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APPROXIMATE CONTROLLABILITY OF NEUTRAL
INTEGRODIFFERENTIAL INCLUSIONS VIA RESOLVENT

OPERATORS

M. TAMILSELVAN

Abstract. In this work, a set of suffi cient conditions are established for the
approximate controllability for neutral integrodifferential inclusions in Banach
spaces. The theory of fractional power and α-norm is used because of the
spatial derivatives in the nonlinear term of the system. Bohnenblust-Karlin’s
fixed point theorem is used to prove our main results. Further, this result
is extended to study the approximate controllability for nonlinear functional
control system with nonlocal conditions. An example is also given to illustrate
our main results.

1. Introduction

This paper is mainly focused on the approximate controllability for neutral in-
tegrodifferential inclusions in Banach spaces of the form

d

dt
[x(t)−G(t, x(h1(t)))] ∈ −Ax(t)

∫ t

0

Q(t− s)x(s)ds+ F (t, x(h2(t))) +Bu(t),

(1.1)

x(0) =x0, t ∈ J = [0, b], (1.2)

where −A is the infinitesimal generator of an analytic semigroup on a Banach space
X. Q(t) : Xα → Xα, t ∈ J is a closed linear operator and B is a bounded linear
operator from a Banach space U into X. The function F : J ×Xα → 2Xα \ {∅} is a
nonempty, bounded, closed and convex multivalued map and the functions G, h1, h2

are specified later. Here 0 = t0 < t1 < t2 < ... < tn < tn + 1 = b.
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Control theory is an important branch of engineering and mathematics that deals
with the behavior of dynamical systems. Controllability is one of the basic con-
cepts in mathematical control theory and it is classified as exact and approximate
controllability. Exact controllability enables to drive the system to arbitrary final
state while approximate controllability means that the system can be steered to
arbitrary small neighborhood of the final state. For the past two decades, authors
in [1, 12, 18, 27, 29, 30, 31, 32, 35, 36, 39, 40, 38] investigated the controllability
problem for abstract linear control systems in infinite dimensional spaces. Integrod-
ifferential equations can be used to model the various existing problems in the field
of electronics, fluid dynamics, biological models and chemical kinetics. Because of
such enormous applications, it has been extensively used by the mathematicians.
Initially, in [19], Grimmer et al. proved the existence of solution of the integrod-

ifferential evolution equations by the use of resolvent operator. Since then, many
authors studied the existence of solution using resolvent operators which is an al-
ternative for the semigroup operator in the case of integrodifferential equations, see
[9, 15, 22, 26, 30]. The impulsive differential equation is a suitable one to model the
evolutionary processes from different fields subject to certain perturbations whose
duration is negligible when compared to the duration of the whole process. For
more detail on these concepts, refer [3, 4, 24, 28] and the references therein.
In many real world problems, the nonlinear terms involve spatial derivatives. In

such occasions, we cannot discuss the problem in the whole Banach space X since
we normally take X = L2([0, π]) and hence the third variable in the nonlinear terms
are defined on X 1

2
. So, we restrict the equation in a Banach space Xα ⊂ X instead

of X. We use the fractional power operators and α- norm to show the results, which
were used in the papers [17, 33, 10]. Fu et al. [17] studied the existence of solutions
for neutral integrodifferential equations with nonlocal conditions. Recently in [33],
Mokkedem et al. investigated the approximate controllability of semi-linear neutral
integrodifferential systems with infinite delay. Inspired by the above works, in this
paper, we establish a set of suffi cient conditions for the approximate controllability
for neutral impulsive integrodifferential inclusions of the form (1.1)-(1.2).
This paper is organized as follows. In section 2, some necessary concepts and

important definitions about the resolvent operators, multivaled map are given. In
section 3, a set of suffi cient conditions for the approximate controllability for neutral
integrodifferential inclusions in Banach spaces are established. In section 4, the
approximate controllability for neutral integrodifferential inclusions with nonlocal
conditions in Banach spaces is studied. An example is also given in section 5 to
illustrate the theory of the abstract main result.

2. Preliminaries

In this section, we introduce some important notations and lemmas concerning
the fractional operator and the multi-valued map required in order to prove our
results.
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Let X be a Banach space with norm ‖ · ‖ and here we assume that −A : D(A) ⊆
X → X is the infinitesimal generator of a compact analytic semigroup (T (t))t>0.
We denote Y as the Banach space formed from D(A) with the graph norm ‖y‖Y =
‖Ay‖ + ‖y‖, for y ∈ D(A). Let L(X) is the Banach space of all linear bounded
operators L from X into X with norm ‖L‖L(X) = sup{‖L(y)‖ : ‖y‖ = 1}. By
ρ(A), we denote the resolvent set of a linear operator A and let 0 ∈ ρ(A). Now
we define the fractional power Aα for 0 < α ≤ 1 as a closed linear operator on
its domain D(Aα). Also, the subspace D(Aα) is dense in X and the expression
‖x‖α = ‖Aαx‖, x ∈ D(Aα), defines a norm on D(Aα). We denote the space
D(Aα) as Xα with the norm ‖ · ‖α. For each 0 < α < 1, Xα is a Banach space,
Xα ↪→ Xβ for 0 < β ≤ α ≤ 1 and the imbedding is compact whenever R(λ,A), the
resolvent operator of A is compact. Let ‖A−β‖ ≤M∗, withM∗ a positive constant.
We denote by C, the Banach space C(J,X) endowed with supnorm given by

‖x‖C ≡ sup
t∈J
‖Aαx(t)‖, for x ∈ C.

The reader may refer [34] for the concepts of semigroup operators. With the help
of [19, 20, 21], we now give some essential properties about the resolvent operators.

Definition 2.1. A family of bounded linear operators R(t) ∈ L(X) for t ∈ [0, b] is
called a resolvent operators for

d

dt
x(t) =−Ax(t) +

∫ b

0

Q(t− s)x(s)ds, (2.1)

x(0) =x0 ∈ X, (2.2)

if

(i) R(0) = I and ‖R(t)‖ ≤ N1e
ωt for some N1 > 0, ω ∈ R,

(ii) for all x ∈ X, R(t)x is continuous for t ∈ [0, b],
(iii) R(t) ∈ L(Y ), for t ∈ [0, b]. For x ∈ Y, R(t)x ∈ C1([0, b], X)

⋂
C([0, b], Y )

and for t ≥ 0 such that

d

dt
R(t)x =−AR(t)x+

∫ t

0

Q(t− s)R(s)xds

=−R(t)Ax+

∫ t

0

R(t− s)Q(s)xds.

By [21], the operators A and Q(·) satisfies the following conditions:
(A1) A generates an analytic semigroup on X. Q(t) is a closed operator on X

with domain at least D(A) a.e t ≥ 0 with Q(t)x strongly measurable for
each x ∈ D(A) and ‖Q(t)‖1,0 ≤ q(t), q ∈ L1(0,∞) with q∗(λ) absolutely
convergent for Reλ > 0, where b∗(λ) denotes the Laplace transform of q(t).

(A2) ρ(λ) := (λI − A0 − Q∗(λ))−1 exists as a bounded operator on X which
is analytic for λ in the region Λ = {λ ∈ C : |argλ| ≤ π

2 + δ}, where
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0 < δ < π
2 . In Λ if |λ| ≥ ε > 0, there exists a constant M = M(ε) > 0 so

that ‖ρ(λ)‖ ≤ M
|λ| .

