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ON THE RATE OF CONVERGENCE OF THE
g-NAVIER-STOKES EQUATIONS

MERYEM KAYA, ÖZGE KAZAR, AND ÜLKÜ DİNLEMEZ KANTAR

Abstract. In this paper we consider 2D g-Navier-Stokes equations in a bounded
domain by Ω. We give an error estimate between the solutions of Galerkin ap-
proximation of the g-Navier-Stokes equations and the exact solutions of them.

1. Introduction

We essentially focus on studying the rate of convergence for the g-Navier-Stokes
equations (g-NSE). The error estimates for the differences between the solutions
of the 2D α-models and solutions of their corresponding Galerkin approximation
systems are given by Cao and Titi in [3]. Inspired from this article we get an
estimate on g-NSE. There exist extensive analytical studies on the global regular-
ity of solutions and the existence of global attractor of the g-NSE in [1], [7]-[10].
Using their result about the weak and strong solutions of g-NSE under the peri-
odic conditions in [10] we give our estimate. The L2(Ω, g)-norm of the difference

|u− um| is the order O
(

1
λm+1

(log λm+1)
1
2

)
. Here, u and um are the solution of the

g-NSE and the solution of finite-dimensional Galerkin system of them respectively.
We use Brezis-Gallouet inequality [2] in our proof. Using the equivalent norms re-
lated to the Stokes operator and g-Stokes operator, we rewrite the Brezis-Gallouet
inequality stated under periodic boundary conditions.
The g-NSE are given in the following form

∂u

∂t
+ ν∆u+ (u.∇)u+∇p = f, (1.1)

∇.(gu) = 0. (1.2)

with the initial condition
u(x, 0) = u0(x), (1.3)
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in Ω = (0, 1) × (0, 1) ⊂ R2. This system is equipped with the periodic boundary
conditions where ν and f are given, the velocity u and pressure p are the unknowns
functions. We assume u, p and the first derivative of u to be spatially periodic, i.e.,

u(x1 + 1, x2) = u(x1, x2) = u(x1, x2 + 1) (x1, x2) ∈ R2.

These equations are derived from 3D Navier stokes equations by Roh [8]. Here g
is a suitable smooth real valued function on Ω.
Throughout this paper, we assume that

(i)

g(x1, x2) ∈ C∞per(Ω). (1.4)

(ii) There exist two constants m0,M0 such that

0 < m0 ≤ g(x1, x2) ≤M0 for every (x1, x2) ∈ Ω. (1.5)

Throughout this paper c will denote a generic positive constant. It can be
different from line to line. This paper is organized as follows. In section
2 we give some notations and present the mathematical spaces. We also
give some preliminary results given by Roh for the 2D g-NSE. In section 3,
we obtain the error estimates between the solution of the g-NSE and the
solution of Galerkin system of them.

2. Preliminaries and Functional Setting

In this section we introduce the usual notations used in the context, which are
adopted by the works of [9, 10].
Let Ω be bounded domain in R2. We define the Hilbert space L2(Ω, g) which is

the space L2(Ω) with the scalar product and the norm given by

(u, v)g =

∫
Ω

(u, v) gdx and |u|2g = (u, u)g ,

and we also define the space H1(Ω, g) which is the space H1(Ω) with the norm by

‖u‖H1(Ω,g) =

[
|u|2g +

2∑
i=1

|Diu|2g

] 1
2

where Diu = ∂u
∂xi

. The two spaces L2(Ω) and L2(Ω, g) have equivalent norms in the
following inequalities

√
m0 |u| ≤ |u|g ≤

√
M0 |u| , (2.1)

where m0 and M0 are positive constants.
In our problem, we consider the following closed subspace of L2(Ω, g):
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Hg = CLL2(Ω,g)

u ∈ C∞per(Ω) : ∇.gu = 0,

∫
Ω

udx = 0

 ,

Q = CL
L2(Ω)

{
5φ : φ ∈ C1

per(Ω, R)
}
,

where Hg is equipped with the scalar product and the norm in L2(Ω, g). And we
use the following space

Vg =

u ∈ H1
per(Ω, g) : ∇.gu = 0,

∫
Ω

udx = 0

 ,

with the scalar product and the norm given by

(u, v)Vg =

∫
Ω

(Diu,Div) gdx and ‖u‖2Vg = (u, u)Vg .

