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ROBUST BAYESIAN REGRESSION ANALYSIS USING
RAMSAY-NOVICK DISTRIBUTED ERRORS WITH STUDENT-T

PRIOR

MUTLU KAYA, EMEL ÇANKAYA, AND OLCAY ARSLAN

Abstract. This paper investigates bayesian treatment of regression modelling
with Ramsay - Novick (RN) distribution specifically developed for robust
inferential procedures. It falls into the category of the so-called heavy-tailed
distributions generally accepted as outlier resistant densities. RN is obtained
by coverting the usual form of a non-robust density to a robust likelihood
through the modification of its unbounded influence function. The resulting
distributional form is quite complicated which is the reason for its
limited applications in bayesian analyses of real problems. With the help
of innovative Markov Chain Monte Carlo (MCMC) methods and softwares
currently available, here we first suggested a random number generator
for RN distribution. Then, we developed a robust bayesian modelling
with RN distributed errors and Student-t prior. The prior with heavy-tailed
properties is here chosen to provide a built-in protection against the
misspecification of conflicting expert knowledge (i.e. prior robustness).
This is particularly useful to avoid accusations of too much subjective bias
in the prior specification. A simulation study conducted for performance
assessment and a real-data application on the famously known
"stack loss" data demonstrated that robust bayesian estimates with RN
likelihood and heavy-tailed prior are robust against outliers in all directions
and inaccurately specified priors.

1. Introduction

Development of robust estimation procedures has been largely devoted to non-
Bayesian estimation framework due to the opinion about Bayesian approaches as
being inherently robust because they accommodate uncertainties within a joint pos-
terior probability distribution. However, every good Bayesian practice involves the
study of sensitivity of posterior distribution to the major ingredients of Bayesian
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analysis, which are typically the sampling model (or likelihood) and the prior spec-
ifications. The traditional Bayesian regression modelling based on normal errors
with conjugate structures tries to resolve ill effects resulted for departures from
normality due to outliers, or conflictions between the likelihood and the prior,
by centering the posterior at some position of large aggreement. However, this
might not be reasonable solution when such effects becomes increasingly extreme.
Bayesian modelling with heavy-tailed distributions has been suggested as more ef-
fective way of conflict resolution, typically by favouring one source of information
consistent with the majority over the other conflicting with the rest ([29]). Using
alternative error distributions with thicker tails than Normal have revealed a vari-
ety of robust models in the literature of both classical and Bayesian analyses (see
[12]; [33]; [24]; [41]; [3]; [25]; [38] etc.). Although, heavy-tailed distributions are not
restricted to the class of t distributions, many Bayesian analysis of real problems
employed Student-t as a natural choice for the reason that the tail thickness can
be controlled by suitably chosen degrees of freedom. Besides, its scale mixture of
Normal representation provides computational ease for the evaluation of posteriors.
To achieve Bayesian robustness, [33] proposed a procedure fully different in style.

They first measured the influence of a single observation on a function which shows
the rate of change of the sampling model density with respect to the observation.
This is in fact a function of a specific quantity, as they named the influence function
of the sampling model. They applied a modification on the unbounded influence
function of a non-robust density within a certain symmetric family of distributions
so that it would be bounded. By deriving the modified influence function back-
wards, a new family of distributions, namely Ramsay-Novick (RN) distribution,
with robustness properties was obtained ([33]). Following this process, they also
examined the concept of robustness under three essential ingredients (prior, likeli-
hood and utility function) of a point estimate from a Bayesian perspective. Since
then, [41] implemented a similar idea on Bayesian regression and [15] mentioned
the limitations of this new robust family. [31] explained how to obtain bayesian es-
timates that are robust to outliers and based their comparative study on the same
real-world data used in the work of [33]. For the present study, RN distribution
within the class of heavy-tailed distributions is thus considered to be an intrigu-
ing choice for random errors to capture departures from the usual assumption of
normality.
Prior robustness comes into consideration when it is desired to receive informa-