(A3) Aρ(λ) ∈ L(X) for λ ∈ Λ and are analytic on Λ into L(X). B∗(λ) ∈ L(Y,X)
and Q∗(λ)ρ(λ) ∈ L(Y,X) for λ ∈ Λ. Given ε > 0, there existsM = M(ε) >
0 so that for λ ∈ Λ with |λ| ≥ ε, ‖Aρ(λ)‖1,0 + ‖Q∗(λ)ρ(λ)‖1,0 ≤ M

λ , and
‖Q∗(λ)‖1,0 → 0 as |λ| → ∞ in Λ. In addition, ‖Aρ(λ)‖ ≤ M

|λ|n for some

n > 0, λ ∈ Λ with |λ| ≤ ε. Further, there exists D ⊂ D(A2) which is dense
in Y such that A0(D) and Q∗(λ)(D) are contained in Y and ‖Q∗(λ)x‖1 is
bounded for each x ∈ D, λ ∈ Λ, |λ| ≥ ε.

With the help of above conditions, there exists a resolvent operator R(t) for the
linear system (2.1)-(2.2) given by

R(0) = I

and

R(t)x =
1

2πi

∫
Γ

eλt(λI −A−Q∗(λ))−1xdλ, t > 0,

By the assumption (A2),

R(t)x =
1

2πi

∫
Γ

ρ(λ)xdλ, t > 0,

where Γ is a contour of the type used to obtain an analytic semigroup. We can
select contour Γ, included in the region Λ, consisting of Γ1,Γ2, andΓ3, where

Γ1 ={reiφ : r ≥ 1}, Γ2 = {eiθ : −φ ≤ θ ≤ φ},

Γ3 ={reiφ : r ≥ 1}, π
2
< φ <

π

2
+ δ,

oriented so that Im(λ) is increasing on Γ1 and Γ2. Moreover, R(t) is also analytic
and there exist N,Cα > 0 such that

‖R(t)‖ ≤ N and ‖AαR(t)‖ ≤ Cα
tα
, 0 < t < b, 0 ≤ α ≤ 1.

Lemma 2.2. [17]. AR(t) is continuous for t > 0 in the uniform operator topology
of L(X).

In this work, we resquire that Aα be commutative with R(t) for any 0 ≤ α ≤ 1,
that is, for any x ∈ D(Aα),

AαR(t)x = R(t)Aαx (2.3)

Even though in some references [23, 11] have used it, this commutation is not always
valid. But this commutation can be proved in many cases. Take Q(t−s) = q(t−s)A
with b(t) a scalar function defined on (0,+∞), then the linear system (2.1)-(2.2)
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becomes

d

dt
x(t) =−Ax(t) +

∫ b

0

q(t− s)Ax(s)ds, (2.4)

x(0) =x0 ∈ X, (2.5)

Now we apply the following conditions on (2.4)-(2.5) from [21],

(A′1) A generates an analytic semigroup on X. In particular,

Λ1 = {λ ∈ C : |argλ| < (
π

2
) + δ1}, 0 < δ1 <

π

2

is contained in the resolvent set of A and ‖(λI − A)−1‖ ≤ M/|λ| on Λ1

for some constant M > 0. The scalar function q(·) is in L1(0,∞) with
q∗(λ) absolutely convergent for Reλ > 0, where q∗(λ)denotes the Laplace
transform of q(t).

(A′2) There exists Λ = {λ ∈ C : |argλ| < (π2 ) + δ2}, 0 < δ2 <
π
2 , so that λ ∈ Λ

implies g1(λ) = 1 + q∗(λ) exists and is not zero. Further λg−1
1 (λ) ∈ Λ1 for

λ ∈ Λ.
(A′3) In Λ, q∗(λ)→ 0 as |λ| → ∞.
With the help of above conditions, the resolvent operator R(t) is analytic. Hence

(2.3) holds in this case.
Now we introduce some basic definitions and results of multivalued maps. For

more details on multivalued maps, see the books of [37, 13].

Definition 2.3. [9]. A multivalued map F satisfies the following conditions:

(i) A multivalued map F : X → 2X \ {∅} is convex (closed) valued if F (x) is
convex (closed) for all x ∈ X. F is bounded on bounded sets if F (C) =⋃
x∈C F (x) is bounded in X for any bounded set C of X, i.e., supx∈C

{
sup{‖y‖ :

y ∈ G(x)}
}
<∞.

(ii) F is called upper semicontinuous (u.s.c. for short) on X if for each x0 ∈ X,
the set F (x0) is a nonempty closed subset of X, and if for each open set
C of X containing F (x0), there exists an open neighborhood V of x0 such
that F (V ) ⊆ C.

(iii) F is called completely continuous if F (C) is relatively compact for every
bounded subset C of X.

(iv) If the multivalued map F is completely continuous with nonempty values,
then F is u.s.c., if and only if F has a closed graph, i.e., xn → x∗, yn → y∗,
yn ∈ Fxn imply y∗ ∈ Fx∗. F has a fixed point if there is a x ∈ X such that
x ∈ F (x).

Remark 2.4. In this paper, BCC(X) denotes the set of all nonempty bounded,
closed and convex subset of X.
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Definition 2.5. A function x ∈ C is said to be a mild solution of system (1.1)-(1.2)
if x(0) = x0, and there exists f ∈ L1(J,X) such that f(t) ∈ F (t, x(h2(t))) on t ∈ J
and the integral equation

x(t) =R(t)[x0 −G(t, x(h1(0)))] +G(t, x(h1(t))) +

∫ t

0

R(t− s)AG(s, x(h1(s)))ds

+

∫ t

0

R(t− s)
∫ s

0

Q(s− τ)G(τ , x(h1(τ)))dτds+

∫ t

0

R(t− s)f(s)ds

+

∫ t

0

R(t− s)Bu(s)ds,

is satisfied.

Now, it is convenient to introduce two appropriate operators and basic assump-
tions on these operators:

Γb0 =

∫ b

0

R(b− s)BB∗R∗(b− s)ds : X → X,

R(a,Γb0) = (aI + Γb0)−1 : X → X,

where B∗ denotes the adjoint of B and R∗(t) is the adjoint of R(t). It is clear that
the operator Γb0 is a linear bounded operator.
To study the approximate controllability of system (1.1)-(1.2), we impose the

following condition:

(H0) aR(a,Γb0)→ 0 as a→ 0+ in the strong operator topology.

In view of [30], Hypothesis (H0) holds if and only if the linear system

x′(t) +Ax(t) ∈
∫ t

0

Q(t− s)x(s)ds+Bu(t), t ∈ [0, b], (2.6)

x(0) =x0 (2.7)

is approximately controllable on [0, b].
We use the following well known results to prove our results.