Then, we can define the orthogonal projection Pg : L2
per(Ω, g) −→ Hg which is

similar to the Leray Projection, as Pgv = u and we obtain Q ⊂ H⊥g where Q
doesn’t depend on the function g. Now we consider the g−Laplacian ∆g defined by

−∆gu = −1

g
(∇.g∇)u = −∆u− 1

g
(∇g.∇)u. (2.2)

So, using (2.2), (1.1) can be written as

∂u

∂t
− ν∆gu+

1

g
(∇g.∇)u+ (u.∇)u+ Op = f in Ω. (2.3)

Now we rewrite the equation (2.3) as abstract evolution equations;

du

dt
+ νAgu+Bg(u, u) +Ru = f, (2.4)

where
u(0) = u0,

Agu = Pg(−∆gu), Bg(u, u) = Pg(u.∇)u, Ru = Pg

[
1

g
(∇g.∇)u

]
.

For the linear operator Ag, the following proposition holds (see [10]).

Proposition 1. [10] For the g−Stokes operator Ag, the followings hold;
(i) Ag is a positive, self adjoint operator with compact inverse, where the domain

of Ag, D(Ag) = Vg ∩H2(Ω, g).
(ii) There exist countable eigenvalues of Ag satisfying

0 < λ(g) ≤ λ1 ≤ λ2 ≤ λ3 ≤ ...
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where λ(g) = 4π2m0

M0
and λ1 is the smallest eigenvalue of Ag. Moreover, there exist

the corresponding collection of eigenfunctions {e1, e2, e3...} forms an orthonormal
basis for Hg.

Now we recall the following inequalities. Let {wj}∞j=1 be an orthonormal basis of
Hg consisting of eigenfunctions of the operatorAg.Denote byHg

m = Span {w1, w2, ..., wm} ,
for m ≥ 1 and let P gm be the orthogonal projection from Hg onto Hg

m, then we give
the following inequalities [5].

|(I − P gm)u|2g ≤
1

λm+1
‖u‖2g , for all u ∈ Vg, (2.5)

‖(I − P gm)u‖2g ≤
1

λm+1
|Agu|2g , for all u ∈ D(Ag), (2.6)

|AP gmu|
2
g ≤ λm ‖P

g
mu‖

2
g . (2.7)

Since the operator Ag is self-adjoint, the fractional power of the g-Stokes operator
is defined as(

A
1
2
g u,A

1
2
g u
)
g

= (Agu, u)g , for u ∈ D(Ag) = Vg ∩H2(Ω).

And since the orthogonal projection Pg is self-adjoint operator, by using integration
by parts we write(

A
1
2
g u,A

1
2
g u
)
g

=

(
Pg

[
−1

g
(∇.g∇)u

]
, u

)
g

=

∫
Ω

(∇u,∇u) gdx.

Thus we get ∣∣∣A 1
2
g u
∣∣∣2
g

= |∇u|2g = ‖u‖2g , for u ∈ Vg.

Theorem 1. (g-Poincare inequality on Vg) [8] Assume that g satisfies (1.4). Then
we have

2π
√
m0√
M0

|u|g ≤ ‖u‖g for u ∈ Vg.

where m0 ≤ g(x) ≤M0 for all x ∈ Ω.

Next, we denote the bilinear operator Bg : Vg × Vg → V ′g

Bg(u, v) = Pg(u.∇)v, (2.8)

and the trilinear form

bg(u, v, w) =

n∑
i,j=1

∫
Ω

ui(Divj)wjgdx = (Pg(u.∇)v, w)g , (2.9)

where u, v, w lie in appropriate subspaces of L2
per(Ω, g) and V ′g is the dual space of

Vg.
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bg trilinear form have the following properties

i) bg(u, v, w) = −bg(u,w, v), (2.10)

ii) bg(u, v, v) = 0, (2.11)

for suffi cient smooth functions u ∈ Hg, v, w ∈ Vg [4, 6, 9, 11].
Now we will give the following lemma see [3, 4, 11].

