of m-fold symmetric bi-univalent functions in \mathbb{U} given by (1.3). For $m=1$, the formula (1.4) coincides with the formula 1.2 of the class Σ. For some examples of m-fold symmetric bi-univalent functions, see [14].

We also denote by \mathcal{P} the family of all functions p analytic in \mathbb{U} for which

$$
\Re(p(z))>0, \quad p(z)=1+c_{1} z+c_{2} z^{2}+\cdots \quad(z \in \mathbb{U})
$$

Thus the m-fold symmetric function p in the class \mathcal{P} is of the form (see [8]),

$$
p(z)=1+c_{m} z^{m}+c_{2 m} z^{2 m}+\cdots \quad(z \in \mathbb{U})
$$

The coefficient problem for m-fold symmetric analytic bi-univalent functions is one of the favorite subjects of geometric function theory in these days (see [1, 4, 7, 11, 14, 16]). The object of the present paper is to introduce a new subclass of bi-univalent functions in which both f and f^{-1} are m-fold symmetric analytic functions and obtain coefficient bounds for $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ for functions in this new subclass.

2. The Class $\mathcal{N}_{\Sigma, m}(\tau, \lambda, \delta, \varphi)$

Throughout this paper, we assume that φ is an analytic function with positive real part in the unit disk \mathbb{U}, satisfying $\varphi(0)=1, \varphi^{\prime}(0)>0$, and $\varphi(\mathbb{U})$ is symmetric with respect to the real axis. Such a function has a series expansion of the form

$$
\begin{equation*}
\varphi(z)=1+B_{1} z+B_{2} z^{2}+\cdots \quad\left(B_{1}>0, B_{n} \in \mathbb{R}, n=2,3, \ldots\right) \tag{2.1}
\end{equation*}
$$

With this assumption on φ, we now introduce the following new class of m-fold symmetric analytic bi-univalent functions.

Definition 1. For $\tau \in \mathbb{C} \backslash\{0\}, \lambda \geq 1$ and $0 \leq \delta \leq 1$, a function $f \in \Sigma_{m}$ given by (1.3) is said to be in the class $\mathcal{N}_{\Sigma, m}(\tau, \lambda, \delta, \varphi)$ if the following conditions are satisfied:

$$
\begin{equation*}
1+\frac{1}{\tau}\left\{(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)+\delta z f^{\prime \prime}(z)-1\right\} \prec \varphi(z) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\tau}\left\{(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)+\delta w g^{\prime \prime}(w)-1\right\} \prec \varphi(w) \tag{2.3}
\end{equation*}
$$

where $m \in \mathbb{N} ; z, w \in \mathbb{U}$ and $g=f^{-1}$ is defined by (1.4).
Remark 1. (i) If we set $\tau=1$ and $\delta=0$, then we have the class

$$
\mathcal{N}_{\Sigma, m}(1, \lambda, 0, \varphi)=\mathcal{B}_{\Sigma, m}(\lambda, \varphi)
$$

introduced and studied by Tang et al. 17.
(ii) There are many choices of the function $\varphi(z)$ which would provide interesting subclasses of the analytic function class \mathcal{A}. For example, if we let

$$
\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(0<\alpha \leq 1, z \in \mathbb{U})
$$

or

$$
\varphi(z)=\frac{1+(1-2 \beta) z}{1-z} \quad(0 \leq \beta<1, z \in \mathbb{U})
$$

it is easy to verify that these functions are of the form 2.1. If $f \in \mathcal{N}_{\Sigma, m}(\tau, \lambda, \delta, \varphi)$, then $f \in \Sigma_{m}$ and

$$
\left|\arg \left(1+\frac{1}{\tau}\left\{(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)+\delta z f^{\prime \prime}(z)-1\right\}\right)\right|<\frac{\alpha \pi}{2}
$$