Lemma 2.6. [25, Lasota and Opial] Let J be a compact real interval, BCC(X)
be the set of all nonempty, bounded, closed and convex subset of X and F be a
multivalued map satisfying F : J ×X → BCC(X) is measurable to t for each fixed
x ∈ X, u.s.c. to x for each t ∈ J , and for each x ∈ C the set

SF,x = {f ∈ L1(J,X) : f(t) ∈ F (t, x(t)), t ∈ J}

is nonempty. Let F be a linear continuous from L1(J,X) to C, then the operator

F ◦ SF : C → BCC(C), x→ (F ◦ SF )(x) = F (SF,x),

is a closed graph operator in C × C.
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Lemma 2.7. [5, Bohnenblust and Karlin]. Let D be a nonempty subset of X,
which is bounded, closed, and convex. Suppose G : D → 2X \ {∅} is u.s.c. with
closed, convex values, and such that G(D) ⊆ D and G(D) is compact. Then G has
a fixed point.

3. Approximate controllability results

In this section, first the existence of mild solutions for system (1.1)-(1.2) is proved
by using Bohnenblust-Karlin fixed point theorem. And then, we show under certain
assumptions, the approximate controllability of (2.6)-(2.7) implies the approximate
controllability of (1.1)-(1.2). To prove the results, we need the following hypotheses
and let α ∈ (0, 1).

(H1) R(t) is a compact operator for each t > 0.
(H2) (Q(t))t∈J is a family of operators from Y toX such thatQ(t) ∈ L(Xα+β , X)

for each t ∈ J . Then, there exists a constant M1 > 0 such that

‖Q(t)‖α+β,0 ≤M1.

(H3) There exist a constant β ∈ (0, 1) with α+ β = 1, such that G : J ×Xα →
Xα+β satisfies the Lipschitz condition, i.e., there exists a constant Lg > 0
such that

‖G(t1, x1)−G(t2, x2)‖α+β ≤ Lg(|t1 − t2|+ ‖x1 − x2‖α)

for any 0 ≤ t1, t2 ≤ b, x1, x2 ∈ Xα, and the inequality

‖G(t, x)‖α+β ≤ Lg(‖x‖α + 1)

holds for any (t, x) ∈ [0, b]×Xα.
(H4) The multivalued map F : J × Xα → BCC(Xα) satisfies the following

conditions.
(i) For each t ∈ J , the function F (t, ·) : Xα → BCC(Xα) is u.s.c; and for

each x ∈ Xα, the function F (·, x) is measurable.
(ii) For each x ∈ C, the set

SF,x =
{
f ∈ L1(J,Xα) : f(t) ∈ F (t, x(h2(t))), t ∈ J

}
is non-empty.

(H5) For each positive number r and x ∈ C with ‖x‖C ≤ r, there exists Lf,r(·) ∈
L1(J,R+) such that

sup
‖x‖≤r

‖F (t, x)‖α ≤ Lf,r(s)ds, for a.e.t ∈ J

where ‖F (t, x)‖ = sup{‖f‖ : f(t) ∈ F (t, x(h2(t)))}.
(H6) The function s→ Lf,r(s) ∈ L1([0, t],R+) and there exists a δ > 0 such that

lim
r→∞

∫ t
0
Lf,r(s)ds

r
= δ < +∞.

(H7) hi ∈ C(J, J), i = 1, 2.
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It will be shown that the system (1.1)-(1.2) is approximately controllable, if for
all a > 0, there exists a continuous function x(·) such that

x(t) =R(t)[x0 −G(t, x(h1(0)))] +G(t, x(h1(t))) +

∫ t

0

R(t− s)AG(s, x(h1(s)))ds

+

∫ t

0

R(t− s)
∫ s

0

Q(s− τ)G(τ , x(h1(τ)))dτds+

∫ t

0

R(t− s)f(s)ds

+

∫ t

0

R(t− s)Bu(s, x)ds, t ∈ J, f ∈ SF,x, (3.1)

u(t, x) =B∗R∗(b− t)R(a,Γb0)p(x(·)), (3.2)

where

p(x(·)) =xb −R(b)[x0 −G(b, x(h1(0)))]−G(b, x(h1(b)))−
∫ b

0

R(b− s)AG(s, x(h1(s)))ds

−
∫ b

0

R(b− s)
∫ s

0

Q(s− τ)G(τ , x(h1(τ)))dτds−
∫ b

0

R(b− s)f(s)ds

Theorem 3.1. Suppose that the hypotheses (H0)-(H7) are satisfied. Assume also(
1 +

1

a
N2M2

Bb
)[
NM∗Lg +M∗Lg +

bβC1−β
β

Lg +
b2−αCα
1− α M1Lg +Nγ

]
< 1, (3.3)

where MB = ‖B‖, then the system (1.1)-(1.2) has a solution on J .

Proof. The main aim of this theorem is to find conditions for solvability of system
(1.1)-(1.2) for a > 0. We show that, using the control u(t, x), the operator Γ : C →
2C , defined by

Υ(x) =
{
ϕ ∈C : ϕ(t) = R(t)[x0 −G(t, x(h1(0)))] +G(t, x(h1(t)))

+

∫ t

0

R(t− s)AG(s, x(h1(s)))ds

+

∫ t

0

R(t− s)
∫ s

0

Q(s− τ)G(τ , x(h1(τ)))dτds

+

∫ t

0

R(t− s)f(s)ds+

∫ t

0

R(t− s)Bu(s, x)ds, t ∈ J
}
,

has a fixed point x, which is a mild solution of system (1.1)-(1.2).
We now show that Υ satisfies all the conditions of Lemma 2.7. To simplify the

result, we subdivide the proof into five steps.
Step 1. Γ is convex for each x ∈ C.
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In fact, if ϕ1, ϕ2 belong to Υ(x), then there exist f1, f2 ∈ SF,x such that for
each t ∈ [0, b], we have

ϕi(t) =R(t)[x0 −G(t, x(h1(0)))] +G(t, x(h1(t))) +

∫ t

0

R(t− s)AG(s, x(h1(s)))ds

+

∫ t

0

R(t− s)
∫ s

0

Q(s− τ)G(τ , x(h1(τ)))dτds+

∫ t

0

R(t− s)fi(s)ds

+

∫ t

0

R(t− η)BB∗R∗(b− t)R(a,Γb0)×
[
xb −R(b)[x0 −G(b, x(h1(0)))]

−G(b, x(h1(b)))−
∫ b

0

R(b− s)AG(s, x(h1(s)))ds

−
∫ b

0

R(b− s)
∫ s

0

Q(s− τ)G(τ , x(h1(τ)))dτds−
∫ b

0

R(b− s)fi(s)ds
]
(η)dη

Let λ ∈ [0, 1]. Then for each t ∈ J , we get

λϕ1(t) + (1− λ)ϕ2(t) = R(t)[x0 −G(t, x(h1(0)))] +G(t, x(h1(t)))

+

∫ t

0

R(t− s)AG(s, x(h1(s)))ds+

∫ t

0

R(t− s)
∫ s

0

Q(s− τ)G(τ , x(h1(τ)))dτds

+

∫ t

0

R(t− s)[λf1(s) + (1− λ)f2(s)]ds+

∫ t

0

R(t− η)BB∗R∗(b− t)R(a,Γb0)

×
[
xb −R(b)[x0 −G(b, x(h1(0)))]−G(b, x(h1(b)))

−
∫ b

0

R(b− s)AG(s, x(h1(s)))ds

−
∫ b

0

R(b− s)
∫ s

0

Q(s− τ)G(τ , x(h1(τ)))dτds

−
∫ b

0

R(b− s)[λf1(s) + (1− λ)f2(s)](s)ds
]
(η)dη.

