k-AUTOCORRELATION AND ITS APPLICATIONS

HAYRULLAH ÖZİMAMOĞLU, MURAT ŞAHIN, AND OKTAY ÖLMEZ

Abstract

The standard autocorrelation measures similarities between a binary sequence and its any shifted form. In this paper, we introduce the concept of the k-autocorrelation of a binary sequence as a generalization of the standard autocorrelation. We give two applications of the k-autocorrelation. The first one is related the additive circulant codes over \mathbb{F}_{4} in coding theory. We use the k-autocorrelation to determine the minimum distance of additive circulant codes over \mathbb{F}_{4}. The second one is related the $(7,3,1)$-BIBD in design theory. The k-autocorrelation coefficients give us information about the lines in the $(7,3,1)$-BIBD.

1. Introduction

Autocorrelation is used to measure similarities between a sequence and its shifted forms. It has applications in communication systems and cryptography. Let $\boldsymbol{a}=$ $\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}\right)$ be a binary sequence and $\boldsymbol{a}_{\boldsymbol{\tau}}=\left(a_{-\tau}, a_{1-\tau}, a_{2-\tau}, \ldots, a_{n-1-\tau}\right)$ be its shifted forms for $\tau=1,2, \cdots, n-1$. In this paper, indices of all sequences are in modulo n. The standard autocorrelation of the sequences \boldsymbol{a} and $\boldsymbol{a}_{\boldsymbol{\tau}}$ is defined by

$$
c_{\tau}(\boldsymbol{a})=\sum_{i=0}^{n-1}(-1)^{a_{i}+a_{i-\tau}} .
$$

$\left\{c_{\tau}(\boldsymbol{a})\right\}_{\tau=0}^{n-1}$ sequence is called autocorrelation coefficients.
In this study, we introduce k-autocorrelation for a binary sequence and its $k-1$ shifted forms. This concept is the generalization of standard autocorrelation. For given $\tau_{1}, \tau_{2}, \ldots, \tau_{k-1} \in \mathbb{Z}$ such that $1 \leq \tau_{1}<\tau_{2}<\cdots<\tau_{k-1} \leq n-1$, we define k-autocorrelation of the sequence \boldsymbol{a} as follows:

$$
c_{\tau_{1}, \tau_{2}, \ldots, \tau_{k-1}}(\boldsymbol{a})=\sum_{i=0}^{n-1}(-1)^{a_{i}+a_{i-\tau_{1}}+a_{i-\tau_{2}}+\cdots+a_{i-\tau_{k-1}}}
$$

[^0]where
\[

$$
\begin{aligned}
\boldsymbol{a} & =\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}\right) \\
\boldsymbol{a}_{\boldsymbol{\tau}_{1}} & =\left(a_{-\tau_{1}}, a_{1-\tau_{1}}, a_{2-\tau_{1}}, \ldots, a_{n-1-\tau_{1}}\right), \\
& : \\
\boldsymbol{a}_{\boldsymbol{\tau}_{k-1}} & =\left(a_{-\tau_{k-1}}, a_{1-\tau_{k-1}}, a_{2-\tau_{k-1}}, \ldots, a_{n-1-\tau_{k-1}}\right),
\end{aligned}
$$
\]

for any $k=2,3, \ldots, n$. The sequence $\left\{c_{\tau_{1}, \tau_{2}, \ldots, \tau_{k-1}}(\boldsymbol{a})\right\}$ is called k-autocorrelation coefficients. If we take $k=2$, then we get the standard autocorrelation. Moreover, we call

$$
s=a_{\tau_{1}}+a_{\tau_{2}}+\ldots+a_{\tau_{k-1}}
$$

total shift sequence for any binary sequence \boldsymbol{a}, the k-autocorrelation measures the similarity between the sequence \boldsymbol{a} and the total shift sequence \boldsymbol{s}.

For example, we calculate the standard autocorrelation and the 3-autocorrelation for the sequence $\boldsymbol{a}=(0,0,1,0,1,1)$ in Table 1 and Table 2 respectively.

Table 1.

τ	$\boldsymbol{a}_{\boldsymbol{\tau}}$	$c_{\tau}(\boldsymbol{a})$
1	$(1,0,0,1,0,1)$	-2
2	$(1,1,0,0,1,0)$	-2
3	$(0,1,1,0,0,1)$	2
4	$(1,0,1,1,0,0)$	-2
5	$(0,1,0,1,1,0)$	-2

Table 2.

τ_{1}, τ_{2}	$c_{\tau_{1}, \tau_{2}}(\boldsymbol{a})$
$\tau_{1}=1, \tau_{2}=2$	0
$\tau_{1}=1, \tau_{2}=3$	-4
$\tau_{1}=1, \tau_{2}=4$	4
$\tau_{1}=1, \tau_{2}=5$	0
$\tau_{1}=2, \tau_{2}=3$	4
$\tau_{1}=2, \tau_{2}=4$	0
$\tau_{1}=2, \tau_{2}=5$	-4
$\tau_{1}=3, \tau_{2}=4$	-4
$\tau_{1}=3, \tau_{2}=5$	4
$\tau_{1}=4, \tau_{2}=5$	0

This paper is organized as follows: In Section 2, we give basic definitions and theorems. In Section 3, we determine the minimum distance of additive circulant codes over \mathbb{F}_{4} by the k-autocorrelation. In Section 4 we would like to motivate
our definition by providing an example related to design theory. In this specific example, we explain the relation between k-autocorrelation values of a sequence and corresponding lines in the $(7,3,1)$-BIBD.