tion from different sources for the model parameters. Misspecification of priors
for parameters of some events may cause the prior to be in confliction with (far
from) the reliable data, influencing the posterior. Whether a prior is robust or not
depends on the rate at which the influence of the prior decreases. The influence
of such priors could also be bounded by the choice of either a heavy-tailed prior
density as well as non-informative, flat or reference priors which are naturally ro-
bust. Student-t distribution as a prior is chosen here to built-in protection against
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accusations of too much subjective bias in probability judgements of the available
prior information.
The main goal of this paper is therefore to propose theoretical evaluation of ro-

bust bayesian estimators of a linear regression model with RN distributed errors
and Student-t prior. The price to be paid for utilization of such inherently ro-
bust procedure is computational: analytically intractable form of RN distribution
causes the posterior to be too complex, which is the reason for the avoidance of
practising with this distribution family. Simulation-based Markov Chain Monte
Carlo (MCMC) algorithms are here used to obtain the realizations from posterior
functionals and a random sample generator for RN distribution was developed for
the first time.
The rest of the article is structured as follows. In Section 2, we first describe

the properties of RN distribution. We build the framework of robust analysis of
Bayesian regression model with RN likelihood and Student-t prior in Section 3.
In Section 4, we simplify complicated forms of full conditional posterior densities
via a series expansion and employ MCMC sampling method for drawing samples
from those. Since an approximate posterior distribution is used as a proposal den-
sity, we utilize the Metropolis-Hastings-within-Gibbs (MHWG) algorithm ([20]) to
correctly estimate the true target posterior density. Section 5 and 6 present a simu-
lation study and real-data application for the performance comparison, respectively.
Finally, some conclusions are drawn and presented in Section 7.

2. Ramsay-Novick (RN) Distribution

A new family of distribution having bounded influence functions was proposed
by [33].

f(x | v, a, b) = r(x) A(v) s(v) exp (− ηab (d(v, x))) , a > 0, b > 0 (2.1)

where ηab (d(v, x)) =
(
ba2/b

)−1
γ
(
2/b, ad (v, x)

b
)
, γ (.) is the lower incomplete

gamma function, v is the location parameter, A (v) is a normalizing constant that
does not depend on x and d (v, x) is a measure of distance of x from v. The con-
stants a and b are the robustness tuning constants ([33]). The normal distribution
is obtained for a → 0. Therefore, small values of this parameter are usually con-
sidered. RN distribution belongs to the elliptical family with density generator
([31]).

g(u) = exp

−
(
ba2/b

)−1 a(2u)b/2∫
0

exp (−t) t2/b−1dt


If the measure of distance of x from the location v = µ scaled by σ is set as

d (v, x) =
∣∣x−µ
σ

∣∣, probability density function (p.d.f) of RN distribution in (2.1) can
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Figure 1. Influence of the robustness parameter on the tails of
RN density function comparatively with Standard Normal

be obtained as follows

f(x | µ, σ, a, b) ∝ exp
(
−
(
ba2/b

)−1
γ

(
2

b
, a

∣∣∣∣x− µσ
∣∣∣∣b
))

(2.2)

and expressed as X ∼ RN(µ, σ, a, b). The modified influence function of this vari-
able becomes

MIF (x) =
(x− µ)
σ2

exp

(
−a
∣∣∣∣x− µσ

∣∣∣∣b
)

(2.3)

Figure 1 exemplifies the distributional forms of RN with differing values of ro-
bustness parameters which influence the tail thickness of the standard
RN(0, 1, a, b). Figure 2 displays the impact of modification expressed in (2.3) on
the unbounded influence function of non-robust Normal density. Influence of single
observation (x) for Normal case (µ = 0, σ = 1) can be seen here as a straight line
passing through the origin. However, such an influence becomes bounded on both
sides of extreme observations for RN cases. Reminding that this density has two
robustness parameters, the speed of influence function approaching to zero seems
to be controlled by parameter b. Note that the particular values of the parameters
used here are the same preferences of Ramsay and Novick in their work ([33]). It
can be seen from Figure 2, bounding effect of RN(0, 1, 0.05, 2) is more significant
than the others.
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Figure 2. Modified influence function plots based on d(v, x) =
∣∣x−µ
σ