It is easy to see that SF,x is convex since F has convex values. So, λf1 +(1−λ)f2 ∈
SF,x. Thus,

λϕ1 + (1− λ)ϕ2 ∈ Υ(x).

Step 2. For r > 0, let Br = {x ∈ C : ‖x‖C ≤ r}. Certainly, Br is a bounded,
closed and convex set of C. We claim that there exists a positive number r such
that Υ(Br) ⊆ Br.
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If this is not true, then for each positive number r, there exists a function xr ∈ Br,
but Υ(xr) 6= Br, i.e., ‖Υ(xr)‖C ≡ sup

{
‖ϕr‖C : ϕr ∈ (Υxr)

}
> r and

ϕr(t) =R(t)[x0 −G(t, xr(h1(0)))] +G(t, xr(h1(t)))

+

∫ t

0

R(t− s)AG(s, xr(h1(s)))ds

+

∫ t

0

R(t− s)
∫ s

0

Q(s− τ)G(τ , xr(h1(τ)))dτds

+

∫ t

0

R(t− s)fr(s)ds+

∫ t

0

R(t− s)Bur(s, x)ds,

for some fr ∈ SF,xr . Using (H1)-(H7), we have

r <‖Υ(xr)(t)‖α

≤
∥∥∥R(t)[x0 −G(t, xr(h1(0)))]

∥∥∥
α

+
∥∥∥G(t, xr(h1(t)))

∥∥∥
α

+
∥∥∥ ∫ t

0

R(t− s)AG(s, xr(h1(s)))ds
∥∥∥
α

+
∥∥∥ ∫ t

0

R(t− s)
∫ s

0

Q(s− τ)G(τ , xr(h1(τ)))dτds
∥∥∥
α

+
∥∥∥ ∫ t

0

R(t− s)fr(s)ds
∥∥∥
α

+
∥∥∥∫ t

0

R(t− η)BB∗R∗(b− t)R(a,Γb0)
[
xb

−R(b)[x0 −G(b, xr(h1(0)))]−G(b, xr(h1(b)))

−
∫ b

0

R(b− s)AG(s, xr(h1(s)))ds−
∫ b

0

R(b− s)
∫ s

0

Q(s− τ)G(τ , xr(h1(τ)))dτds

−
∫ b

0

R(b− s)fr(s)ds
]
(η)dη

∥∥∥
α

≤N [‖x0‖α +M∗Lg(1 + r)] +M∗Lg(1 + r) +

∫ t

0

‖A1−βR(t− s)AβG(s, xr(h1(s)))‖αds

+

∫ t

0

‖AαR(t− s)‖
∫ s

0

‖Q(s− τ)G(τ , xr(h1(τ)))‖dτds

+N

∫ t

0

Lf,r(s)ds+
1

a
N2M2

Bb×
[
N [‖x0‖α +M∗Lg(1 + r)] +M∗Lg(1 + r)

+

∫ t

0

‖A1−βR(t− s)AβG(s, xr(h1(s)))‖αds

+

∫ t

0

‖AαR(t− s)‖
∫ s

0

‖Q(s− τ)G(τ , xr(h1(τ)))‖dτds+N

∫ t

0

Lf,r(s)ds
]
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≤
[
1 +

1

a
N2M2

Bb
](
N [‖x0‖α +M∗Lg(1 + r)]

+M∗Lg(1 + r) +
bβC1−β

β
Lg(1 + r) +

b2−αCα
1− α M1Lg(1 + r)

+N

∫ t

0

Lf,r(s)ds
)

Dividing both sides of the above inequality by r and taking the limit as r → ∞,
using H3, we get(

1 +
1

a
N2M2

Bb
)[
NM∗Lg +M∗Lg +

bβC1−β
β

Lg +
b2−αCα
1− α M1Lg +Nγ

]
≥ 1

This contradicts with the condition (3.3). Hence, for some r > 0, Υ(Br) ⊆ Br.
Step 3. Υ sends bounded sets into equicontinuous sets of C. For each x ∈ Br,
ϕ ∈ Υ(x), there exists a f ∈ SF,x such that for ε > 0 and 0 < t1 < t2 ≤ b, then

‖ϕ(t1)− ϕ(t2)‖ =‖R(t1)−R(t2)‖‖x0 −G(t, x(h1(0)))‖α
+ ‖G(t1, x(h1(t)))−G(t2, x(h1(t)))‖α

+
∥∥∥∫ t1−ε

0

[R(t1 − s)−R(t2 − s)]AG(s, x(h1(s)))ds
∥∥∥
α

+
∥∥∥ ∫ t1

t1−ε
[R(t1 − s)−R(t2 − s)]AG(s, x(h1(s)))ds

∥∥∥
α

+
∥∥∥ ∫ t2

t1

R(t2 − s)AG(s, x(h1(s)))ds
∥∥∥
α

+
∥∥∥ ∫ t1−ε

0

[R(t1 − s)−R(t2 − s)]
∫ s

0

Q(s− τ)G(τ , x(h1(τ)))dτds
∥∥∥
α

+
∥∥∥ ∫ t1

t1−ε
[R(t1 − s)−R(t2 − s)]

∫ s

0

Q(s− τ)G(τ , x(h1(τ)))dτds
∥∥∥
α

+
∥∥∥∫ t2

t1

R(t2 − s)
∫ s

0

Q(s− τ)G(τ , x(h1(τ)))dτds
∥∥∥
α

+
∥∥∥∫ t1−ε

0

[R(t1 − s)−R(t2 − s)]f(s)ds
∥∥∥
α

+
∥∥∥∫ t1

t1−ε
[R(t1 − s)−R(t2 − s)]f(s)ds

∥∥∥
α

+
∥∥∥∫ t2

t1

R(t2 − s)f(s)ds
∥∥∥
α

+
∥∥∥∫ t1−ε

0

[R(t1 − η)−R(t2 − η)]Bu(η, x)dη
∥∥∥
α

+
∥∥∥∫ t1

t−ε
R[(t1 − η)−R(t2 − η)]Bu(η, x)dη

∥∥∥
α

+
∥∥∥∫ t2

t1

R(t2 − η)Bu(η, x)dη
∥∥∥
α
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≤‖R(t1)−R(t2)‖‖[x0 −G(t, x(h1(0)))]‖α +M∗Lg[|t1 − t2|+ ‖x(h1(t))− x(h1(t))]‖α

+ Lg

∫ t1−ε

0

‖A1−β‖[R(t1 − s)−R(t2 − s)](1 + ‖x(s)‖α)ds

+ Lg

∫ t1

t1−ε
‖A1−β‖[R(t1 − s)−R(t2 − s)](1 + ‖x(s)‖α)ds+ Lg

∫ t2

t1

C1−β
(t− s)1−β (1 + ‖x(s)‖α)ds

+ bM1Lg

∫ t1−ε

0

‖Aα‖[R(t1 − s)−R(t2 − s)](1 + ‖x(s)α)ds

+ bM1Lg

∫ t1

t1−ε
‖Aα‖[R(t1 − s)−R(t2 − s)](1 + ‖x(s)α‖)ds

+ bM1Lg

∫ t2

t1

Cα
(t− s)α (1 + ‖x(s)α‖ds+

∫ t1−ε

0

[R(t1 − s)−R(t2 − s)]Lf,r(s)ds

+

∫ t1

t1−ε
[R(t1 − s)−R(t2 − s)]Lf,rds+N

∫ t2

t1

Lf,r(s)ds

+MB

∫ t1−ε

0

[R(t1 − η)−R(t2 − η)]‖u(η, x)‖αdη

+MB

∫ t1

t−ε
R[(t1 − η)−R(t2 − η)]‖u(η, x)‖αdη +NMB

∫ t2

t1

‖u(η, x)‖αdη

The right-hand side of the above inequality tends to zero independently of x ∈ Br
as (t1 − t2) → 0 and ε suffi ciently small, since the compactness of the resolvent
operator R(t) implies the continuity in the uniform operator topology. Thus Υ(xr)
sends Br into equicontinuous family of functions.
Step 4. The set Π(t) =

{
ϕ(t) : ϕ ∈ Υ(Br)

}
is relatively compact in Xα.