2. Preliminaries

The Hamming weight of $u \in \mathbb{F}_{q}^{n}$, denoted $w t(u)$, is the number of nonzero components of u. The Hamming distance between u and v, denoted $d(u, v)$, is $w t(u-v)$. We assume that the binary sequence $\boldsymbol{a}=\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}\right)$ is a vector in \mathbb{F}_{2}^{n}. There is a relation between the standard autocorrelation $c_{\tau}(\boldsymbol{a})$ and the Hamming distance $d\left(\boldsymbol{a}, \boldsymbol{a}_{\boldsymbol{\tau}}\right)$. It is given in the next lemma.
Lemma 1. For any binary sequence $\boldsymbol{a}=\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}\right)$ of length n,

$$
c_{\tau}(\boldsymbol{a})=n-2 d\left(\boldsymbol{a}, \boldsymbol{a}_{\boldsymbol{\tau}}\right)
$$

where $\boldsymbol{a}_{\boldsymbol{\tau}}$ is the shifted form of the sequence \boldsymbol{a} [2].
Since $d\left(\boldsymbol{a}, \boldsymbol{a}_{\boldsymbol{\tau}}\right)=w t\left(\boldsymbol{a}+\boldsymbol{a}_{\boldsymbol{\tau}}\right)$ for any binary sequence \boldsymbol{a}, then we have the following corollary.
Corollary 2. For any binary sequence $\boldsymbol{a}=\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}\right)$ of length n,

$$
2 w t\left(\boldsymbol{a}+\boldsymbol{a}_{\boldsymbol{\tau}}\right)+c_{\tau}(\boldsymbol{a})=n
$$

where $\boldsymbol{a}_{\boldsymbol{\tau}}$ is the shifted form of the sequence \boldsymbol{a}.
We generalize Corollary 2 in the next theorem.
Theorem 3. For any binary sequence $\boldsymbol{a}=\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}\right)$ of length n, and for any $k=2,3, \ldots, n$, we have

$$
2 w t\left(\boldsymbol{a}+\boldsymbol{a}_{\boldsymbol{\tau}_{1}}+\boldsymbol{a}_{\boldsymbol{\tau}_{\mathbf{2}}}+\cdots+\boldsymbol{a}_{\boldsymbol{\tau}_{\boldsymbol{k}-1}}\right)+c_{\tau_{1}, \tau_{2}, \ldots, \tau_{k-1}}(\boldsymbol{a})=n
$$

where $\boldsymbol{a}_{\boldsymbol{\tau}_{j}}$ are the shifted forms of the sequence \boldsymbol{a} for $j=1,2, \ldots, k-1$.
Proof. Let

$$
\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right)=\boldsymbol{a}+\boldsymbol{a}_{\boldsymbol{\tau}_{1}}+\boldsymbol{a}_{\boldsymbol{\tau}_{\mathbf{2}}}+\cdots+\boldsymbol{a}_{\boldsymbol{\tau}_{\boldsymbol{k}-1}},
$$

where

$$
\alpha_{i}= \begin{cases}0, & \text { if } a_{i}+a_{i-\tau_{1}}+a_{i-\tau_{2}}+\cdots+a_{i-\tau_{k-1}} \equiv 0 \quad(\bmod 2) \tag{1}\\ 1, & \text { if } a_{i}+a_{i-\tau_{1}}+a_{i-\tau_{2}}+\cdots+a_{i-\tau_{k-1}} \equiv 1 \quad(\bmod 2)\end{cases}
$$

for $i=0,1, \ldots, n-1$. Moreover,

$$
\begin{equation*}
w t\left(\boldsymbol{a}+\boldsymbol{a}_{\boldsymbol{\tau}_{1}}+\boldsymbol{a}_{\boldsymbol{\tau}_{\mathbf{2}}}+\cdots+\boldsymbol{a}_{\boldsymbol{\tau}_{\boldsymbol{k}-\mathbf{1}}}\right)=\sum_{i=0}^{n-1} \alpha_{i} \tag{2}
\end{equation*}
$$

Let $\beta_{i}=(-1)^{a_{i}+a_{i-\tau_{1}}+a_{i-\tau_{2}}+\cdots+a_{i-\tau_{k-1}}}$, for $i=0,1, \ldots, n-1$, then we have

$$
\beta_{i}=\left\{\begin{array}{cc}
1, & \text { if } a_{i}+a_{i-\tau_{1}}+a_{i-\tau_{2}}+\cdots+a_{i-\tau_{k-1}} \equiv 0 \quad(\bmod 2) \tag{3}\\
-1, & \text { if } a_{i}+a_{i-\tau_{1}}+a_{i-\tau_{2}}+\cdots+a_{i-\tau_{k-1}} \equiv 1 \quad(\bmod 2)
\end{array}\right.
$$

for $i=0,1, \ldots, n-1$. As a result, by (1), (2) and (3), we obtain

$$
\begin{aligned}
2 w t\left(\boldsymbol{a}+\boldsymbol{a}_{\boldsymbol{\tau}_{1}}+\boldsymbol{a}_{\boldsymbol{\tau}_{\mathbf{2}}}+\cdots+\boldsymbol{a}_{\boldsymbol{\tau}_{k-1}}\right)+c_{\tau_{1}, \tau_{2}, \ldots, \tau_{k-1}}(\boldsymbol{a}) & =\sum_{i=0}^{n-1} 2 \alpha_{i}+\sum_{i=0}^{n-1} \beta_{i} \\
& =\sum_{i=0}^{n-1}\left(2 \alpha_{i}+\beta_{i}\right) \\
& =\sum_{i=0}^{n-1} 1 \\
& =n .
\end{aligned}
$$

For $x, y \in \mathbb{F}_{2}^{n}$, let $z=x \cap y \in \mathbb{F}_{2}^{n}$ such that

$$
z_{i}= \begin{cases}1, & \text { if } x_{i}=y_{i}=1 \tag{4}\\ 0, & \text { otherwise }\end{cases}
$$

for $i=0,1, \ldots, n-1$. Then, we have Theorem 1.4.3 in [3] as follows:

$$
\begin{equation*}
w t(x+y)=w t(x)+w t(y)-2 w t(x \cap y) . \tag{5}
\end{equation*}
$$

A linear code C of length n over \mathbb{F}_{q} is a k dimensional subspace of \mathbb{F}_{q}^{n}, denoted [$n, k]$, and the vectors in C are codewords of C. Specially, codes over \mathbb{F}_{2} are called binary codes. The minimum distance d of the linear code C is the smallest Hamming distance between distinct codewords. For the linear code C, the minimum distance d is the same the minimum Hamming weight of the nonzero codewords of C. A generator matrix for the linear $[n, k]$ code C is any $k \times n$ matrix G whose rows form a basis for C. The generator matrix of the form $\left[I_{k} \mid A\right]$, where I_{k} is the $k \times k$ identity matrix, is said to be in standard form. There is the $(n-k) \times n$ matrix H, called a parity check matrix for the $[n, k]$ code C, defined by

$$
C=\left\{c \in \mathbb{F}_{q}^{n} \mid H c^{T}=0\right\} .
$$

If $G=\left[I_{k} \mid A\right]$ is a generator matrix for the $[n, k]$ code C in standard form, then $H=\left[-A^{T} \mid I_{n-k}\right]$ is a parity check matrix for C (Theorem 1.2.1 in [3]).