Lemma 1. The bilinear operator Bg defined in (2.8) satisfies the following inequal-
ities;∣∣∣〈Bg(u, v), w〉V ′

g

∣∣∣ ≤ c |u| 12g ‖u‖ 1
2
g ‖v‖g |w|

1
2
g ‖w‖

1
2
g for all u, v, w ∈ Vg, (2.12)

|(Bg(u, v), w)| ≤ c ‖u‖L∞ ‖v‖g |w|g , for all u ∈ D(Ag), v ∈ Vg, w ∈ Hg, (2.13)

∣∣∣〈Bg(u, v), w〉(D(Ag))′

∣∣∣ ≤ c |u|g ‖v‖g ‖w‖L∞ , for all u ∈ Hg, v ∈ Vg, w ∈ D(Ag).

(2.14)

Proposition 2. [10] We assume that ‖g‖2∞ <
m3

0π
2

M0
and f ∈ L2(Ω, g). Then the

followings hold;

(i) For u0 ∈ Hg, one has

|u(t)|2g ≤ e
−α1t |u0|2g + α2 |f |2g = K2

0 , (2.15)

and (
1− m0

2M0

)∫ t

t1

∣∣∣A 1
2
g u(s)

∣∣∣2
g
ds ≤ |u(t1)|2g +

2 (t− t1)

λ1
|f |2g ,

for 0 ≤ t1 ≤ t <∞.
(ii) For u0 ∈ Vg then there exist constants, r1 = r1(m0,M0, f), r2 = r2(m0,M0, f)

and L1 = L1(m0,M0, f) such that 0 ≤ t,∣∣∣A 1
2
g u(t)

∣∣∣2
g
≤ r1(1 +

∣∣∣A 1
2
g u0

∣∣∣2
g
)e−α1t + L1 = K2

1 (u0, f,m0,M0). (2.16)

In addition, if u0 ∈ D(Ag) and the forcing term f ∈ Vg then there exist constants
r3 = r3(m0,M0, f) and L2 = L2(m0,M0, f) such that

|Agu(t)|2g ≤ r3(1 + |Agu(0)|2g)e
−α1t + L2 = K2

2 (u0, f,m0,M0), for t ≥ 0, (2.17)

where α1 = λ1 − 2
m2

0
‖∇g‖2∞ > 2m0π

2

M0
, α2 = 2

λ1α1
<

M2
0

4m2
0π

4 .
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3. Error Estimates Of The Galerkin Approximation Of The g-NSE

Before giving the main result, we give the following Lemmas. First we state a 2D
periodic boundary condition version of the well known Brezis-Gallouet inequality
[3]. Then we state this inequality for the Ag operator.

Lemma 2. [3] There exists a constant c > 0 such that for every u ∈ D(Ag)

‖u‖L∞ ≤ c ‖u‖g

(
1 + log(

1√
λg

|Agu|g
‖u‖g

)

) 1
2

. (3.1)

We give the following Lemma by using (2.16), (2.17) in (3.1).

Lemma 3. Let u0 ∈ D(Ag) and T > 0. Assume that 1√
λg‖∇g‖2∞

≥ 1 and K2

K1
‖∇g‖2∞ ≥

1. Let u(t) satisfy (2.16), (2.17) in Lemma 3, then we get

‖u‖2L∞ ≤ c(1 + log
1√

λg ‖∇g‖2∞
),

where we denote c as a generic constant.

Proof. Using the Brezis-Gallouet inequality in Lemma 2 we write

‖u‖2L∞ ≤
c2

m2
0

‖u‖2g

(
1 + log

(
|Agu|g√
λg ‖u‖g

))
.

From (2.16), (2.17) we have
∣∣∣A 1

2
g u(t)

∣∣∣2
g

= ‖u(t)‖ ≤ K1 and |Agu(t)|g ≤ K2 for all

t ∈ [0, T ] so we get

‖u‖2L∞ ≤ c2

m2
0

[K2
1 +K2

1 log

(
1√

λg ‖∇g‖2∞

)

+K2
1

‖u‖g
K1

log

(
K2 ‖∇g‖2∞
‖u‖g

)
]. (3.2)

Now from (2.16) and

∥∥∥∥A 1
2
g u

∥∥∥∥
K1

≤ 1 for all t ∈ [0, T ] we obtain

‖u‖
K1

log

(
K1

‖u‖g

)
≤ 1

e
. (3.3)