Let t ∈ (0, b] be fixed and ε a real number satisfying 0 < ε < t. For x ∈ Br, we
define

ϕε(t) =R(t)[x0 −G(t, x(h1(0)))] +G(t, x(h1(t))) +

∫ t−ε

0

R(t− s)AG(s, x(h1(s)))ds

+

∫ t−ε

0

R(t− s)
∫ s

0

Q(s− τ)G(τ , x(h1(τ)))dτds+

∫ t−ε

0

R(t− s)f(s)ds

+

∫ t−ε

0

R(t− s)Bu(s, x)ds, t ∈ J.

Since R(t) is a compact operator, the set Πε(t) = {ϕε(t) : ϕε ∈ Υ(Br)} is relatively
compact in Xα for each ε, 0 < ε < t. Moreover, for each 0 < ε < t, we have

‖ϕ(t)− ϕε(t)‖ ≤
∥∥∥∫ t

t−ε
R(t− s)AG(s, x(h1(s)))ds

∥∥∥
α
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+
∥∥∥∫ t

t−ε
R(t− s)

∫ s

0

Q(s− τ)G(τ , x(h1(τ)))dτds
∥∥∥
α

+
∥∥∥∫ t

t−ε
R(t− s)f(s)ds

∥∥∥
α

+
∥∥∥∫ t

t−ε
R(t− s)Bu(s, x)ds

∥∥∥
α

≤ C1−β
β

εβLg(1 + r) +
Cα

1− αε
2−αM1Lg(1 + r) +Nγ +NMB

∫ t

t−ε
‖u(s, η)‖αdη.

Hence there exist relatively compact sets arbitrarily close to the set Π(t) = {ϕ(t) :

ϕ ∈ Υ(Br)}, and the set Π̃(t) is relatively compact in Xα for all t ∈ [0, b]. Since it
is compact at t = 0, hence Π(t) is relatively compact in Xα for all t ∈ [0, b].
Step 5. Υ has a closed graph.
Let xn → x∗ as n → ∞, ϕn ∈ Υ(xn), and ϕn → ϕ∗ as n → ∞. We will show

that ϕ∗ ∈ Υ(x∗). Since ϕn ∈ Υ(xn), there exists a fn ∈ SF,xn such that

ϕn(t) =R(t)[x0 −G(t, xn(h1(0)))] +G(t, xn(h1(t)))

+

∫ t

0

R(t− s)AG(s, xn(h1(s)))ds

+

∫ t

0

R(t− s)
∫ s

0

Q(s− τ)G(τ , xn(h1(τ)))dτds+

∫ t

0

R(t− s)fn(s)ds

+

∫ t

0

R(t− η)BB∗R∗(b− t)R(a,Γb0)

×
[
xb −R(b)[x0 −G(b, xn(h1(0)))]−G(b, xn(h1(b)))

−
∫ b

0

R(b− s)AG(s, xn(h1(s)))ds

−
∫ b

0

R(b− s)
∫ s

0

Q(s− τ)G(τ , xn(h1(τ)))dτds

−
∫ b

0

R(b− s)fn(s)ds
]
(η)dη.

We must prove that there exists a f∗ ∈ SF,x∗ such that

ϕ∗(t) =R(t)[x0 −G(t, x∗(h1(0)))] +G(t, x∗(h1(t)))

+

∫ t

0

R(t− s)AG(s, x∗(h1(s)))ds



APPROXIMATE CONTROLLABILITY 1219

+

∫ t

0

R(t− s)
∫ s

0

Q(s− τ)G(τ , x∗(h1(τ)))dτds+

∫ t

0

R(t− s)f∗(s)ds

+

∫ t

0

R(t− η)BB∗R∗(b− t)R(a,Γb0)
[
xb −R(b)[x0 −G(b, x∗(h1(0)))]

−G(b, x∗(h1(b)))−
∫ b

0

R(b− s)AG(s, x∗(h1(s)))ds

−
∫ b

0

R(b− s)
∫ s

0

Q(s− τ)G(τ , x∗(h1(τ)))dτds−
∫ b

0

R(b− s)f∗(s)ds
]
(η)dη.

Clearly, we have

∥∥∥(ϕn(t)−R(t)[x0 −G(t, xn(h1(0)))]−G(t, xn(h1(t)))−
∫ t

0

R(t− s)AG(s, xn(h1(s)))ds

−
∫ t

0

R(t− s)
∫ s

0

Q(s− τ)G(τ , xn(h1(τ)))dτds−
∫ t

0

R(t− η)BB∗R∗(b− t)R(a,Γb0)

×
[
xb −R(b)[x0 −G(b, xn(h1(0)))]−G(b, xn(h1(b)))−

∫ b

0

R(b− s)AG(s, xn(h1(s)))ds

−
∫ b

0

R(b− s)
∫ s

0

Q(s− τ)G(τ , xn(h1(τ)))dτds−
∫ b

0

R(b− s)fn(s)ds
]
(η)dη

)
−
(
ϕ∗(t)

−R(t)[x0 −G(t, x∗(h1(0)))]−G(t, x∗(h1(t)))−
∫ t

0

R(t− s)AG(s, x∗(h1(s)))ds

−
∫ t

0

R(t− s)
∫ s

0

Q(s− τ)G(τ , x∗(h1(τ)))dτds−
∫ t

0

R(t− η)BB∗R∗(b− t)R(a,Γb0)

×
[
xb −R(b)[x0 −G(b, x∗(h1(0)))]−G(b, x∗(h1(b)))−

∫ b

0

R(b− s)AG(s, x∗(h1(s)))ds

−
∫ b

0

R(b− s)
∫ s

0

Q(s− τ)G(τ , x∗(h1(τ)))dτds−
∫ b

0

R(b− s)f∗(s)ds
]
(η)dη

)∥∥∥
C

→ 0 as n→∞.