The minimum distance d of a linear code C is related to a parity-check matrix of C. Any $d-1$ columns of H are linearly independent and H has d columns that are linearly dependent if and only if C has minimum distance d (Corollary 4.5.7 in (4).

Two linear codes C_{1} and C_{2} are permutation equivalent provided there is a permutation of coordinates which sends C_{1} to C_{2}. Thus, C_{1} and C_{2} are permutation equivalent provided there is a permutation matrix P such that G_{1} is a generator matrix of C_{1} if and only if $G_{1} P$ is a generator matrix of C_{2}. Then, if two linear codes C_{1} and C_{2} are permutation equivalent, the minimum distance of these codes are the same.

Let $B=\left\{b_{1}, b_{2}, \ldots, b_{p}\right\}$ be any binary column set of the same length and $1 \leq$ $q \leq p$. We define

$$
\alpha_{B}=\sum_{j=1}^{q} b_{i_{j}}
$$

for $1 \leq i_{j} \leq p$. Note that α_{B} contain all linear combinations of the set B.
Theorem 4. Let $G_{n \times 3 n}=\left[I_{n \times n}: A_{n \times 2 n}\right]$ be the generator matrix in the standard form of the binary $[3 n, n]$ code C, and

$$
H_{2 n \times 3 n}=\left[A_{n \times 2 n}^{T}: I_{2 n \times 2 n}\right]=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots x_{n}: I_{2 n \times 2 n}
\end{array}\right],
$$

be the parity check matrix of the C, where x_{i} is a binary column in the matrix A^{T}, and $w t\left(x_{i}\right)=m$ for $1 \leq i \leq n$.

Let S be any binary column set in the matrix A^{T}, and $1 \leq s \leq n$. We denote

$$
\alpha_{S}=\sum_{j=1}^{s} x_{i_{j}}
$$

for $1 \leq i_{j} \leq n$. Then, $w t\left(\alpha_{S}\right) \geq m-s+1$ for all $1 \leq s \leq n$ if and only if the minimum distance d of the code C is $m+1$.

Proof. (\Rightarrow) : We choose a column x_{i} in the matrix A^{T} for any $1 \leq i \leq n$. Let $e_{i_{j}}$ be a column in the identity matrix $I_{2 n \times 2 n}$ for any $1 \leq i_{j} \leq 2 n$. Since $w t\left(x_{i}\right)=m$, there is a column set $\left\{e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{m}}\right\}$ in the matrix $I_{2 n \times 2 n}$ such that

$$
x_{i}=e_{i_{1}}+e_{i_{2}}+\cdots+e_{i_{m}}
$$

The set $\left\{x_{i}, e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{m}}\right\}$ with $m+1$ elements is linearly dependent. Then, we need to show that any column set with m elements in the parity check matrix H is linearly independent.
(i) Let S be any column set with m elements in the matrix A^{T} and $1 \leq s \leq m$. $\alpha_{S}=x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{s}}$ is any linear combination of the columns in the set S for $1 \leq i_{j} \leq n$. Since by hypothesis

$$
\begin{aligned}
w t\left(\alpha_{S}\right) & \geq m-s+1 \\
& \geq 1
\end{aligned}
$$

α_{S} isn't equal to zero vector. Then the set S is linearly independent.
(ii) Let T be any column set with m elements in the matrix $I_{2 n \times 2 n}$ and $1 \leq$ $t \leq m . \alpha_{T}=e_{i_{1}}+e_{i_{2}}+\ldots+e_{i_{t}}$ is any linear combination of the columns in the set T for $1 \leq i_{j} \leq n$. Since $w t\left(\alpha_{T}\right)=t \neq 0, \alpha_{T}$ isn't equal to zero vector. Hence the set T is linearly independent.
(iii) Let S be any column set with s elements in the matrix A^{T}, T be any column set with t elements in the matrix $I_{2 n \times 2 n}, 1 \leq s, t<m$ and $s+t=m$. We
have

$$
\begin{aligned}
\alpha_{S \cup T} & =x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{s}}+e_{i_{1}}+e_{i_{2}}+\ldots+e_{i_{t}} \\
& =\alpha_{S}+\alpha_{T}
\end{aligned}
$$

for $1 \leq i_{j} \leq n$, and so $\alpha_{S}+\alpha_{T}$ is any linear combination of the columns in the set $S \cup T$ with m elements.

Since $w t\left(\alpha_{T}\right)=t$, by the definition in (4) we have

$$
\begin{equation*}
w t\left(\alpha_{S} \cap \alpha_{T}\right) \leq t \tag{6}
\end{equation*}
$$

Since by hypothesis, (5) and (6),

$$
\begin{aligned}
w t\left(\alpha_{S}+\alpha_{T}\right) & =w t\left(\alpha_{S}\right)+w t\left(\alpha_{T}\right)-2 w t\left(\alpha_{S} \cap \alpha_{T}\right) \\
& \geq m-s+1+t-2 t \\
& =1
\end{aligned}
$$

$\alpha_{S}+\alpha_{T}$ isn't equal to zero vector. Then the set $S \cup T$ is linearly independent.
(\Leftarrow) : Let S be any column set in the matrix A^{T}, and $1 \leq s \leq n$. $\alpha_{S}=x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{s}}$ is any linear combination of the columns in the set S for $1 \leq i_{j} \leq n$. Assume that for any $1 \leq s \leq n$,

$$
\begin{equation*}
w t\left(\alpha_{S}\right)<m-s+1 \tag{7}
\end{equation*}
$$

Let $r_{i_{j}}=\left[e_{i_{j}}: x_{i_{j}}\right]$ be a row of the generator matrix G, where $e_{i_{j}}$ is a row in the identity matrix $I_{n \times n}$, and $x_{i_{j}}$ is a row in the matrix $A_{n \times 2 n}$ for any $1 \leq i_{j} \leq n$. By (7), we have

$$
\begin{aligned}
w t\left(r_{i_{1}}+r_{i_{2}}+\cdots+r_{i_{s}}\right) & <s+m-s+1 \\
& =m+1
\end{aligned}
$$

and this is contrary to the fact that the minimum distance of the code C is $m+1$. Then the proof is completed.