and

$$
\left|\arg \left(1+\frac{1}{\tau}\left\{(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)+\delta w g^{\prime \prime}(w)-1\right\}\right)\right|<\frac{\alpha \pi}{2}
$$

or

$$
\Re\left(1+\frac{1}{\tau}\left\{(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)+\delta z f^{\prime \prime}(z)-1\right\}\right)>\beta
$$

and

$$
\Re\left(1+\frac{1}{\tau}\left\{(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)+\delta w g^{\prime \prime}(w)-1\right\}\right)>\beta
$$

where the function $g=f^{-1}$ is defined by (1.4). This means that

$$
f \in \mathcal{R}_{\Sigma_{m}}(\tau, \lambda, \delta ; \alpha) \quad \text { or } \quad f \in \mathcal{R}_{\Sigma_{m}}(\tau, \lambda, \delta ; \beta)
$$

respectively. These classes are introduced and studied by Atshan and Al-Ziadi [2]. In these classes of m-fold symmetric bi-univalent functions, in particular we have
$\mathcal{R}_{\Sigma_{m}}(\tau, 1, \delta ; \alpha)=\mathcal{H}_{\Sigma_{m}}(\tau, \delta ; \alpha), \quad \mathcal{R}_{\Sigma_{m}}(\tau, 1, \delta ; \beta)=\mathcal{H}_{\Sigma_{m}}(\tau, \delta ; \beta) \quad$ (see [11]),
$\mathcal{R}_{\Sigma_{m}}(\tau, \lambda, 0 ; \alpha)=\mathcal{B}_{\Sigma_{m}}(\tau, \lambda ; \alpha), \quad \mathcal{R}_{\Sigma_{m}}(\tau, \lambda, 0 ; \beta)=\mathcal{B}_{\Sigma_{m}}^{*}(\tau, \lambda ; \beta) \quad$ (see [12]), and

$$
\mathcal{R}_{\Sigma_{m}}(1, \lambda, 0 ; \alpha)=\mathcal{A}_{\Sigma, m}^{\alpha, \lambda}, \quad \mathcal{R}_{\Sigma_{m}}(1, \lambda, 0 ; \beta)=\mathcal{A}_{\Sigma, m}^{\lambda}(\beta) \quad(\text { see [16] })
$$

Here we propose to investigate the m-fold symmetric bi-univalent function class $\mathcal{N}_{\Sigma, m}(\tau, \lambda, \delta, \varphi)$ introduced in Definition 1 and derive coefficient estimates on the first two Taylor-Maclaurin coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ for a function $f \in \mathcal{N}_{\Sigma, m}(\tau, \lambda, \delta, \varphi)$ given by (1.3). Our results for the m-fold symmetric biunivalent function class $\mathcal{N}_{\Sigma, m}(\tau, \lambda, \delta, \varphi)$ would generalize and improve the related works of Tang et al. [17], Srivastava et al. [11, 12] and Sümer Eker [16].

3. A Set of General Coefficient Estimates

In this section, we state and prove our general results involving the m-fold symmetric bi-univalent function class $\mathcal{N}_{\Sigma, m}(\tau, \lambda, \delta, \varphi)$ given by Definition 1 .

Theorem 1. Let the function f given by (1.3) be in the class $\mathcal{N}_{\Sigma, m}(\tau, \lambda, \delta, \varphi)$, $\tau \in \mathbb{C} \backslash\{0\}, \lambda \geq 1,0 \leq \delta \leq 1$ and $m \in \mathbb{N}$. Then

$$
\begin{equation*}
\left|a_{m+1}\right| \leq \frac{|\tau| B_{1} \sqrt{2 B_{1}}}{\sqrt{\left|\tau(m+1) \psi_{2} B_{1}^{2}-2 \psi_{1}^{2} B_{2}\right|+2 \psi_{1}^{2} B_{1}}} \tag{3.1}
\end{equation*}
$$