∣∣
3. Robust Bayesian Regression Model

We here consider Bayesian analysis of a multiple linear regression model of the
form :

yi = xTi β + εi , i = 1, 2, ..., n (3.1)

where yi ∈ R is the response variable, xTi = (xi1, xi2, ...., xip) is the p−dimensional
regression predictor, β =

(
β0, β1, ...., βp

)T
is the vector of unknown regression co-

effi cients and ε′is are the independently identically distributed (iid) random error
terms. Bayes rule requires specification of prior density for the model parameters
and the sampling distribution to obtain the joint posterior probability distribution
factorized as

Posterior ∝ Prior × Likelihood

P (β0, β1, ..., βp, σ
2 | y, x) ∝ P (β0, β1, ..., βp, σ2) × P (y | x, β0, β1, ..., βp, σ2) (3.2)

In Bayesian regression modelling, the usual preferrence for these is Normal-
Normal under the assumption of the Normal random errors. When the validity
of this assumption is in doubt, likelihood component of Bayesian analysis needs
to be suitable chosen. It is well known that the main source of deviations from
the usually assumed Normal model is existence of outliers in the data. One way to
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achieve robust inferences is to utilize a unimodal heavy-tailed distribution. Student-
t, Laplace, Slash and Exponential Power distributions are some examples of heavy-
tailed distributions amongst many others and widely applied within robust regres-
sion framework in the literature ([14], [26], [17], [27], [39]).
Major criticisim of a Bayesian approach occur if the probabilistic statements for

the model parameters were priori obtained by pooling information from multiple
or dissimilar studies or sources (subjective beliefs). In such cases, multiple experts
judgements may conflict, which can hardly be represented by a unique prior. Prior
elicitation of this form may also reveal discrepancies with the sampling information,
causing the posterior summaries to be highly affected. Thus, prior robustness has
been developed mainly to cope with influences of inaccurately specified priors as
a result of conflicting information sources. This issue was throughly discussed by
[8] , [9] and [10], in which the prior robustness was based on the choice of classes of
priors based on ε−contaminations. Heavy-tailed distribution family also appears as
an alternative class of robust priors which can downweight the influence of expert’s
opinions conflicting with the majority, in other words, occuring in the tails.
Although RN distribution appears within the class of heavy-tailed distributions,

its use for robustness purposes is scarce due to its complicated distributional form.
Application of this distribution has so far been limited to the real world data and,
to the best of our knowledge, the evaluation of its robustness properties within a
Bayesian framework has not been performed. As an alternative to Normal-Normal
model, it is therefore of interest to develop a Bayesian regression analysis with the
RN distributed errors and Student-t prior for the model parameters.
We now turn to model (3.1). Let εi ∼ RN(0, σ, a, b) and β has multivariate

student-t distribution with ”0” location, σ2Dτ scatter matrix and v degrees of
freedom. To simplify bayesian calculations, the Student-t prior of β was included
to the analysis in the form of a scale mixture of normal (SMN) distributions with
the mixing density being an inverse gamma distribution ([4], [16]). Resulting prior
for β′js;

P (β | σ2) =
p∏
j=1

∞∫
0

N(βj | 0, σ2τ2j )IG(τ2j | v/2, v/2)dτ2j (3.3)

Moreover, an invariant non-informative (or improper) prior was assumed for σ2

parameter, expressed proportionally as P (σ2) ∝ 1
σ2 . Hierarchical representation of

the robust bayesian regression full model can be given as follows

yi | x, β, σ2, a, b ∼ RN(xTi β, σ2, a, b)

β | τ21, ..., τ2p, σ2 ∼ Np(0p, σ2Dτ ) , Dτ = diag(τ21, ..., τ
2
p) (3.4)

τ21, τ
2
2, ..., τ

2
p | v ∼ IG(v/2, v/2) , τ21, τ

2
2, ..., τ

2
p > 0

σ2 ∼ P (σ2)
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with τ21, τ
2
2, ..., τ