3. Finding minimum distance of the additive circulant codes over \mathbb{F}_{4}

Given a finite field \mathbb{F} and a subfield $\mathbb{K} \subseteq \mathbb{F}$ such that $[\mathbb{F}: \mathbb{K}]=e$, a \mathbb{K}-linear subset $C \subseteq \mathbb{F}^{n}$ is called \mathbb{F} / \mathbb{K}-additive code (Definition 1 in [6]). We denote $\mathbb{F}_{4}=$ $\left\{0,1, w, w^{2}\right\}$, where $w^{2}=w+1$. An additive code C over \mathbb{F}_{4} of length n is additive subgroup of \mathbb{F}_{4}^{n}. C contains 2^{k} codewords for some $0 \leq k \leq 2 n$, and can be defined by a $k \times n$ generator matrix with entries from \mathbb{F}_{4}, whose rows span C additively. C is called an $\left(n, 2^{k}\right)$ code. The minimum distance d of the code C is the minimal Hamming distance between any two distinct codewords of C. Since C is an additive code, the minimum distance is also given by the smallest nonzero weight of any codeword in C.

An additive $\left(n, 2^{n}\right)$ code C over \mathbb{F}_{4} with generator matrix

$$
G=\left[\begin{array}{ccccc}
w & g_{1} & g_{2} & \cdots & g_{n-1} \\
g_{n-1} & w & g_{1} & \cdots & g_{n-2} \\
g_{n-2} & g_{n-1} & w & \cdots & g_{n-3} \\
: & : & : & \ddots & : \\
g_{1} & g_{2} & g_{3} & \cdots & w
\end{array}\right]_{n \times n}
$$

is called additive circulant code, where $g_{i} \in\{0,1\} \subseteq \mathbb{F}_{4}$ for $i=1,2, \ldots, n-1$. The vector $g=\left(w, g_{1}, g_{2}, \ldots, g_{n-1}\right)$ is called generator vector for the code C [1].

The additive $\left(n, 2^{k}\right)$ code C over \mathbb{F}_{4} is transformed into a $[3 n, k]$ binary code by the isometric embedding technique. There is a relation between the minimum distances of these two codes as follows:

Lemma 5. (Isometric Embedding Technique) The isometric monomorphism is given by $\sigma: \mathbb{F}_{4} \longrightarrow \mathbb{F}_{2}^{3}, 0 \longrightarrow(0,0,0), 1 \longrightarrow(1,1,0), w \longrightarrow(1,0,1)$, w${ }^{2} \longrightarrow$ $(0,1,1)$. The minimum distance of an additive code C over \mathbb{F}_{4} is given by

$$
d(C)=\frac{d(\sigma(C))}{2}
$$

[6].
Let

$$
\begin{equation*}
g=\left(w, g_{1}, g_{2}, \ldots, g_{n-1}\right) \tag{8}
\end{equation*}
$$

be the generator vector of an additive circulant code C with length n over \mathbb{F}_{4}, where $g_{i} \in\{0,1\} \subseteq \mathbb{F}_{4}$ for $i=1,2, \ldots, n-1$. Now we construct a binary sequence by the vector g as follows:

We apply the map $\phi: \mathbb{F}_{4} \longrightarrow \mathbb{F}_{2}^{2}, 0 \longrightarrow(0,0), 1 \longrightarrow(1,1), w \longrightarrow(1,0), w^{2} \longrightarrow$ $(0,1)$ to the coordinates of the generator vector g, and so we define the binary sequence

$$
\begin{equation*}
\boldsymbol{a}=\left(\phi(w), \phi\left(g_{1}\right), \phi\left(g_{2}\right), \ldots, \phi\left(g_{n-1}\right)\right) \tag{9}
\end{equation*}
$$

Note that the length of the sequence \boldsymbol{a} is $2 n$, and

$$
\begin{equation*}
w t(a)=2 w t(g)-1 \tag{10}
\end{equation*}
$$

We determine whether the minimum distance of additive circulant code C over \mathbb{F}_{4} is $w t(g)$.
Lemma 6. Let g be defined in (8), and \boldsymbol{a} be defined in (9). For even integers τ_{i} such that $2 \leq \tau_{1}<\tau_{2}<\ldots<\tau_{k-1} \leq 2 n-2$, we have wt $\left(\boldsymbol{a}+\boldsymbol{a}_{\boldsymbol{\tau}_{1}}+\boldsymbol{a}_{\boldsymbol{\tau}_{\boldsymbol{2}}}+\ldots+\right.$ $\left.\boldsymbol{a}_{\boldsymbol{\tau}_{k-1}}\right) \geq k$.
Proof. Let $\alpha=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} \ldots, \alpha_{2 n-2}, \alpha_{2 n-1}\right)=\boldsymbol{a}+\boldsymbol{a}_{\boldsymbol{\tau}_{1}}+\boldsymbol{a}_{\boldsymbol{\tau}_{2}}+\cdots+\boldsymbol{a}_{\boldsymbol{\tau}_{\boldsymbol{k}-1}}$. Since $\phi(w)=(1,0)$ and $\phi\left(g_{i}\right)=(0,0)$ or $(1,1)$ for $i=1,2, \ldots, n-1$, there are exactly k pair $\left(\alpha_{j}, \alpha_{j+1}\right)=(1,0)$ or $(0,1)$ for some $j=0,2, \ldots, 2 n-2$ in the vector α. Then, we have $w t(\alpha) \geq k$.