and

$$
\left|a_{2 m+1}\right| \leq\left\{\begin{array}{cl}
\Phi & , \quad B_{1} \geq \frac{2 \psi_{1}^{2}}{|\tau|(m+1) \psi_{2}} \tag{3.2}\\
\frac{|\tau|^{2}(m+1) B_{1}^{2}}{2 \psi_{1}^{2}} & , \quad B_{1}<\frac{2 \psi_{1}^{2}}{|\tau|(m+1) \psi_{2}}
\end{array}\right.
$$

where

$$
\begin{gather*}
\Phi:=\left(\frac{m+1}{2}-\frac{\psi_{1}^{2}}{|\tau| \psi_{2} B_{1}}\right) \frac{2|\tau|^{2} B_{1}^{3}}{\left|\tau(m+1) \psi_{2} B_{1}^{2}-2 \psi_{1}^{2} B_{2}\right|+2 \psi_{1}^{2} B_{1}}+\frac{|\tau| B_{1}}{\psi_{2}} \tag{3.3}\\
\psi_{j}:=1+j m \lambda+j m(j m+1) \delta \quad(j=1,2) \tag{3.4}
\end{gather*}
$$

Proof. Let $f \in \mathcal{N}_{\Sigma, m}(\tau, \lambda, \delta, \varphi)$ and $g=f^{-1}$ be defined by 1.4 . Then there exist two Schwarz functions $u, v: \mathbb{U} \rightarrow \mathbb{U}$, with $u(0)=v(0)=0$, such that

$$
\begin{equation*}
1+\frac{1}{\tau}\left\{(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)+\delta z f^{\prime \prime}(z)-1\right\}=\varphi(u(z)) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\tau}\left\{(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)+\delta w g^{\prime \prime}(w)-1\right\}=\varphi(v(w)) \tag{3.6}
\end{equation*}
$$

We suppose that

$$
\begin{equation*}
u(z)=p_{m} z^{m}+p_{2 m} z^{2 m}+\cdots \quad(z \in \mathbb{U}) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
v(w)=q_{m} w^{m}+q_{2 m} w^{2 m}+\cdots \quad(w \in \mathbb{U}) \tag{3.8}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\left|p_{m}\right| \leq 1, \quad\left|p_{2 m}\right| \leq 1-\left|p_{m}\right|^{2}, \quad\left|q_{m}\right| \leq 1, \quad\left|q_{2 m}\right| \leq 1-\left|q_{m}\right|^{2} \tag{3.9}
\end{equation*}
$$

Using (3.7) and (3.8) together with 2.1), it is evident that

$$
\begin{equation*}
\varphi(u(z))=\overline{1+} B_{1} p_{m} z^{m}+\left(B_{1} p_{2 m}+B_{2} p_{m}^{2}\right) z^{2 m}+\cdots \quad(z \in \mathbb{U}) \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(v(w))=1+B_{1} q_{m} w^{m}+\left(B_{1} q_{2 m}+B_{2} q_{m}^{2}\right) w^{2 m}+\cdots \quad(w \in \mathbb{U}) \tag{3.11}
\end{equation*}
$$

respectively. Since

$$
\begin{aligned}
& 1+\frac{1}{\tau}\left\{(1-\lambda) \frac{f(z)}{z}\right.\left.+\lambda f^{\prime}(z)+\delta z f^{\prime \prime}(z)-1\right\} \\
&=1+\frac{1}{\tau}\{1+m \lambda+m(m+1) \delta\} a_{m+1} z^{m} \\
&+\frac{1}{\tau}\{1+2 m \lambda+2 m(2 m+1) \delta\} a_{2 m+1} z^{2 m}+\cdots
\end{aligned}
$$

and
$1+\frac{1}{\tau}\left\{(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)+\delta w g^{\prime \prime}(w)-1\right\}$