Using (3.3) and the assumption K2

K1
‖∇g‖2∞ ≥ 1 in (3.2). Therefore the proof is

completed. �

Now we will give the error estimate between the approximation solutions um of
the finite dimensional Galerkin system and the exact solution u of the g−NSE. The
error is given in terms of m and ‖∇g‖∞ .
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First of all, we can decompose u as in the case u = pm + qm, where pm = P gmu,
qm = (I − P gm)u, P gm is the orthogonal project from Hg onto Hg

m. H
g
m is defined in

Section 2.
Since u = pm + qm, we can decompose the equation (2.4) into the following

coupled system of equations;

dpm
dt

+ νAgpm + P gmBg(u, u) + P gmRpm = P gmf, (3.4)

dqm
dt

+ νAgqm + (I − P gm)Bg(u, u) + (I − P gm)Rqm = (I − P gm)f. (3.5)

For the Galerkin approximation system of the g−NSE, we write the following equa-
tion

dum
dt

+ νAgum + P gmBg(um, um) +Rum = P gmf. (3.6)

We will proceed by first estimating the Hg-norm of qm and then Hg-norm the
difference δm = pm − um.

|u− um|2g = |pm − um|2g + |qm|2g .

From (3.4) and (3.6) we observe that δm = pm−um satisfies the following equation;
dδm
dt

+ νAgδm + P gmBg(δm + qm, u) + P gmBg(um, δm + qm) + P gmRδm = 0. (3.7)

Now we will give the following main theorem.

Theorem 2. Let T > 0 and let u be a solution of the g−NSE (2.4) with the
initial data u0 ∈ D(Ag) and let um be the solution of (3.6) with the initial data
u0m = P gmu0 over the interval [0, T ]. For a given m ≥ 1, then

ess sup
0≤t<T

|u(t)− um(t)|2g ≤ ε
2

where

ε2 :=
1

(λm+1)
2 e

2
ν (c+ ‖∇g‖2∞) (Lm + 1)Z1,

where Z1 is defined in (3.13) and Lm = 1 + log λm+1

λ1
respectively .

Proof. First of all, we estimate the Hg norm of qm. We take the inner product of
equation (3.5) with qm and obtain

1

2

d

dt
|qm|2g + ν ‖qm‖2g 6 J1 + J2 + J3. (3.8)

where
J1 = |((I − P gm)Bg(u, u), qm)g| ,
J2 = |((I − P gm)Rqm, qm)g| ,
J3 = |((I − P gm)f, qm)g| .
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Now for estimating J1 we use (2.5) and (2.13), we have

J1 ≤ ‖u‖L∞ ‖u‖g
‖qm‖g

(λm+1)
1
2

. (3.9)

Using Lemma 3 and (2.16), we write

J1 ≤
cK1

(λm+1)
1
2

(
1 + log

1√
λg ‖∇g‖2∞

) 1
2

‖qm‖g .

Applying Young’s inequality, we have

J1 ≤
ν

4
‖qm‖2g +

c

νλm+1

(
1 + log

1√
λg ‖∇g‖2∞

)
,

where c = c2K2
1 is a constant. And then, for estimating J2, we apply Cauchy-

Schwarz’s inequality and Young’s inequality, we yield

J2 ≤
ν

4
‖qm‖2 +

1

νm2
0λm+1

‖∇g‖2∞ |qm|
2
g .

Let us use (2.5) and Young inequality, we get

J3 =
∣∣∣((I − P gm)f, qm)g

∣∣∣ ≤ ν

4
‖qm‖2g +

1

νλm+1
|f |2g . (3.10)

Thus we obtain

d

dt
|qm|2g +

ν

2
‖qm‖2g ≤ 2c

νλm+1

(
1 + log

1√
λg ‖∇g‖2∞

)
‖u‖g

+
2

νm2
0λm+1

‖∇g‖2∞ ‖qm‖
2
g +

2

νλm+1
|f |2g ,

d

dt
|qm|2g +

νλm+1

4
|qm|2g +

(
ν

4
− 2

νm2
0λm+1

‖∇g‖2∞
)
‖qm‖2g

≤ 1

λm+1

[
2c

ν

(
1 + log

1√
λg ‖∇g‖2∞

)
+

2

ν
|f |2g

]
. (3.11)

Dropping the last term of the left hand side of the equation (3.11), providing
ν2m2