Lemma 7. Let g be defined in (8), and \boldsymbol{a} be defined in (9). For even integers τ_{i} such that $2 \leq \tau_{1}<\tau_{2}<\ldots<\tau_{k-1} \leq 2 n-2$, if $k \geq w t(g)$, we have $c_{\tau_{1}, \tau_{2}, \ldots, \tau_{k-1}}(\boldsymbol{a}) \leq s_{k}$, where $s_{k}=2 n-2 w t(\boldsymbol{a})+2 k-2$.

Proof. By hypothesis and 10),

$$
\begin{align*}
k \geq w t(g) & \Rightarrow \quad-2 k \leq-w t(\boldsymbol{a})-1 \tag{11}\\
& \Rightarrow \quad 0 \leq 2 k-w t(\boldsymbol{a})-1 \tag{12}
\end{align*}
$$

and since $w t\left(\boldsymbol{a}+\boldsymbol{a}_{\boldsymbol{\tau}_{1}}+\boldsymbol{a}_{\boldsymbol{\tau}_{\boldsymbol{2}}}+\ldots+\boldsymbol{a}_{\boldsymbol{\tau}_{\boldsymbol{k}-1}}\right) \geq k$ by Lemma 6, we get

$$
\begin{equation*}
-2 w t\left(\boldsymbol{a}+\boldsymbol{a}_{\boldsymbol{\tau}_{1}}+\boldsymbol{a}_{\boldsymbol{\tau}_{2}}+\ldots+\boldsymbol{a}_{\boldsymbol{\tau}_{k-1}}\right) \leq-2 k \tag{13}
\end{equation*}
$$

By Theorem 3, 11, (12) and (13), we obtain

$$
\begin{aligned}
c_{\tau_{1}, \tau_{2}, \ldots, \tau_{k-1}}(\boldsymbol{a}) & =2 n-2 w t\left(\boldsymbol{a}+\boldsymbol{a}_{\boldsymbol{\tau}_{1}}+\boldsymbol{a}_{\boldsymbol{\tau}_{2}}+\ldots+\boldsymbol{a}_{\boldsymbol{\tau}_{\boldsymbol{k}-\boldsymbol{1}}}\right) \\
& \leq 2 n-2 k \\
& \leq 2 n-w t(\boldsymbol{a})-1 \\
& \leq(2 n-w t(\boldsymbol{a})-1)+(2 k-w t(\boldsymbol{a})-1) \\
& =s_{k}
\end{aligned}
$$

Theorem 8. Let g be defined in (8), and \boldsymbol{a} be defined in (9). For even integers τ_{i} such that $2 \leq \tau_{1}<\tau_{2}<\ldots<\tau_{k-1} \leq 2 n-2$, if for all $k=2,3, \ldots, w t(g)-1$

$$
c_{\tau_{1}, \tau_{2}, \ldots, \tau_{k-1}}(\boldsymbol{a}) \leq s_{k}
$$

where $s_{k}=2 n-2 w t(\boldsymbol{a})+2 k-2$, the minimum distance d of the additive circulant code C over \mathbb{F}_{4} is equal to $w t(g)$, otherwise the minimum distance d isn't equal to $w t(g)$.

Proof. Let G_{1} be a generator $n \times n$ matrix of the additive circulant code C. If we apply the map σ in Lemma 5 to G_{1}, we have a $n \times 3 n$ matrix G_{2}. Let $\sigma(C)$ be the generated code with matrix G_{2}. If we apply one permutation to columns of the matrix G_{2}, so we can obtain the generator matrix in the standard form

$$
G_{3}=\left[\begin{array}{cc}
& a \\
& a_{2} \\
I_{n \times n} & a_{4} \\
& \vdots \\
& a_{2 n-2}
\end{array}\right] .
$$

Since the generated codes by G_{2} and G_{3} are equivalent, the minimum distances $d(\sigma(C))$ of these codes are the same. The parity check matrix of the generated code by G_{3} is

$$
H_{3}=\left[\begin{array}{llllll}
\boldsymbol{a} & \boldsymbol{a}_{\boldsymbol{2}} & \boldsymbol{a}_{\mathbf{4}} & \cdots & \boldsymbol{a}_{\mathbf{2 n - 2}} & : I_{2 n \times 2 n}
\end{array}\right], w t\left(\boldsymbol{a}_{\boldsymbol{\tau}_{\boldsymbol{i}}}\right)=w t(\boldsymbol{a}) .
$$

If $k=1$, we have

$$
\begin{equation*}
w t\left(\boldsymbol{a}_{\boldsymbol{\tau}_{i}}\right)=w t(\boldsymbol{a})-k+1 \tag{14}
\end{equation*}
$$

By Lemma 7 if $k \geq w t(g)$,

$$
\begin{equation*}
c_{\tau_{1}, \tau_{2}, \ldots, \tau_{k-1}}(\boldsymbol{a}) \leq s_{k} \tag{15}
\end{equation*}
$$

and by hypothesis, for all $k=2,3, \ldots, w t(g)-1$

$$
\begin{equation*}
c_{\tau_{1}, \tau_{2}, \ldots, \tau_{k-1}}(\boldsymbol{a}) \leq s_{k} \tag{16}
\end{equation*}
$$

Since by Theorem 3, 15) and 16 , for all $k=2,3, \ldots, n$,

$$
\begin{aligned}
c_{\tau_{1}, \tau_{2}, \ldots, \tau_{k-1}}(\boldsymbol{a}) & =2 n-2 w t\left(\boldsymbol{a}+\boldsymbol{a}_{\boldsymbol{\tau}_{1}}+\boldsymbol{a}_{\boldsymbol{\tau}_{2}}+\ldots+\boldsymbol{a}_{\boldsymbol{\tau}_{k-1}}\right) \\
& \leq 2 n-2 w t(\boldsymbol{a})+2 k-2
\end{aligned}
$$

we have

$$
\begin{equation*}
w t\left(\boldsymbol{a}+\boldsymbol{a}_{\boldsymbol{\tau}_{\mathbf{1}}}+\boldsymbol{a}_{\boldsymbol{\tau}_{\mathbf{2}}}+\ldots+\boldsymbol{a}_{\boldsymbol{\tau}_{\boldsymbol{k}-\mathbf{1}}}\right) \geq w t(\boldsymbol{a})-k+1 \tag{17}
\end{equation*}
$$