$$
\begin{gathered}
=1+\frac{1}{\tau}\{1+m \lambda+m(m+1) \delta\} A_{m+1} w^{m} \\
+\frac{1}{\tau}\{1+2 m \lambda+2 m(2 m+1) \delta\} A_{2 m+1} w^{2 m}+\cdots
\end{gathered}
$$

then (3.5), (3.6), (3.10) and (3.11) together with (1.4) yield

$$
\begin{gather*}
\frac{1}{\tau}\{1+m \lambda+m(m+1) \delta\} a_{m+1}=B_{1} p_{m} \tag{3.12}\\
\frac{1}{\tau}\{1+2 m \lambda+2 m(2 m+1) \delta\} a_{2 m+1}=B_{1} p_{2 m}+B_{2} p_{m}^{2} \tag{3.13}\\
-\frac{1}{\tau}\{1+m \lambda+m(m+1) \delta\} a_{m+1}=B_{1} q_{m} \tag{3.14}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{1}{\tau}\{1+2 m \lambda+2 m(2 m+1) \delta\}\left\{(m+1) a_{m+1}^{2}-a_{2 m+1}\right\}=B_{1} q_{2 m}+B_{2} q_{m}^{2} \tag{3.15}
\end{equation*}
$$

Now, considering (3.12) and (3.14), we get

$$
\begin{equation*}
p_{m}=-q_{m} \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \frac{1}{\tau^{2}}\{1+m \lambda+m(m+1) \delta\}^{2} a_{m+1}^{2}=B_{1}^{2}\left(p_{m}^{2}+q_{m}^{2}\right) \tag{3.17}
\end{equation*}
$$

Now from (3.13), 3.15) and (3.17), we obtain

$$
\begin{equation*}
a_{m+1}^{2}=\frac{\tau^{2} B_{1}^{3}\left(p_{2 m}+q_{2 m}\right)}{\tau(m+1)\{1+2 m \lambda+2 m(2 m+1) \delta\} B_{1}^{2}-2\{1+m \lambda+m(m+1) \delta\}^{2} B_{2}} \tag{3.18}
\end{equation*}
$$

Therefore, by (3.9), 3.16) from (3.18), we get

$$
\left|a_{m+1}\right|^{2} \leq \frac{2|\tau|^{2} B_{1}^{3}\left(1-\left|p_{m}\right|^{2}\right)}{\left|\tau(m+1)\{1+2 m \lambda+2 m(2 m+1) \delta\} B_{1}^{2}-2\{1+m \lambda+m(m+1) \delta\}^{2} B_{2}\right|}
$$

The equality 3.12 and the above inequality give

$$
\begin{equation*}
\left|a_{m+1}\right|^{2} \leq \frac{2|\tau|^{2} B_{1}^{3}}{\left|\tau(m+1) \psi_{2} B_{1}^{2}-2 \psi_{1}^{2} B_{2}\right|+2 \psi_{1}^{2} B_{1}} \tag{3.19}
\end{equation*}
$$

where $\psi_{j}(j=1,2)$ is defined by 3.4 , which is the desired estimate on the coefficient $\left|a_{m+1}\right|$ as asserted in (3.1).

Next, in order to find the bound on the coefficient $\left|a_{2 m+1}\right|$, we subtract 3.15 from 3.13. Observing 3.16 we get

$$
\begin{equation*}
a_{2 m+1}=\frac{m+1}{2} a_{m+1}^{2}+\frac{\tau B_{1}}{2\{1+2 m \lambda+2 m(2 m+1) \delta\}}\left(p_{2 m}-q_{2 m}\right) . \tag{3.20}
\end{equation*}
$$