Consider the operator W̃ : L1(J,X)→ C,

(W̃ f)(t) =

∫ t

0

R(t− s)
[
f(s)−BB∗R∗(b− t)

(∫ b

0

R(b− t)f(η)dη
)

(s)
]
ds

We can see that the operator W̃ is linear and continuous. From Lemma 2.7
again, it follows that W̃ ◦ SF is a closed graph operator. Moreover,
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(
ϕn(t)−R(t)[x0 −G(t, xn(h1(0)))]−G(t, xn(h1(t)))

−
∫ t

0

R(t− s)AG(s, xn(h1(s)))ds

−
∫ t

0

R(t− s)
∫ s

0

Q(s− τ)G(τ , xn(h1(τ)))dτds

−
∫ t

0

R(t− η)BB∗R∗(b− t)R(a,Γb0)

×
[
xb −R(b)[x0 −G(b, xn(h1(0)))]−G(b, xn(h1(b)))

−
∫ b

0

R(b− s)AG(s, xn(h1(s)))ds

−
∫ b

0

R(b− s)
∫ s

0

Q(s− τ)G(τ , xn(h1(τ)))dτds

−
∫ b

0

R(b− s)fn(s)ds
]
(η)dη

)
∈W(SF,xn).

In view of xn → x∗ as n→∞, it follows again from Lemma 2.7 that(
ϕ∗(t)−R(t)[x0 −G(t, x∗(h1(0)))]−G(t, x∗(h1(t)))

−
∫ t

0

R(t− s)AG(s, x∗(h1(s)))ds

−
∫ t

0

R(t− s)
∫ s

0

Q(s− τ)G(τ , x∗(h1(τ)))dτds

−
∫ t

0

R(t− η)BB∗R∗(b− t)R(a,Γb0)

×
[
xb −R(b)[x0 −G(b, x∗(h1(0)))]−G(b, x∗(h1(b)))

−
∫ b

0

R(b− s)AG(s, x∗(h1(s)))ds

−
∫ b

0

R(b− s)
∫ s

0

Q(s− τ)G(τ , x∗(h1(τ)))dτds

−
∫ b

0

R(b− s)f∗(s)ds
]
(η)dη

)
∈ W (SF,x∗).

Therefore Υ has a closed graph.
As a consequence of Steps 1-5 together with the Arzela-Ascoli theorem, we

conclude that Υ is a compact multivalued map, u.s.c. with convex closed values.
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As a consequence of Lemma 2.7, we can deduce that Υ has a fixed point x which
is a mild solution of system (1.1)-(1.2). �

Definition 3.2. The control system (1.1) is said to be approximately controllable
on J if R(b, x0) = X, where R(b, x0) = {xb(x0;u) : u(·) ∈ L1(J, U)} is called the
reachable set of system (1.1) at terminal time b and its closure in X is denoted by
R(b, x0); Let xb(x0, u) be the state value of (1.1) at terminal time b corresponding
to the control u and the initial value x0 ∈ X.

Frankly speaking, by using the control function u, from any given initial point
x0 ∈ X we can move the system with the trajectory as close as possible to any
other final point xb ∈ X.

Theorem 3.3. Suppose that the assumptions (H0)-(H7) hold. Assume additionally
that (Ha) G : J ×Xα → Xα+β and G(t, ·) is continuous from the weak topology of
Xα to the strong topology of Xα and (Hb) there exists N ∈ L1(J, [0,∞)) such that
supx∈Xα ‖F (t, x)‖ + supy∈Xα+β ‖G(t, y)‖ ≤ N(t) for a.e. t ∈ J , then the system
(1.1)-(1.2) is approximately controllable on J .

Proof. Let x̂a(·) be a fixed point of Γ in Br. By Theorem 3.1, any fixed point of Γ
is a mild solution of (1.1)-(1.2) under the control

ûa(t) = B∗S∗(b, t)R(a,Γb0)p(x̂a)

and satisfies the following inequality

x̂a(b) =xb + aR(a,Γb0)
[
xb −R(b)[x0 −G(b, x(h1(0)))]−G(b, x(h1(b)))

−
∫ b

0

R(b− s)AG(s, x(h1(s)))ds−
∫ b

0

R(b− s)
∫ s

0

Q(s− τ)G(τ , x(h1(τ)))dτds

−
∫ b

0

R(b− s)f(s)ds
]
. (3.4)

Also, x̂α(b)→ x̃ weakly as α→ 0+ and by the assumption (Ha)

G(b, x̂a(b))→ G(b, x̃),

strongly as a→ 0+. Moreover, because of assumption (Hb),∫ b

0

‖f(s, x̂as)‖2ds+

∫ b

0

‖G(s, x̂as)‖2ds ≤
∫ b

0

N(s)ds.

Consequently, the sequences f(·, xa), G(·, xa) are bounded. Then there is a subse-
quence still denoted by f(·, xa), G(·, xa) which weakly converges to, say f(·), g(·) in
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L2(J,X). Define

w =xb −R(b)[x0 −G(b, x(h1(0)))]−G(b, x̃)−
∫ b

0

R(b− s)Ag(s)ds−
∫ b

0

R(b− s)

×
∫ s

0

Q(s− τ)g(s)dτds−
∫ b

0

R(b− s)f(s)ds

Now, we have

‖p(x̂a)− w‖ =‖G(b, x̂a(b))−G(b, x̃)‖+
∥∥∥∫ b

0

R(b− s)A[G(s, x̂as)− g(s)]ds
∥∥∥

+
∥∥∥∫ b

0

R(b− s)
∫ s

0

Q(s− τ)[G(s, x̂as)− g(s)]dτds
∥∥∥

+
∥∥∥∫ b

0

R(b− s)[F (s, x̂a(s))− f(s)]ds
∥∥∥

≤ sup
0≤t≤b

‖G(t, x̂a(t))−G(t, x̃)‖+ sup
0≤t≤b

∥∥∥∫ t

0

R(t− s)A[G(s, x̂as)− g(s)]ds
∥∥∥

+ sup
0≤t≤b

∥∥∥∫ t

0

R(t− s)
∫ s

0

Q(s− τ)[G(s, x̂as)− g(s)]dτds
∥∥∥

+ sup
0≤t≤b

∥∥∥∫ t

0

R(t− s)[F (s, x̂a(s))− f(s)]ds
∥∥∥. (3.5)

By using infinite-dimensional version of the Ascoli-Arzela theorem, one can show
that an operator l(·) →

∫ ·
0
S(·, s)l(s)ds : L1(J,X) → C is compact. Therefore, we

obtain that ‖p(x̂a)− w‖ → 0 as a→ 0+. Moreover, from (3.4) we get

‖x̂a(b)− xb‖ ≤‖aR(a,Γb0)(w)‖+ ‖aR(a,Γb0)‖‖p(x̂a)− w‖
≤‖aR(a,Γb0)(w)‖+ ‖p(x̂a)− w‖.