2
p and σ

2 independent. The likelihood function for a random sample
under this full model is given by

f(y | x, β, σ2, a, b) ∝ σ−n exp
{
−

n∑
i=1

ηab(di)

}
(3.5)

where

di =

∣∣yi − xTi β∣∣
σ

ηab(di) =
(
ba2/b

)−1
γ
(
2/b, adbi

)
The joint posterior density for all model parameters can be written as follows

P (β, σ2, τ2 | y, x, a, b) ∝ f(y | x, β, σ2, a, b) × P (σ2) × P (β | σ2)

∝
[
σ−n exp

(
−

n∑
i=1

(
ba2/b

)−1
γ(2/b, adbi )

)]
× σ−2 × p∏

j=1

 1

σ
√
τ2j

exp

(
− 1

2σ2τ2j
β2j

)((τ2j)− v2−1 exp
(
− v

2τ2j

)) (3.6)

It can be clearly seen that this density has complex structure with summations
and multiplications of many expressions. Major part of complication stems from
the lower incomplete gamma function and we here suggest to express it as a series
expansion given below ([1], [6], [40]).

γ(2/b, adbi ) =

(
2

b
− 1
)
!

1−
exp(−x)

2
b−1∑
k=0

(
a
∣∣∣yi−xTi βσ

∣∣∣b)k
k!


 (3.7)

The joint posterior density for β, σ2 and τ2 now becomes as

σ−n−p−2 × exp{−
(
ba2/b

)−1(2
b
− 1
)
!

n∑
i=1

[1− exp(− a

σb
∣∣yi − xTi β∣∣b)

2
b−1∑
k=0

(
a
σb

∣∣yi − xTi β∣∣b)k
k!

]−
p∑
j=1

(
β2j
2σ2τ2j

+
vτ2j
2

)
} ×

 p∏
j=1

(
τ2j
) v+1

2

 (3.8)

This analytically intractable form leads us to the innovative MCMC methods which
require the definition of full conditional posterior distributions for each parameter.
This can be achieved by ignoring all terms that are constant with respect to the
parameter from the joint posterior density. Sometimes these distributions are well
known distributions such as Normal, Gamma or inverse Gamma, enabling the Gibbs
sampler for implementation( [21]). When the full conditionals of all the parameters
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of interest are not readily available probability density functions, then Metropolis-
Hasting method needs to be incorporated to the Gibbs sampler, which is known as
MHWG sampling technique ([20]).
The following section provide the framework for MHWG sampling technique for

the current problem.

4. Markov Chain Monte Carlo (MCMC) Approach

The full conditional posterior density for β is proportionally obtained as

P (β | σ2, τ2, y, x, a, b) ∝ exp


−
(
ba2/b

)−1 ( 2
b − 1

)
!

×
n∑
i=1

(
exp

(
− a
σb

∣∣yi − xTi β∣∣b)∑ 2
b−1
k=0

(
a

σb
|yi−xTi β|b

)k
k!

)
− 1
2σ2

∑p
j=1

β2j
τ2j


(4.1)

Similarly, the full conditional densities for σ2 and latent variable τ2j (j = 1, 2, ..., p)
are respectively: P (σ2 | β, τ2, y, x, a, b)

∝ σ−n−p−2 exp


−
(
ba2/b

)−1 ( 2
b − 1

)
!

×
n∑
i=1

(
exp

(
− a
σb

∣∣yi − xTi β∣∣b)∑ 2
b−1
k=0

(
a

σb
|yi−xTi β|b

)k
k!

)
− 1
2σ2

∑p
j=1

β2j
τ2j

 (4.2)

P (τ2j | β, σ2, y, x, a, b) ∝
(
τ2j
) v+1

2 exp

(
−1
2

(
β2j
σ2τ2j

+ vτ2j

))
(4.3)

It can be deduced that the conditional distribution of latent variable τ2j is Gener-
alized Inverse Gaussian distribution with the parameters

τ2j | β, σ2, y, x, a, b ∼ GIG

v, β̂j2
σ̂2

,
v + 3

2

 (4.4)