We obtain from the $3.9,3.12$ and the above equality

$$
\begin{align*}
\left|a_{2 m+1}\right| \leq & \frac{m+1}{2}\left|a_{m+1}\right|^{2}+\frac{|\tau| B_{1}}{1+2 m \lambda+2 m(2 m+1) \delta}\left(1-\left|p_{m}\right|^{2}\right) \\
\leq & \left(\frac{m+1}{2}-\frac{\{1+m \lambda+m(m+1) \delta\}^{2}}{|\tau|\{1+2 m \lambda+2 m(2 m+1) \delta\} B_{1}}\right)\left|a_{m+1}\right|^{2} \\
& +\frac{|\tau| B_{1}}{1+2 m \lambda+2 m(2 m+1) \delta} \tag{3.21}
\end{align*}
$$

Upon substituting the value of a_{m+1}^{2} from (3.12) and 3.19) into 3.21, it follows that

$$
\begin{equation*}
\left|a_{2 m+1}\right| \leq \frac{|\tau|^{2}(m+1) B_{1}^{2}}{2 \psi_{1}^{2}} \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{2 m+1}\right| \leq\left(\frac{m+1}{2}-\frac{\psi_{1}^{2}}{|\tau| \psi_{2} B_{1}}\right) \frac{2|\tau|^{2} B_{1}^{3}}{\left|\tau(m+1) \psi_{2} B_{1}^{2}-2 \psi_{1}^{2} B_{2}\right|+2 \psi_{1}^{2} B_{1}}+\frac{|\tau| B_{1}}{\psi_{2}} \tag{3.23}
\end{equation*}
$$

where $\psi_{j}(j=1,2)$ is defined by (3.4), respectively. Therefore considering 3.22) and (3.23), we get the desired estimate on the coefficient $\left|a_{2 m+1}\right|$ as asserted in (3.2). This completes the proof of the Theorem 1 .

Setting $\tau=1$ and $\delta=0$ in Theorem 1, we have the following corollary.
Corollary 1. Let the function f given by 1.3 be in the class $\mathcal{B}_{\Sigma, m}(\lambda, \varphi), \lambda \geq 1$ and $m \in \mathbb{N}$. Then

$$
\left|a_{m+1}\right| \leq \frac{B_{1} \sqrt{2 B_{1}}}{\sqrt{\left|(m+1)(1+2 m \lambda) B_{1}^{2}-2(1+m \lambda)^{2} B_{2}\right|+2(1+m \lambda)^{2} B_{1}}}
$$

and

$$
\left|a_{2 m+1}\right| \leq\left\{\begin{array}{cc}
\Phi & B_{1} \geq \frac{2(1+m \lambda)^{2}}{(m+1)(1+2 m \lambda)} \\
\frac{(m+1) B_{1}^{2}}{2(1+m \lambda)^{2}} & B_{1}<\frac{2(1+m \lambda)^{2}}{(m+1)(1+2 m \lambda)}
\end{array}\right.
$$

where

$$
\Phi=\left(\frac{m+1}{2}-\frac{(1+m \lambda)^{2}}{(1+2 m \lambda) B_{1}}\right) \frac{2 B_{1}^{3}}{\left|(m+1)(1+2 m \lambda) B_{1}^{2}-2(1+m \lambda)^{2} B_{2}\right|+2(1+m \lambda)^{2} B_{1}}+\frac{B_{1}}{1+2 m \lambda}
$$

Remark 2. Note that Corollary 1 is an improvement of the estimates obtained by Tang et al. [17, Theorem 7].

Taking the function

$$
\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(0<\alpha \leq 1, z \in \mathbb{U})
$$

in Theorem 1, we have the following corollary.

