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binding protein (XBP1) under conditions of ER
stress. This splicing event, excision of a 26-bp frag-
ment, results in the conversion of a 267 amino acid
unspliced XBP1 to a 371 amino acid spliced XBP1
protein (XBP1s).11,12 XBP1 is a basic leucine zipper
containing (bZIP) transcription factor of the ATF/
CREB family that recognizes a cis-acting element in
the promoter of the major histocompatibility com-
plex class 2 gene.13 The spliced form of XBP1 is a
highly active transcription factor and regulates a
subset of ER-resident molecular chaperones and
increases the folding capacity of the ER.14 IRE-1
oligomerization activates c-Jun amino terminal
kinase (JNK); JNK activation has been shown to play
a crucial role in the development of obesity and
insulin resistance.15,16 A polymorphism of the XBP1
gene (-116C/G), a transcription factor that modu-
lates ER stress response, causes an impairment of its
positive feedback system and increases the risk of
bipolar disorder.17 The results of a provisional study
showed that XBP1 -116 C/G polymorphism is related to
personality18; however, there is no clear result for schizo-
phrenia, maybe because of regional differences.19,20

ER stress occurs under both physiological and
pathological conditions.21 Physiological fluctuations
of nascent peptides or unfolded proteins in the ER
may cause temporary attenuation of protein transla-
tion and/or upregulation of the protein folding
machinery. In contrast, long-term ER stress caused
by the accumulation of mutant proteins or acute ER

Endoplasmic reticulum (ER) is a reticular
membranous network and serves as the qual-
ity control organelle of the cell for proteins.

Several different pathological conditions have been
shown to interfere with the ER folding apparatus
and lead to the development of ER stress and acti-
vation of a complex signaling pathway called
unfolded protein response. The conditions that lead
to ER stress include glucose deprivation, increased
protein synthesis in secretory cells, exposure to
agents such as tunicamycin and thapsigargin, aggre-
gation of misfolded or mutant proteins in the ER,
and viral infections.1-3

ER stress is associated with a range of diseases,
including ischemia/reperfusion injury, neurodegen-
eration, and diabetes and obesity, making ER stress
a probable pathway of pathological cell death and
dysfunction.4,5 IRE-1 encodes an atypical type 1
transmembrane protein kinase endoribonuclease.6-10

The phoshorylated or active form of IRE-1 splices
the mRNA of a transcription factor called X-box

Endoplasmic reticulum stress is a central feature of
obesity, insulin resistance, and type 2 diabetes. A poly-
morphism of the XBP1 gene (-116C/G), a transcription
factor that modulates the endoplasmic reticulum stress
response, causes an impairment of its positive feedback
system. The authors examined a role of the polymor-
phism in the development of obesity. The polymor-

phism was investigated in clinically obese children and
compared with controls. Significant difference of
genotype distribution was observed, which suggested
that the -116C/G genotype may be a risk factor for at
least pediatric obesity.
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stress induced by chemical agents leads to full mobi-
lization of unfolded protein response and often cell
death. ER stress has been implicated in diabetes22 and
cardiovascular diseases23 and also as a novel thera-
peutic target in heart diseases24 and type 2 diabetes.25

The aim of this study was to evaluate the rela-
tionship of childhood obesity and ER stress and
investigate whether XBP1 gene polymorphism has a
role in the predisposition to obesity.

Materials and Methods

A total of 280 apparently nonobese healthy subjects
(age 34.50 ± 8.50 years and body mass index < 25)
were enrolled in the study. Ninety obese children
from different socioeconomic levels (group I), who
were samples in an obesity survey study conducted in
primary schools, and 116 obese children who were
referred to the Pediatric Endocrinology Department
of Ankara University (group II) were also included
(body mass index > 25). The clinical characteristics of
the groups were published previously.26 Patient
families and control individuals provided informed
consent. All the individuals studied were unrelated.

Genomic DNA was extracted from leukocytes
according to standard procedures. The XBP1 -
116C/G polymorphism was genotyped by poly-
merase chain reaction (PCR) amplification with
the primers 5-AATCCgTTTgTggAggAC and 5-
CCACCATAgCTCCAgACTAC. The annealing temper-
ature in the PCR was 55°C. Following PCR, single-
strand conformation polymorphism was performed by
8% polyacrylamide gel electrophoresis and the
bands visualized by silver staining. The samples
that had different patterns were subjected to DNA
sequencing (Beckman-Coulter CEQ, Fullerton, CA).
Odds ratios (ORs) were determined by logistic
regression analysis.