0λm+1 − 8 ‖∇g‖2∞ > 0 and applying Gronwall’s inequality, we get

|qm(t)|2g 6 e−
ν
4 λm+1t |qm(0)|2g +

c

νλm+1

(
1 + log

1√
λg ‖∇g‖2∞

) t∫
0

e−
ν
4 λm+1(t−s)ds

+
2

νλm+1
|f |2g

t∫
0

e−
ν
4 λm+1(t−s)ds.
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Using the inequality (2.5) we have

|qm(t)|2g ≤
1

(λm+1)
2 |Agqm (0)|2g+

4c

υ2 (λm+1)
2

(
1 + log

1√
λg ‖∇g‖2∞

)
+

8

ν2λm+1
|f |2g .

Thus

|qm(t)|2g ≤
1

(λm+1)
2Z1, (3.12)

where

Z1 = |Agqm (0)|2g +
4

υ2

(
c

(
1 + log

1√
λg ‖∇g‖2∞

)
+ |f |2g

)
. (3.13)

Next, we estimate the L2−norm of δm by taking the inner product of equation
(3.7) with δm and using (2.10), (2.11) and then we get the Hg−norm of δm. Taking
the inner product of equation (3.7) with δm and using (2.10), (2.11) and then we
estimate

1

2

d

dt
|δm|2g + ν ‖δm‖2g 6 J4 + J5 + J6 + J7, (3.14)

where

J4 =
∣∣∣〈Bg(δm, u), δm〉g

∣∣∣ ,
J5 =

∣∣∣〈Bg(qm, u), δm〉g
∣∣∣ ,

J6 =
∣∣∣〈Bg(um, qm), δm〉g

∣∣∣ ,
J7 =

∣∣∣〈Rδm, δm〉g∣∣∣ .
First of all we estimate J4. Using (2.14), and applying (2.16) and also using Young’s
inequality, we obtain

J4 ≤ c

2
|δm|g ‖u‖g ‖δm‖g ,

≤ ν

4
‖δm‖2g +

c

ν
|δm|2g ‖u‖

2
g ,

≤ ν

4
‖δm‖2g +

c

ν
|δm|2g .

Now we estimate J5. Using (2.13) and applying (2.16) and Lemma 2 we write

J5 ≤ c |qm|g ‖u‖g ‖δm‖g

(
1 + log

1√
λg

|Agδm|g
‖δm‖g

) 1
2

.

Now using (2.16), (2.7) and Young’s inequality in the above inequality we write

J5 ≤
ν

4
‖δm‖2g +

c

ν
Lm |qm|2g ,
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where Lm = 1+log λm+1

λg
. Next we estimate J6.We will proceed by applying (2.10),

(2.13) we obtain
J6 ≤ c |qm|g ‖um‖∞ ‖δm‖g .

And then, we use Lemma 3, (2.13) and Young’s inequality we have

J6 ≤
ν

4
‖δm‖2g +

c

ν

(
1 + log

λm+1

λg

)
|qm|2g . (3.15)

Finally, we estimate the last term

J7 ≤
ν

4
‖δm‖2g +

1

νm2
0

‖∇g‖2∞ |δm|
2
g .

Let us substitute the bounds for J4, J5, J6, J7 into (3.14), we get

d

dt
|δm|2g + ν ‖δm‖2g ≤

1

ν

(
c+ ‖∇g‖2∞

)
|δm|2g +

c

ν
Lm |qm|2g . (3.16)

Neglecting the second term of left hand side of the equation (3.16), using (3.12)
and Gronwall’s inequality and recalling that |δm(0)| = 0, we obtain

|δm(t)|2g ≤
c

ν (λm+1)
2LmZ1e

1
ν (c+‖∇g‖2∞)T .

Therefore we have the following inequality

ess sup
0≤t≤T

|u(t)− um(t)|2g ≤ ess sup
0≤t≤T

|δm|2g + ess sup
0≤t≤T

|qm|2g

≤ 1

(λm+1)2
(
c

ν
Lme

1
ν (c+‖∇g‖2∞)T + 1)Z1.

�
Remark. The result which is given in the above for the g−NSE is the same order

as that of the error estimates for the usual Galerkin approximation of NSE. Indeed,

in [13] the order of error estimate for the 2D NSE is given byO
(

1
λm+1

(log (λm+1))
1
2

)
.
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