Corollary 2. Let the function f given by 1.3 be in the class $\mathcal{R}_{\Sigma_{m}}(\tau, \lambda, \delta ; \alpha)$, $\tau \in \mathbb{C} \backslash\{0\}, \lambda \geq 1,0 \leq \delta \leq 1,0<\alpha \leq 1$ and $m \in \mathbb{N}$. Then

$$
\left|a_{m+1}\right| \leq \frac{2|\tau| \alpha}{\sqrt{\left|\tau(m+1) \psi_{2}-\psi_{1}^{2}\right| \alpha+\psi_{1}^{2}}}
$$

and

$$
\left|a_{2 m+1}\right| \leq\left\{\begin{array}{cl}
\Phi & , \quad \alpha \geq \frac{\psi_{1}^{2}}{|\tau|(m+1) \psi_{2}} \\
\frac{2|\tau|^{2}(m+1) \alpha^{2}}{\psi_{1}^{2}} & , \quad \alpha<\frac{\psi_{1}^{2}}{|\tau|(m+1) \psi_{2}}
\end{array}\right.
$$

where

$$
\Phi=\left((m+1)-\frac{\psi_{1}^{2}}{|\tau| \psi_{2} \alpha}\right) \frac{2|\tau|^{2} \alpha^{2}}{\left|\tau(m+1) \psi_{2}-\psi_{1}^{2}\right| \alpha+\psi_{1}^{2}}+\frac{2|\tau| \alpha}{\psi_{2}}
$$

and ψ_{j} is defined by (3.4).
Remark 3. Note that Corollary 2 is an improvement of the estimates obtained by Atshan and Al-Ziadi [2, Theorem 2.1], Srivastava et al. [11, Theorem 2] for $\lambda=1$, Srivatava et al. [12, Theorem 2.1] for $\delta=0$, and Sümer Eker [16, Theorem 1] for $\tau=1$ and $\delta=0$, respectively.

Taking the function

$$
\varphi(z)=\frac{1+(1-2 \beta) z}{1-z} \quad(0 \leq \beta<1, z \in \mathbb{U})
$$

in Theorem 1, we have the following corollary.
Corollary 3. Let the function f given by 1.3 be in the class $\mathcal{R}_{\Sigma_{m}}(\tau, \lambda, \delta ; \beta)$, $\tau \in \mathbb{C} \backslash\{0\}, \lambda \geq 1,0 \leq \delta \leq 1,0 \leq \beta<1$ and $m \in \mathbb{N}$. Then

$$
\left|a_{m+1}\right| \leq \frac{\sqrt{2}|\tau|(1-\beta)}{\sqrt{\left|\tau(m+1) \psi_{2}(1-\beta)-\psi_{1}^{2}\right|+\psi_{1}^{2}}}
$$

and

$$
\left|a_{2 m+1}\right| \leq\left\{\begin{array}{ccc}
\Phi & , \quad \beta \leq 1-\frac{\psi_{1}^{2}}{|\tau|(m+1) \psi_{2}} \\
\frac{2|\tau|^{2}(m+1)(1-\beta)^{2}}{\psi_{1}^{2}} & , \quad \beta>1-\frac{\psi_{1}^{2}}{|\tau|(m+1) \psi_{2}}
\end{array}\right.
$$

where

$$
\Phi=\left((m+1)-\frac{\psi_{1}^{2}}{|\tau| \psi_{2}(1-\beta)}\right) \frac{2|\tau|^{2}(1-\beta)^{2}}{\left|\tau(m+1) \psi_{2}(1-\beta)-\psi_{1}^{2}\right|+\psi_{1}^{2}}+\frac{2|\tau|(1-\beta)}{\psi_{2}}
$$

and ψ_{1} and ψ_{2} are defined by (3.4).

Remark 3. Note that Corollary 3 is an improvement of the estimates obtained by Atshan and Al-Ziadi [2, Theorem 3.1], Srivastava et al. [11, Theorem 3] for $\lambda=1$, Srivatava et al. [12, Theorem 3.1] for $\delta=0$, and Sümer Eker [16, Theorem 2] for $\tau=1$ and $\delta=0$, respectively.