Since for all $k=1,2, \ldots, n$,

$$
\begin{equation*}
w t\left(\boldsymbol{a}+\boldsymbol{a}_{\boldsymbol{\tau}_{1}}+\boldsymbol{a}_{\boldsymbol{\tau}_{\mathbf{2}}}+\ldots+\boldsymbol{a}_{\boldsymbol{\tau}_{\boldsymbol{k}-\mathbf{1}}}\right) \geq w t(\boldsymbol{a})-k+1 \tag{18}
\end{equation*}
$$

by (14) and (17), and so by Theorem 4, $d(\sigma(C))=w t(\boldsymbol{a})+1$. Then by Lemma 5 and (10), the minimum distance d of the code C is equal to

$$
d(C)=\frac{w t(\boldsymbol{a})+1}{2}=w t(g)
$$

Assume that for $\exists k=2,3, \ldots, w t(g)-1, c_{\tau_{1}, \tau_{2}, \ldots, \tau_{k-1}}(\boldsymbol{a})>s_{k}$. Since by Theorem 3

$$
\begin{aligned}
c_{\tau_{1}, \tau_{2}, \ldots, \tau_{k-1}}(\boldsymbol{a}) & =2 n-2 w t\left(\boldsymbol{a}+\boldsymbol{a}_{\boldsymbol{\tau}_{1}}+\boldsymbol{a}_{\boldsymbol{\tau}_{2}}+\ldots+\boldsymbol{a}_{\boldsymbol{\tau}_{k-1}}\right) \\
& >2 n-2 w t(\boldsymbol{a})+2 k-2
\end{aligned}
$$

we get

$$
\begin{equation*}
w t\left(\boldsymbol{a}+\boldsymbol{a}_{\boldsymbol{\tau}_{\mathbf{1}}}+\boldsymbol{a}_{\boldsymbol{\tau}_{\mathbf{2}}}+\ldots+\boldsymbol{a}_{\boldsymbol{\tau}_{\boldsymbol{k}-\mathbf{1}}}\right)<w t(\boldsymbol{a})-k+1 \tag{19}
\end{equation*}
$$

By Theorem 4 and $\sqrt{19}), d(\sigma(C)) \neq w t(\boldsymbol{a})+1$ and then by Lemma 5, the minimum distance $d(C)$ of the code C isn't equal to $w t(g)$.

Example 9. Let $g=(w, 1,1,1,0,0)$ be a generator vector of the additive circulant code C of length 6 over \mathbb{F}_{4}. So, the generator matrix of the code C is

$$
G_{1}=\left[\begin{array}{cccccc}
w & 1 & 1 & 1 & 0 & 0 \\
0 & w & 1 & 1 & 1 & 0 \\
0 & 0 & w & 1 & 1 & 1 \\
1 & 0 & 0 & w & 1 & 1 \\
1 & 1 & 0 & 0 & w & 1 \\
1 & 1 & 1 & 0 & 0 & w
\end{array}\right]_{6 \times 6}
$$

Now we determine whether this code has a minimum distance of $w t(g)=4$. If we apply the map σ in Lemma 5 to the matrix G_{1}, we have the matrix

$$
G_{2}=\left[\begin{array}{llllllllllllllllll}
1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1
\end{array}\right]_{6 \times 18} .
$$

If we apply the permutation p to the columns of the matrix G_{2}, where
$p=\left(\begin{array}{cccccccccccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\ 3 & 6 & 9 & 12 & 15 & 18 & 1 & 2 & 4 & 5 & 7 & 8 & 10 & 11 & 13 & 14 & 16 & 17\end{array}\right)$,
we obtain the generator matrix in the standard form

$$
G_{2} \simeq G_{3}=\left[\begin{array}{lllllllllllll}
& 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
& 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
I_{6 \times 6} & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
& 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
& 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
& 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]_{6 \times 18} .
$$

Then, the parity check matrix of generated code by the matrix G_{3} is
$H_{3}=\left[\begin{array}{lllllll}\boldsymbol{a} & \boldsymbol{a}_{\mathbf{2}} & \boldsymbol{a}_{\mathbf{4}} & \boldsymbol{a}_{\mathbf{6}} & \boldsymbol{a}_{\mathbf{8}} & \boldsymbol{a}_{\mathbf{1 0}} & : I_{12 \times 12}\end{array}\right]=\left[\begin{array}{lllllll}1 & 0 & 0 & 1 & 1 & 1 & \\ 0 & 0 & 0 & 1 & 1 & 1 & \\ 1 & 1 & 0 & 0 & 1 & 1 & \\ 1 & 0 & 0 & 0 & 1 & 1 & \\ 1 & 1 & 1 & 0 & 0 & 1 & \\ 1 & 1 & 0 & 0 & 0 & 1 & I_{12 \times 12} \\ 1 & 1 & 1 & 1 & 0 & 0 & \\ 1 & 1 & 1 & 0 & 0 & 0 & \\ 0 & 1 & 1 & 1 & 1 & 0 & \\ 0 & 1 & 1 & 1 & 0 & 0 & \\ 0 & 0 & 1 & 1 & 1 & 1 & \\ 0 & 0 & 1 & 1 & 1 & 0 & \end{array}\right]_{12 \times 18}$.
In Table 3, we calculate the 2-autocorrelation coefficients of the sequence

$$
\boldsymbol{a}=(\phi(w), \phi(1), \phi(1), \phi(1), \phi(0), \phi(0))=(1,0,1,1,1,1,1,1,0,0,0,0)
$$

Hence, 2-autocorrelation coefficients of the sequence \boldsymbol{a} are

$$
\left(c_{2}(\boldsymbol{a}), c_{4}(\boldsymbol{a}), c_{6}(\boldsymbol{a}), c_{8}(\boldsymbol{a}), c_{10}(\boldsymbol{a})\right)=(4,-4,-8,-4,4)
$$

Since $s_{2}=0$ by Theorem 8, for $k=2$, and $c_{\tau}(\boldsymbol{a})>s_{2}$ for $\tau=2,10$, the minimum distance of the code C isn't equal to 4 .