Therefore, Bayesian estimator of τ2j is as follows

τ̂2j =

∣∣∣∣ β̂jσ̂ ∣∣∣∣K v+5
2

√
vK v+3

2

(4.5)

where Kp is a modified Bessel function of the second kind. Since the form of the
full conditional posterior density of the latent variable resembles the density of a
known distribution, the marginal posterior distribution of this variable is achieved
by the Gibbs sampling method.
On the other hand, full conditionals for the rest of the parameters do not belong

to a known distribution family and cannot be directly simulated in an easy way.
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For each of those, a Metropolis Hasting algorithm is incorporated to Gibbs sampler,
which uses a proposal density that closely matches to the full conditional (i.e.
target density) and the resulting procedure becomes a MHWG sampling process as
described before.

5. Simulation Study

5.1. Generating samples from RN distribution. Random sample generation
from RN distribution is currently not possible via either available statistical package
programs or libraries. We therefore utilized an independent Metropolis Hastings
algorithm ([28], [22]), which corresponds to the acceptance -rejection method so as
to fulfill this gap. Target distribution is here the standard RN distribution with
a = 0.05, b = 2. Finite mixture of two Normal distributions were considered to be
the most appropriate as a proposal distribution with p.d.f;

g(x;λ, σ21, σ
2
2) = (1− λ)N(0, σ21) + λN(0, σ22) (5.1)

Values of parameters were chosen as 1 − λ = 0.85, σ21 = 1 and σ22 = 10 such
that proposal distribution matches to N(0, 1) in terms of first and third quartiles
while having tails heavier than the target distribution of RN(0, 1, 0.05, 2). Then
the metropolis algorithm is:
1) A realisation of a first-order Markov process is generated, x(1), x(2), ..., x(t),

starting from some initial state x(0).
2) At step (t−1), current state is x(t−1). Generate a candidate state, x∗, from the

proposal distribution: x∗ ∼ g(x∗). This was achieved by using rnormmix function
of {mixtools} library in R
3) Calculate the ratio of two states:

αt

(
x(t−1), x∗

)
= min

{
1,

f(x∗; a, b)

f(x(t−1); a, b)

g(x(t−l) | x∗)
g(x∗ | x(t−l))

}
(5.2)

as the proposal distribution g(x) is symmetric, the ratio reduces to f(x∗;a,b)
f(x(t−1);a,b)

.
4) Generate u form U(0, 1)
5) If u ≤ αt

(
x(t−1), x∗

)
=⇒ set x(t) = x∗ else set x(t) = x(t−1)

6) Repeat steps (2)-(5) N times (# of iteration)
Running the chain 15000 iterations with a burn-in period of 5000, we obtained

the acceptance rate as 0.5295 which is plausible as a desirable value for this is stated
to be between 0.2 and 0.7 ([36]). The chain produces no diagnostic problems such
as autocorrelation. Figure 3 presentation proves that the simulated sample follows
RN(0, 1, 0.05, 2) distribution.

5.2. Simulation Settings. For the simulation study conducted, the response vari-
able (y) is assumed to follow the linear model below

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi , i = 1, 2, ..., n (5.3)
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Figure 3. Comparison of distribution functions of theoretical RN
and simulated sample

where all regressors were generated from U(−5, 5) and regression coeffi cients were
set to be ”1”. The sample size is taken as n = 50. For the random errors (ε),
the heavy-tailed RN(0, 1, 0.05, 2) distribution with common variance (σ) was con-
sidered. Outlier addition to the samples was achieved by altering the observations
with a constant value of ”100” at the percentages of 2 and 5 in the x−, y− and x−y
direction. Note that these rates correspond to ”1” and ”3” outliers respectively for
the sample size of 50.
The prior information for regression coeffi cients was inserted to the analysis in