References

[1] Altınkaya, Ş. and Yalçın, S., Coefficient bounds for certain subclasses of m-fold symmetric bi-univalent functions, J. Math. (2015), Art. ID 241683, 5 pp.
[2] Atshan, W.G. and Al-Ziadi, N.A.J., Coefficients bounds for a general subclasses of m-fold symmetric bi-univalent functions, J. Al-Qadisiyah Comput. Sci. Math. 9 (2) (2017), 33-39.
[3] Brannan, D.A. and Taha, T.S., On some classes of bi-univalent functions, in Mathematical Analysis and Its Applications (S. M. Mazhar, A. Hamoui and N. S. Faour, Editors) (Kuwait; February 18-21, 1985), KFAS Proceedings Series, Vol. 3, Pergamon Press (Elsevier Science Limited), Oxford, 1988, pp. 53-60; see also Studia Univ. Babes-Bolyai Math. 31 (2) (1986), 70-77.
[4] Bulut, S., Coefficient estimates for general subclasses of m-fold symmetric analytic biunivalent functions, Turkish J. Math. 40 (6) (2016), 1386-1397.
[5] Bulut, S., Magesh, N. and Balaji, V.K., Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, 353 (2015), 113-116.
[6] Frasin, B.A. and Aouf, M.K., New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011) 1569-1573.
[7] Hamidi, S.G. and Jahangiri, J.M., Unpredictability of the coefficients of m-fold symmetric bi-starlike functions, Internat. J. Math. 25 (7) (2014), 1450064, 8 pp.
[8] Pommerenke, Ch., On the coefficients of close-to-convex functions, Michigan. Math. J. 9 (1962), 259-269.
[9] Ramachandran, C., Prabhu, Ambrose R. and Magesh, N., Initial coefficient estimates for certain subclasses of bi-univalent functions of Ma-Minda type, Applied Mathematical Sciences 9 (47) (2015), 2299-2308.
[10] Srivastava, H.M., Bulut, S., Çağlar, M. and Yağmur, N., Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (5) (2013), 831-842.
[11] Srivastava, H.M., Gaboury, S. and Ghanim, F., Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Univ. Apulensis Math. Inform. 41 (2015), 153-164.
[12] Srivastava, H.M., Gaboury, S. and Ghanim, F., Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B Engl. Ed. 36 (3) (2016), 863-871.
[13] Srivastava, H.M., Murugusundaramoorthy, G. and Magesh, N., On certain subclasses of biunivalent functions associated with Hohlov operator, Global Journal of Mathematical Analysis 1 (2) (2013), 67-73.
[14] Srivastava, H.M., Sivasubramanian, S. and Sivakumar, R., Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J. 7 (2) (2014), 1-10.
[15] Srivastava, H.M., Mishra, A.K. and Gochhayat, P., Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23 (2010) 1188-1192.
[16] Sümer Eker, S., Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions, Turkish J. Math. 40 (3) (2016), 641-646.
[17] Tang, H., Srivastava, H.M., Sivasubramanian, S. and Gurusamy, P., The Fekete-Szegö functional problems for some subclasses of m-fold symmetric bi-univalent functions, J. Math. Inequal. 10 (4) (2016), 1063-1092.
[18] Xu, Q.-H., Gui, Y.-C. and Srivastava, H.M., Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012) 990-994.
[19] Xu, Q.-H., Xiao, H.-G. and Srivastava, H.M., A certain general subclass of analytic and biunivalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012) 11461-11465.

Current address: Serap Bulut: Kocaeli University, Faculty of Aviation and Space Sciences, Arslanbey Campus, 41285 Kartepe-Kocaeli, TURKEY

E-mail address: serap.bulut@kocaeli.edu.tr
ORCID Address: http://orcid.org/0000-0002-6506-4588

[^0]: Received by the editors: November 15, 2017; Accepted: September 09, 2018.
 2010 Mathematics Subject Classification. Primary 30C45.
 Key words and phrases. Analytic functions, univalent functions, bi-univalent functions; m-fold symmetric bi-univalent functions, Taylor-Maclaurin series expansion; coefficient bounds, coefficient estimates.