It follows from assumption H0 and the estimation (3.5) that ‖x̂a(b) − xb‖ → 0 as
a→ 0+. This proves the approximate controllability of system (1.1)-(1.2). �

4. Approximate controllability results with nonlocal conditions

Since the differential equations with nonlocal conditions have better applications
than the initial conditions in fields like Physics and Engineering, this type of equa-
tions have been widely studied by the various authors. First it was initiated by
Byszewski in [6, 7, 8] and then the authors in [2, 14, 16, 27, 30] extended the
concepts of nonlocal conditions with different kinds of problems.
Inspired by the above works, in this section, we discuss the approximate control-

lability for a class of neutral integrodifferential inclusions with nonlocal conditions
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in Banach spaces of the form

d

dt
[x(t)−G(t, x(h1(t)))] +Ax(t) ∈

∫ t

0

Q(t− s)x(s)ds+ F (t, x(h2(t))) +Bu(t),

(4.1)

x(0) =x0 + g(x), t ∈ J = [0, b], (4.2)

where g : C → Xα is a continuous function which satisfies the following condition:

(H9) There exists a constant L > 0 such that for any x ∈ C([0, b], Xα),

‖g(x)‖α ≤ L1‖x‖C , for x ∈ C

Definition 4.1. A function x ∈ C is said to be a mild solution of system (4.1)-(4.2)
if x(0) + g(x) = x0 and there exists f ∈ L1(J,X) such that f(t) ∈ F (t, x(t)) on
t ∈ J and the integral equation

x(t) =R(t)[x0 −G(t, x(h1(0))) + g(x)] +G(t, x(h1(t)))

+

∫ t

0

R(t− s)AG(s, x(h1(s)))ds

+

∫ t

0

R(t− s)
∫ s

0

Q(s− τ)G(τ , x(h1(τ)))dτds+

∫ t

0

R(t− s)f(s)ds

+

∫ t

0

R(t− s)Bu(s)ds,

is satisfied.

Theorem 4.2. Assume that the assumptions of Theorem 3.1 are satisfied. Further,
if the hypothesis (H9) is satisfied, then the system (4.1)-(4.2) is approximately
controllable on J provided that

(
1 +

1

a
N2M2

Bb
)[
NM∗Lg +M∗Lg +

bβC1−β
β

Lg +
b2−αCα
1− α M1Lg +N

(
γ + L1

)]
< 1,

where MB = ‖B‖.

Proof. For each a > 0, we define the operator Υ̂a on X by

(Υ̂ax) = z,
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where

z(t) =R(t)[x0 −G(t, x(h1(0))) + g(x)] +G(t, x(h1(t)))

+

∫ t

0

R(t− s)AG(s, x(h1(s)))ds

+

∫ t

0

R(t− s)
∫ s

0

Q(s− τ)G(τ , x(h1(τ)))dτds+

∫ t

0

R(t− s)f(s)ds

+

∫ t

0

R(t− s)Bu(s)ds

v(t) =B∗S∗(b, t)R(a,Υb
0)p(x(·)),

p(x(·)) =xb −R(b)[x0 −G(b, x(h1(0))) + g(x)]−G(b, x(h1(b)))

−
∫ b

0

R(b− s)AG(s, x(h1(s)))ds

−
∫ b

0

R(t− s)
∫ s

0

Q(s− τ)G(τ , x(h1(τ)))dτds

−
∫ b

0

R(b− s)f(s)ds

where f ∈ SF,x.
It can be easily proved that if for all a > 0, the operator Υ̂a has a fixed point

by implementing the technique used in Theorem 3.1. Then, we can show that the
second order control system (4.1)-(4.2) is approximately controllable. The proof of
this theorem is similar to that of Theorem 3.1 and Theorem 3.3, and hence it is
omitted. �

5. Application

Consider the partial functional integrodifferential equation with control

∂

∂t

[
z(t, x)+

∫ π

0

ã(y, x)
(
z(t sin t, y) + sin

( ∂
∂y
z(t, y)

))
dy
]
∈ ∂2

∂x2
z(t, x)

+

∫ t

0

q̃(t− s) ∂

∂x2
z(s, x)ds+ µ(t, x) + c̃

(
t, z
(
t cos t, x,

∂

∂x
z(t, x)

))
,

(5.1)

for 0 ≤ x ≤ π, 0 ≤ t ≤ b, subject to the initial conditions
z(t, 0) =z(t, π) = 0, t ∈ J, (5.2)

z(0, x) =z0(x), 0 ≤ x ≤ π, (5.3)

where ã : [0, 1]× [0, π]× [0, π]→ R, q̃(·)is a continuous function such that‖q̃(·)‖ ≤
M∗. Here c̃ : [0, 1] × R → BCC(R) is a continuous function. Now we define the
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space X = L2([0, π])andz0(x) ∈ X. To rewrite the above equation in the abstract
form, we define the operator A by

Az = −z′′

with the domain

D(A) = {z(·) ∈ X : z′, z′′ ∈ X, andz(0) = z(π) = 0}.

Then −A generates a strongly continuous semigroup (T (t))t>0 which is compact,
analytic and self-adjoint. Also, A has a discrete spectrum, the eigenvalues are

n2, n ∈ N, with the corresponding normalized eigenvectors en(x) =
√

2
π sin(nx), n =

1, 2, · · · . And,
(i) If z ∈ D(A), then Az =

∑∞
n=1 n

2 〈z, en〉 en.
(ii) For each z ∈ X, A−1/2z =

∑∞
n=1

1
n 〈z, en〉 en. In particular, ‖A

−1/2‖ = 1.

(iii) The operator A1/2 is given by

A1/2z =

∞∑
n=1

n 〈z, en〉 en

on the space

D(A1/2) =

{
z(·) ∈ X,

∞∑
n=1

n 〈z, en〉 en ∈ X
}
.

We take α = β = 1
2 , Q(t) = q(t)A, and put z(t) = z(t, ·), that is z(t)(τ) = z(t, τ),

t ∈ J , x ∈ [0, π] and u(t) = µ(t, ·), here µ : I × [0, π]→ [0, π] is continuous. Define

the functions G : [0, b]×X 1
2
→ D(A), F : [0, b]×X 1

2
→ 2

X 1
2 respectively by

G(t, z)(x) =c̃
(
t, z(t, x),

∂

∂x
z(t, x)

)
,

F (t, z)(x) =

∫ π

0

ã(y, x)[z(t, y) + sin(z′(t, y))]dy,

and the bounded linear operator B : U → X by

Bu(t)(τ) = µ(t, τ).

Assume these functions satisfy the requirement of hypotheses. From the above
choices of the functions and evolution operator A(t) with B = J , the system (5.1)-
(5.2) can be formulated as the system (1.1)-(1.2) in X. Since all hypotheses of
Theorem 3.3 are satisfied, approximate controllability of system (5.1)-(5.2) on J
follows from Theorem 3.3.



1226 M. TAMILSELVAN

References

[1] Abada, N., Benchohra, M. and Hammouche, H., Existence and controllability results for non-
densely defined impulsive semilinear functional differential inclusions, Journal of Diff erential
Equations, 246(10) (2009), 3834-3863.

[2] Aizicovici, S. and McKibben, M., Existence results for a class of abstract nonlocal Cauchy
problems, Nonlinear Analysis, 39 (2000), 649-668.

[3] Bainov, D.D. and Simeonov, P.S., Impulsive Differential Equations: Periodic Solutions and
Applications, Longman Scientific and Technical Group, England, 1993.

[4] Benchohra, M. Henderson J. and Ntouyas, S.K. Impulsive Differential Equations and Inclu-
sions, Contemporary Mathematics and Its Applications, Hindawi Publishing Corporation,
New York, 2006.

[5] Bohnenblust, H.F. and Karlin, S., On a Theorem of Ville, in: Contributions to the Theory
of Games, vol. I, Princeton University Press, Princeton, NJ, 155-160, 1950.

[6] Byszewski, L., Theorems about the existence and uniqueness of solutions of a semilinear
evolution nonlocal Cauchy problem, Journal of Mathematical Analysis and Applications,
162 (1991), 494-505.