postulations of: no priori knowledge, informative knowledge and conflicted expert
opinions. The first implied a flat prior which was achieved by a Normal density with
a very big variance. The usual Normal prior with smaller variance produced the
second form. We also examined how Student-t prior behaved in this case. Notation
for Student-t will be used as t(µ, σ, v), where µ =location, σ =scale, v =degrees
of freedom, in the following sections. Finally, we assumed that conflicted beliefs
introduced a subjective bias to the basic summaries of prior density. A positive bias
was reflected in the quantification of mean of prior by an arbitrarily chosen value,
leaving the scale component unquestioned. Then, the light and heavy-tailed priors,
i.e. Normal and Student-t (v = 3) respectively were assigned to the parameters to
represent such inconsistency between the prior and the data. It must be noted that
a flat prior is used for the intercept parameter of the model throughout the whole
analyses in this work.
Under each simulation settings, posterior functionals and Metropolis Hastings

algorithms were constructed by means of R2WinBUGS library in Rv.3.2.5 Software
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([34]). Posterior estimates of parameters of interest were computed from the chains
of full conditionals. Repeating this process 100 times (number of simulations),
mean of posterior estimates and root mean square errors (RMSE) were obtained as
presented in Tables 1−3. All computations and simulations were performed within
the R platform.

5.3. Simulation Results. Posterior expectations of the simulated model parame-
ters under different prior settings are listed in Table 1-3. A flat non-informative
prior represented by a Normal distribution with a very big variance produces robust
estimates against outliers of all directions if it is accompanied by RN distributed
errors. It should be noted that the classical regression modelling with RN er-
ror distribution reveals maximum likelihood estimates resistant to outliers only in
y−direction (the article of authors in evaluation). Bayesian analysis incorporated
flat priors here extends the robustness to all directions. It is well known that as-
signment of flat, non-informative, reference etc. priors is the easiest way of building
robustness to the analysis in cases of no prior knowledge.

Table 1 Robust bayesian parameter estimates(RMSE) with non-informative
prior (N(0, 104)), εi ∼ RN(0, σ, 0.05, 2)

Number of Outlier

Outliers Directions β̂0 β̂1 β̂2 β̂3 σ̂
x- 0.995 1.001 0.998 0.999 0.919

(0.13) (0.05) (0.06) (0.12) (0.12)
1 y- 1.021 0.986 0.998 1.003 0.978

(0.13) (0.06) (0.05) (0.06) (0.10)
x-y 0.995 0.993 0.987 1.008 0.931

(0.15) (0.06) (0.07) (0.06) (0.12)
x- 1.006 0.991 0.989 1.005 0.942

(0.13) (0.06) (0.06) (0.05) (0.11)
3 y- 1.025 0.989 1.003 0.999 0.947

(0.13) (0.06) (0.06) (0.05) (0.11)
x-y 0.979 0.998 0.988 1.006 0.903

(0.14) (0.05) (0.05) (0.05) (0.14)
RMSE is the root mean square error.

Influence of outliers particularly in the x− or x− y direction becomes apparent
when an informative prior consistent with the data is represented through conjugate
settings with smaller variance. However, estimators with Student-t prior rather
than Normal are observed to tolerate such influences to an arbitrarily large extent.
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Table 2 Robust bayesian parameter estimates (RMSE) with informative prior
prior εi ∼ RN(0, σ, 0.05, 2)

Prior of Number of Outlier

β Outliers Directions β̂0 β̂1 β̂2 β̂3 σ̂
x- 0.955 0.907 1.043 1.017 0.979

(0.18) (0.12) (0.07) (0.06) (0.06)
1 y- 0.991 0.951 0.960 1.033 0.899

(0.26) (0.05) (0.09) (0.07) (0.10)
x-y 0.893 0.983 1.062 0.957 0.800

N(0, 1) (0.14) (0.10) (0.07) (0.09) (0.21)
x- 1.022 0.989 0.987 0.945 0.877

(0.12) (0.08) (0.05) (0.06) (0.12)
3 y- 1.032 1.010 1.053 1.090 0.910

(0.03) (0.04) (0.06) (0.11) (0.20)
x-y 1.076 0.955 0.978 1.017 0.874

(0.09) (0.04) (0.02) (0.09) (0.18)
x- 1.023 0.986 0.989 0.993 0.975

(0.13) (0.06) (0.05) (0.06) (0.11)
1 y- 1.002 0.989 0.997 0.994 0.968

(0.13) (0.06) (0.05) (0.06) (0.11)
x-y 0.952 0.983 0.996 0.995 0.940

t(0, 1, 3) (0.14) (0.06) (0.05) (0.05) (0.13)
x- 0.996 0.982 0.982 0.995 0.956

(0.15) (0.06) (0.06) (0.05) (0.12)
3 y- 0.973 0.983 0.987 0.989 0.945

(0.15) (0.06) (0.06) (0.05) (0.12)
x-y 0.983 0.988 0.984 0.991 0.923

(0.14) (0.05) (0.06) (0.06) (0.15)
RMSE is the root mean square error.