Table 3.

τ	$\boldsymbol{a}_{\boldsymbol{\tau}}$	$c_{\boldsymbol{\tau}}(\boldsymbol{a})$
2	$(0,0,1,0,1,1,1,1,1,1,0,0)$	4
4	$(0,0,0,0,1,0,1,1,1,1,1,1)$	-4
6	$(1,1,0,0,0,0,1,0,1,1,1,1)$	-8
8	$(1,1,1,1,0,0,0,0,1,0,1,1)$	-4
10	$(1,1,1,1,1,1,0,0,0,0,1,0)$	4

Example 10. In Table 4 , we calculate the 2-autocorrelation coefficients of all the additive circulant codes of length 6 over \mathbb{F}_{4} such that $w t(g)=4$.

Table 4.

	The generator vectors	2-autocorrelation coefficients
$\mathbf{1}$	$(w, 1,1,1,0,0)$	$(4,-4,-8,-4,4)$
$\mathbf{2}$	$(w, 1,1,0,1,0)$	$(-4,0,0,0,-4)$
$\mathbf{3}$	$(w, 1,1,0,0,1)$	$(0,-4,0,-4,0)$
$\mathbf{4}$	$(w, 1,0,1,1,0)$	$(-4,-4,8,-4,-4)$
$\mathbf{5}$	$(w, 1,0,1,0,1)$	$(-8,8,-8,8,-8)$
$\boldsymbol{6}$	$(w, 1,0,0,1,1)$	$(0,-4,0,-4,0)$
$\mathbf{7}$	$(w, 0,1,1,1,0)$	$(0,0,-8,0,0)$
$\mathbf{8}$	$(w, 0,1,1,0,1)$	$(-4,-4,8,-4,-4)$
$\boldsymbol{9}$	$(w, 0,1,0,1,1)$	$(-4,0,0,0,-4)$
$\mathbf{1 0}$	$(w, 0,0,1,1,1)$	$(4,-4,-8,-4,4)$

In Table 4 , since $c_{\tau}(\boldsymbol{a})>s_{2}=0$ for the codes in $1,4,5,8$ and 10, these codes haven't the minimum distance of 4 . We calculate the 3 -autocorrelation coefficients for remained codes in Table 5.

Table 5.

	The generator vectors	3-autocorrelation coefficients
$\mathbf{1}$	$(w, 1,1,0,1,0)$	$(2,6,-2,2,-2,-6,6,6,-2,2)$
$\boldsymbol{2}$	$(w, 1,1,0,0,1)$	$(-2,-2,6,-2,6,6,-2,-2,6,-2)$
3	$(w, 1,0,0,1,1)$	$(-2,6,-2,-2,-2,6,6,6,-2,-2)$
4	$(w, 0,1,1,1,0)$	$(2,2,2,2,2,-6,2,2,2,2)$
5	$(w, 0,1,0,1,1)$	$(2,-2,6,2,6,-6,-2,-2,6,2)$

For example, 3-autocorrelation coefficients are
$\left(c_{2,4}(\boldsymbol{a}), c_{2,6}(\boldsymbol{a}), c_{2,8}(\boldsymbol{a}), c_{2,10}(\boldsymbol{a}), c_{4,6}(\boldsymbol{a}), c_{4,8}(\boldsymbol{a}), c_{4,10}(\boldsymbol{a}), c_{6,8}(\boldsymbol{a}), c_{6,10}(\boldsymbol{a}), c_{8,10}(\boldsymbol{a})\right)$ $=(2,6,-2,2,-2,-6,6,6,-2,2)$
for the vector $(w, 1,1,0,1,0)$ in 1 . Since by Theorem $8, c_{2,6}(\boldsymbol{a}), c_{4,10}(\boldsymbol{a}), c_{6,8}(\boldsymbol{a})>$ $s_{3}=2$, the generated code by this vector hasn't the minimum distance of 4 . As a result, since by Theorem $8, s_{3}=2$ for $k=3$ and $c_{\tau_{1}, \tau_{2}}(\boldsymbol{a})>2$ for the codes in the 1, 2, 3 and 5, the minimum distances of these codes aren't equal to 4. The generated code by the vector $(w, 0,1,1,1,0)$ in 4 have only the minimum distance of 4 .

4. Cases of the lines in the $(7,3,1)$-BIBD

Let v, k and λ be positive integers such that $v>k \geq 2$. A (v, k, λ)-balanced incomplete block design (which we abbreviate to (v, k, λ) - BIBD) is a design (X, A) such that the following properties are satisfied:
(1) $|X|=v$,
(2) Each block contains exactly k points,
(3) Every pair of distinct points is contained in exactly λ blocks (Definition 1.2 in (5]).
Now, we can give $(7,3,1)$-BIBD. The $(7,3,1)$ - BIBD is the set of points and blocks, respectively

$$
\begin{aligned}
X & =\{0,1,2,3,4,5,6\} \\
A & =\{013,124,235,346,045,156,026\}
\end{aligned}
$$

We denote the block $x_{1} x_{2} x_{3} \in A$ by the binary sequence $\boldsymbol{a}=\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$ such that

$$
a_{i}= \begin{cases}1, & \text { if } i \in\left\{x_{1}, x_{2}, x_{3}\right\} \\ 0, & \text { otherwise }\end{cases}
$$

for $i=0,1, \ldots, 6$. The shifted forms of the sequence $\boldsymbol{a}=(1,1,0,1,0,0,0)$ corresponds the blocks of $(7,3,1)$-BIBD by this method. It is shown in Table 6 .

Table 6.

$\boldsymbol{\tau}$	$\boldsymbol{a}_{\boldsymbol{\tau}}$	Blocks
0	$(1,1,0,1,0,0,0)$	013
1	$(0,1,1,0,1,0,0)$	124
2	$(0,0,1,1,0,1,0)$	235
3	$(0,0,0,1,1,0,1)$	346
4	$(1,0,0,0,1,1,0)$	045
5	$(0,1,0,0,0,1,1)$	156
6	$(1,0,1,0,0,0,1)$	026

The (7, 3, 1)-BIBD consists of seven points and seven blocks (lines). It is shown in Figure 1, The k-autocorrelation coefficients of the sequence \boldsymbol{a} give us the information about intersections of these lines.