[7] Byszewski L. and Akca, H. On a mild solution of a semilinear functional-differential evolution
nonlocal problem, Journal of Applied Mathematics and Stochastic Analysis, 10(3) (1997),
265-271.

[8] Byszewski, L. and Lakshmikantham, V., Theorem about the existence and uniqueness of
solutions of a nonlocal Cauchy problem in a Banach space, Applicable Analysis, 40 (1990),
11-19.

[9] Chang, Y. and Nieto, J.J., Existence of solutions for impulsive neutral integro-differential
inclusions with nonlocal initial conditions via fractional operators, Numerical Functional
Analysis and Optimization, 30 (2009), 227-244.

[10] Chang, Y.-K. and Chalishajar, D.N., Controllability of mixed Volterra-Fredholm type inte-
grodifferential inclusions in Banach spaces, Journal of Franklin Institute, 345 (2008), 499-507.

[11] Chang, J. and Liu, H., Existence of solutions for a class of neutral partial differential equations
with nonlocal conditions in the α-norm, Nonlinear Analysis, 71 (2009), 3759-3768.

[12] Dauer, J.P., Mahmudov N.I. and Matar, M.M., Approximate controllability of backward
stochastic evolution equations in Hilbert spaces, Journal of Mathematical Analysis and Ap-
plication, 323(1) (2006), 42-56.

[13] Deimling, K., Multivalued Differential Equations, De Gruyter, Berlin, 1992.
[14] Ezzinbi, K., Fu X. and Hilal, K., Existence and regularity in the α -norm for some neutral

partial differential equations with nonlocal conditions, Nonlinear Analysis, 67 (2007), 1613-
1622.

[15] Ezzinbi L. and Ghnimi, S. Existence and regularity of solutions for neutral partial functional
integro-differential equations, Nonlinear Analysis: Real World Applications, 11 (2010), 2335-
2344.

[16] Fu, X. and Ezzinbi, K., Existence of solutions for neutral functional differential evolution
equations with nonlocal conditions, Nonlinear Analysis, 54 (2003), 215-227.

[17] Fu, X. Gao, Y. and Zhang, Y., Existence of solutions for neutral integrodifferential equations
with nonlocal conditions, Taiwanese Journal of Mathematics, 16(5) (2012), 1879-1909.

[18] Guendouzi, T. and Bousmaha, L., Approximate controllability of fractional neutral stochastic
functional integro-differential inclusions with infinite delay, Qualitative Theory of Dynamical
System, 13 (2014), 89-119.

[19] Grimmer, R., Reslvent operator for integral equations in a Banach space, Transactions of
American Mathematical Soceity, 273 (1982), 333-349.

[20] Grimmer, R. and Kappel, F., Series expansions for resolvents of volterra integro-differential
equations on Banach spaces, SIAM Journal on Mathematical Analysis, 15 (1984), 595-604.



APPROXIMATE CONTROLLABILITY 1227

[21] Grimmer, R. and Pritchard, A. J., Analytic resolvent operators for integral equations in a
Banach space, Journal of Diff erential Equations, 50 (1983), 234-259.

[22] Henríquez, H.R., Approximate controllability of linear distributed control systems, Applied
Mathematical Letters, 21(10) (2008), 1041-1045.

[23] Kumar, R., Nonlocal cauchy problem for analytic rsolvent integrodifferential equations in
Banach spaces, Applied Mathematics and Computation, 204 (2008), 352-362.

[24] Laksmikantham, V., Bainov D. and Simenov, P. S., Theory of impulsive differential equations,
Series in Modern Applied Mathematics, 6. World Scientific Publishing Co., Inc., Teaneck, NJ,
1989.

[25] Lasota, A. and Opial, Z., An application of the Kakutani-Ky-Fan theorem in the theory
of ordinary differential equations or noncompact acyclic-valued map, Bulletin L’Academic
Polonaise des Science, Serie des Sciences Mathematiques, Astronomiques et Physiques, 13
(1965), 781-786.

[26] Liu Z. and Lv, J., Approximate controllability of fractional functional evolution inclusions
with delay in Hilbert spaces, IMA Journal of Mathematical Control and Information, 31
(2013), 363-383.

[27] Liu, J., Commutativity of resolvent operator in integro-differential equations, Volterra Equa-
tions and Applications Arlington, Tx, 1996, 309-316.

[28] Miller, B.M. and Rubinovich, E.Y., Impulsive Control in Continuous and Discrete-Continuous
Systems, Kluwer Academic/Plenum Publishers, New York, 2003.

[29] Mahmudov, N.I. and Denker, A., On controllability of linear stochastic systems, International
Journal of Control, 73 (2000), 144-151.

[30] Mahmudov, N.I., Approximate controllability of evolution systems with nonlocal conditions,
Nonlinear Analysis: Theory, Methods and Applications, 68(3) (2008), 536-546.

[31] Mahmudov N.I., and Zorlu, S., On the approximate controllability of fractional evolution
equations with compact analytic semigroup, Journal of Computational and Applied Mathe-
matics, 259 (2014), 194-204.

[32] Mahmudov, N.I., Approximate controllability of some nonlinear systems in Banach spaces,
Boundary value Problems, 2013(1) (2013), 1-13.

[33] Mokkedem, F.Z. and Fu, X., Approximate controllability of semilinear neutral integrodiffer-
ential systems with finite delay, Applied Mathematics and Computation, 242 (2014), 202-215.

[34] Pazy, A., Semigroups of Linear operators and Applications to Partial Diff erential Equations,
Springer-Verlag, New York, 1983.

[35] Sakthivel, R., Ganesh R. and Anthoni, S.M., Approximate controllability of fractional non-
linear differential inclusions, Applied Mathematics and Computation, 225 (2013), 708-717.

[36] Sakthivel, R., Mahmudov N.I. and Kim, J.H., Approximate controllability of nonlinear im-
pulsive differential systems, Reports on Mathematical Physics, 60(1) (2007), 85-96.

[37] Hu S. and Papageorgiou, N.S., Handbook of Multivalued Analysis (Theory), Kluwer Acad-
emic Publishers, Dordrecht Boston, London, 1997.

[38] Vijayakumar, V., Ravichandran C. and Murugesu, R., Approximate controllability for a
class of fractional neutral integro-differential inclusions with state-dependent delay, Nonlinear
studies, 20(4) (2013), 511-530.

[39] Vijayakumar, V., Selvakumar A. and Murugesu, R., Controllability for a class of fractional
neutral integro-differential equations with unbounded delay, Applied Mathematics and Com-
putation, 232 (2014), 303-312.

[40] Vijayakumar, V., Ravichandran C., Murugesu R. and Trujillo, J.J., Controllability results for
a class of fractional semilinear integro-differential inclusions via resolvent operators, Applied
Mathematics and Computation, 247 (2014), 152-161.



1228 M. TAMILSELVAN

Current address : Department of Mathematics, SRMV College of Arts and Science, Coimbatore
- 641 020, Tamil Nadu, India.

E-mail address : msts2205@gmail.com
ORCID Address: http://orcid.org/0000-0001-7043-1103


	1. Introduction
	2. Preliminaries
	3. Approximate controllability results
	4. Approximate controllability results with nonlocal conditions
	5. Application
	References