When there is likely but not easily detectable discrepancies between the sam-
pling and prior information, the inaccurately specified prior knowledge via Normal
distribution distorts the posterior expectations for all outlier settings (Table 3). On
the other hand, representation of the misspecified knowledge with a heavy-tailed
prior downweights such influences, revealing robust estimates in all directions.
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Table 3 Robust bayesian parameter estimates (RMSE) with informative but
conflicting prior εi ∼ RN(0, σ, 0.05, 2)

Prior of Number of Outlier

β Outliers Directions β̂0 β̂1 β̂2 β̂3 σ̂
x- 1.106 1.183 0.984 1.169 0.946

(0.20) (0.18) (0.15) (0.17) (0.08)
1 y- 0.992 1.118 1.064 1.246 1.017

(0.01) (0.12) (0.07) (0.31) (0.11)
x-y 0.891 1.048 0.958 1.010 0.925

N(5, 1) (0.11) (0.10) (0.16) (0.24) (0.09)
x- 1.056 0.986 0.962 0.993 0.824

(0.30) (0.02) (0.04) (0.06) (0.18)
3 y- 0.873 1.027 1.042 1.079 0.999

(0.13) (0.03) (0.04) (0.09) (0.03)
x-y 0.948 0.989 0.948 0.962 0.902

(0.12) (0.02) (0.14) (0.04) (0.15)
x- 0.993 0.990 0.997 0.989 0.952

(0.12) (0.06) (0.06) (0.05) (0.10)
1 y- 1.005 0.989 0.985 1.004 0.972

(0.14) (0.05) (0.06) (0.06) (0.09)
x-y 0.988 0.993 0.994 1.007 0.943

t(5, 1, 3) (0.14) (0.06) (0.05) (0.05) (0.12)
x- 1.006 0.993 0.998 0.991 0.934

(0.13) (0.06) (0.06) (0.06) (0.12)
3 y- 0.972 0.992 1.002 0.998 0.926

(0.14) (0.05) (0.06) (0.05) (0.12)
x-y 0.965 0.995 1.008 0.996 0.914

(0.14) (0.06) (0.05) (0.05) (0.13)
RMSE is the root mean square error.

6. Real World Application

For an illustrative example, the data set famously known in the literature as
Brownlee’s Stackloss Plant Data, is chosen here. It contains observations of ”21”
days of "operation of a plant for the oxidation of ammonia (NH3) to nitric acid
(HNO3)" with three explanatory variables. The dependent variable is the stackloss
which is 10 times the percentage of the ingoing ammonia to the plant that escapes
from the absorption column unabsorbed. The predictor variables are Air Flow,
the rate of operation of the plant. Water Temperature, the temperature of cooling
water circulated through coils in the absorption tower; and Acid Concentration, the
concentration of the acid circulating. This data set contains four outliers, one of
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which is in x− and, three of which are in y−direction. This data set was used as an
example to illustrate certain computational procedures of multiple regression using
the least squares method by Brownlee ([13]). Since then it has been the subject of
robust procedures in at least 90 distinct papers of multiple linear regression ([19],
[18], [7], [32], [2], [37], [5], [35], [11], [30], [23]).
The linear regression model assuming normally distributed errors was estimated

by [13] as follows

ŷloss = −39.919 + 0.7156x1 + 1.2953x2 − 0.1521x3

y : Stack Loss, x1 : Air Flow, x2 :Water Temperature, x3 : Acid Concentration

Bayesian regression modelling of the available data was performed under the as-
sumption of RN distributed errors. RN likelihood is here expected to provide a
built-in protection against the possible heavy-tailed disturbances due to the appar-
ent outliers. Parameters of regressors were assigned informative priors via standard
Normal and t(0, 1, 3) densities as well as non-informative priors. Although the most
of the information about unknown parameters come from the same RN likelihood,
we here calculated Deviance Information Criterion (DIC) to present indications of
model performances under different prior settings. As a guidance for our achieve-
ments, we here also present one of the estimated models of this data by means of
Huber M-estimate method in the literature. The study of [11] was chosen for this
purpose and the estimated model is