Figure 1. The Fano Plane: A $(7,3,1)$-BIBD

Case 11. $c_{\tau}(a)=-1$ means that the any two lines intersect in a unique point:

Since $c_{\tau}(\boldsymbol{a})=-1$ by Corollary 2 and the equation (5), we have $w t\left(\boldsymbol{a} \cap \boldsymbol{a}_{\boldsymbol{\tau}}\right)=1$. Hence, any two lines intersect in a unique point.

Case 12. In Table7, we calculate the 3-autocorrelation coefficients of the sequence a.

Table 7.

τ_{1}, τ_{2}	$c_{\tau_{1}, \tau_{2}}(\boldsymbol{a})$
$\tau_{1}=1, \tau_{2}=2$	1
$\tau_{1}=1, \tau_{2}=3$	1
$\tau_{1}=1, \tau_{2}=4$	1
$\tau_{1}=1, \tau_{2}=5$	-7
$\tau_{1}=1, \tau_{2}=6$	1
$\tau_{1}=2, \tau_{2}=3$	-7
$\tau_{1}=2, \tau_{2}=4$	1
$\tau_{1}=2, \tau_{2}=5$	1
$\tau_{1}=2, \tau_{2}=6$	1
$\tau_{1}=3, \tau_{2}=4$	1
$\tau_{1}=3, \tau_{2}=5$	1
$\tau_{1}=3, \tau_{2}=6$	1
$\tau_{1}=4, \tau_{2}=5$	1
$\tau_{1}=4, \tau_{2}=6$	-7
$\tau_{1}=5, \tau_{2}=6$	1

(i) $\boldsymbol{c}_{\boldsymbol{\tau}_{1}, \tau_{2}}(a)=1$ means that any three lines don't intersect in any point:

Let $c_{\tau_{1}, \tau_{2}}(\boldsymbol{a})=1$. We can easily obtain $w t\left(\boldsymbol{a} \cap\left(\boldsymbol{a}_{\boldsymbol{\tau}_{1}}+\boldsymbol{a}_{\boldsymbol{\tau}_{\mathbf{2}}}\right)\right)=2$ by Theorem 3 and the equation (5). Also, we get

$$
\begin{aligned}
w t\left(\boldsymbol{a} \cap\left(\boldsymbol{a}_{\tau_{1}}+\boldsymbol{a}_{\tau_{2}}\right)\right) & =\left|\boldsymbol{a} \cap \boldsymbol{a}_{\tau_{1}}\right|+\left|\boldsymbol{a} \cap \boldsymbol{a}_{\boldsymbol{\tau}_{2}}\right|-2\left|\boldsymbol{a} \cap \boldsymbol{a}_{\tau_{1}} \cap \boldsymbol{a}_{\tau_{2}}\right| \\
& =1+1-2\left|\boldsymbol{a} \cap \boldsymbol{a}_{\tau_{1}} \cap \boldsymbol{a}_{\boldsymbol{\tau}_{2}}\right|
\end{aligned}
$$

and so $\left|\boldsymbol{a} \cap \boldsymbol{a}_{\boldsymbol{\tau}_{1}} \cap \boldsymbol{a}_{\boldsymbol{\tau}_{\boldsymbol{2}}}\right|=0$. Then the lines $\boldsymbol{a}, \boldsymbol{a}_{\boldsymbol{\tau}_{1}}$ and $\boldsymbol{a}_{\boldsymbol{\tau}_{\mathbf{2}}}$ don't intersect in any point.
(ii) $c_{\tau_{1}, \tau_{2}}(a)=-7$ means that any three lines intersect in a unique point:

Let $c_{\tau_{1}, \tau_{2}}(\boldsymbol{a})=-7$. Similarly in the (i), we have $\left|\boldsymbol{a} \cap \boldsymbol{a}_{\boldsymbol{\tau}_{1}} \cap \boldsymbol{a}_{\boldsymbol{\tau}_{2}}\right|=1$, and so these lines intersect in a unique point.

References

[1] Danielsen, L.E. and Parker, M.G., Directed Graph Representation of Half-Rate Additive Codes over GF(4), Des. Codes Cryptogr., 59(2011), 119-130.
[2] Hertel, D., Crosscorrelation Properties between Perfect Sequences, Sequences and Their Applications-SETA, 2004.
[3] Huffman, W.C. and Pless, V., Fundamentals of Error Correcting Codes, Cambridge University Press, 2003.
[4] Ling, S. and Xing, C., Coding Theory, U.K.:, Cambridge Univ. Press, 2004.
[5] Stinson, D.R., Combinatorial Designs:, Construction and Analysis, Springer, 2003.
[6] White, G. and Grassl, M., A New Minimum Weight Algorithm for Additive Codes, International Symposium on Information Theory; (2006), 1119-1123.

Current address: Hayrullah Özimamoğlu: Department of Mathematics, Faculty of Arts and Sciences, Nevşehir Haci Bektaş Veli University, Nevşehir, Turkey.

E-mail address: h.ozimamoglu@nevsehir.edu.tr
ORCID Address: http://orcid.org/0000-0001-7844-1840
Current address: Murat Şahin: Department of Mathematics, Faculty of Science, Ankara University, Ankara, Turkey.

E-mail address: msahin@ankara.edu.tr
ORCID Address: http://orcid.org/0000-0002-9480-0433
Current address: Oktay Ölmez: Department of Mathematics, Faculty of Science, Ankara University, Ankara, Turkey.

E-mail address: oolmez@ankara.edu.tr
ORCID Address: http://orcid.org/0000-0002-9130-0038

[^0]: Received by the editors: December 12, 2017; Accepted: March 27, 2018.
 2010 Mathematics Subject Classification. Primary 62H20, 94B60; Secondary 94B05, 05B05.
 Key words and phrases. Autocorrelation, additive circulant codes, Fano plane.