Results

Genotype distributions of XBP1 -116C/G are given in
Tables 1 to 4. Our data indicated that carrying the G
allele in a homozygous state increases the risk (OR =
2.04; 95% confidence interval [CI] = 0.91-4.55; Table 1).
Genotype distribution was within the Hardy–Weinberg
equilibrium in both groups. There was a borderline sig-
nificance for XBP1 -116C/G between the 2 groups, con-
trols versus clinically obese (P = .05; Table 2). Our data
showed that XBP1 -116C/G is a possible independent

risk factor for obesity. However, in one of our previ-
ous studies, a primary school survey conducted for
obesity, we found a group that had no family history
for obesity. XBP1 -116C/G polymorphism is not a
risk factor for this group (Tables 3 and 4), indicating
that XBP1 polymorphism is one of the genetic factors
for obesity.
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Table 1.  Genotype Distributions of
XBP1 -116C/G in Clinically Obese

Children (Group II) and Control Group

Control, Group II, Odds Confidence
Genotype N (%) N (%) Ratio Interval

C/C 34 (12.2) 10 (8.6) 1
C/G 176 (62.8) 64 (55.2) 1.23 0.57-2.64
G/G 70 (25) 42 (36.2) 2.04 0.91-4.55
Total 280 (100) 116 (100)

Table 2.  Allelic Distribution of XBP1 -116C/G in
Clinically Obese Children (Group II)

and Control Group

Confidence
Allele Control Group II Odds Ratio Interval

C 244 84 1
G 316 148 1.36 0.99-1.86
Frequency 56.42 63.79

of G (%)
P value .05

Table 3.  Genotype Distributions of XBP1 -116C/G in the
School Survey Study of Obese

Children (Group I) and Control Group

Control, Group I, Odds Confidence
Allele N (%) N (%) Ratio Interval

C/C 34 (12.2) 12 (13.3) 1
C/G 176 (62.8) 46 (51.1) 0.7 0.34-1.42
G/G 70 (25) 32 (35.6) 1.2 0.55-2.56
Total 280 (100) 90 (100)

Table 4.  Allelic Distribution of XBP1 -116C/G in the
School Survey Study of Obese

Children (Group I) and Control Group

Odds Confidence
Control Group I Ratio Interval

C 244 70 1
G 316 110 1.17 0.83-1.64
Frequency of G (%) 56.42 61.1
P value .26



Discussion

As is well known, obesity is one of the most impor-
tant triggering factors for metabolic syndrome.27

Obesity is among the greatest threats to human
health and constitutes a major risk factor for the
development of insulin resistance, type 2 diabetes,
hyperlipidemia, hypertension, and cardiovascular
disease, which are collectively called metabolic syn-
drome or syndrome-X.27 In the United States, dia-
betes accounts for more than 130 billion dollars of
health care cost and is the fifth leading cause of
death.28 It has been estimated that of the children
born in 2000, 1 of 3 will suffer from diabetes at
some point in their lifetime.29 Diabetes is predicted
to become one of the most common diseases in the
world within a couple of decades, affecting at least
half a billion people worldwide.30

The molecular mechanisms underlying the
development of obesity and the associated patholo-
gies are complex and involve metabolic and inflam-
matory abnormalities. Obesity is associated with
low-grade inflammation. Several cytokines and
inflammation markers are activated both in obese
mouse models and human subjects and these alter-
ations have been causally linked to insulin resist-
ance associated with obesity.31

Increasing numbers of studies suggest that ER
stress plays a role in the pathogenesis of obesity and
types 1 and 2 diabetes mellitus.32,33 In a genetically
engineered rodent model of XBP1, on a high fat diet
XBP1 heterozygous null mice developed a more
insulin-resistant phenotype and increased body weight
when compared with wild-type littermates.5 Recent
data suggest that the XBP1 -116 G/G genotype has
less XBP1 mRNA levels after thapsigargin induction,
which is an ER stress inducer.17 Moreover, lipid accu-
mulation induces endoplasmic stress in adipose tissue
and affects metabolism and adipokine production.34,35

In conclusion, although more studies are
required for an elaborate description of the roles of
the gene and promoter polymorphism, our observa-
tions reveal that XBP1 gene polymorphism may play
a role in the development and/or functions of the
liver, fat, and muscle, which could be related to the
development of type 2 diabetes and obesity.
Furthermore, the present study provides new
insights into the role of the XBP1 gene in the devel-
opment of obesity and should be further investigated
in a prospective study with a larger sample.
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