ŷHuber = −41.170 + 0.8133x1 + 1.000x2 − 0.1324x3

Table 4 presents bayesian parameter estimates of the model under the above men-
tioned settings. In comparison with Huber estimates, RN estimates obtained by
non-informative prior here appear resistant to the outliers of this data set that were
in both x− and y− direction. Bayesian modelling with Student-t prior instead of
flat prior gives slightly more robust estimates as implied by DIC criteria. Besides,
informative Normal prior resulted in posterior estimates that change in sign (see
β̂3) and magnitude (see β̂0) in comparison to Huber model.

Table 4 Robust bayesian estimates of parameters by using stackloss data set
Prior of β β̂0 β̂1 β̂2 β̂3 σ̂ DIC

Non
Informative N(0, 104) -41.770 0.778 1.094 -0.124 2.92 420073

N(0, 1) -52.410 0.782 1.028 0.012 3.01 420074
Informative

t(0, 1, 3) -39.960 0.765 1.089 -0.135 2.90 420072
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7. Concluding Remarks

Bayesian regression modelling depends heavily on the specification of a sam-
pling model and the prior distribution. Therefore, it is always a good practice to
investigate whether the obtained posterior is sensitive to reasonable variations of
the statistical model, of the selected prior, or both. Traditional bayesian models
based on Normal or other conjugate distributions are known to be inadequate to
cope with the conflicting information in either individual observations (i.e. outliers)
or in the prior beliefs. In such cases, we ought to consider reasonable alternative
models based on more robust distributional assumptions, for example, sampling
distributions with heavier tails. Bayesian modelling with heavy-tailed distributions
automatically downweights the influences of observations that are extremely dis-
tant, resulting in robust bayesian inferential procedures.
The primary aim of this work was to stimulate the continuing development of

bayesian heavy-tailed models by employing RN distribution for the sampling model.
This distribution appears also within the class of heavy-tailed distributions, how-
ever its complicated distributional form has so far limited its applications to real
problems. Besides, all the work involving this distribution have been conducted
on the same real world data and there has been a lack of its performance ass-
esment under different circumstances. We here fulfilled this gap by proposing a
random number generation algorithm from RN distribution, which would serve for
simulation studies of its performance assesments in robustness studies.
A major challenge in the application of bayesian methods occurs when it is nec-

essary to address the emprical knowledge of people’s conflicting beliefs. The use
of subjective opinions in the form of informative priors may result in inaccurately
specified prior densities, affecting the posterior summaries. This is the main crit-
icism of bayesian approaches and as a solution, the use of a heavy-tailed prior
density is again suggested for the protection against such influences. Developing
prior robustness by means of a heavy-tailed distribution was therefore of our sec-
ondary aim and Student-t prior was chosen for this purpose. Theoretical evaluation
of bayesian estimates with RN likelihood and Student-t prior revealed analytically
intractable form for posterior functionals. With the help of a series expansion and
simulation based MCMC techniques, we managed to conduct a simulation study by
creating conflicts between data (in x−, y− and x−y direction) or between the data
and the prior. Results from simulation and real data application indicated that
RN sampling model along with Student-t prior provide protection against distor-
tions caused by outliers in all sides. Besides, handling of conflictions between data
and prior can be automatically incorporated into the bayesian inference procedure
through the heavy-tailed Student-t prior. Overall conclusion contributes to the use
of heavy-tailed distributions to built robustness in the Bayesian analyses and RN
distribution is a good candidate for this purpose.
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