Crystal Structure of Dimeric [4-\{(2-Oxybenzyl)imino\}-2-penten-2-olato$\left.O, O^{\prime}, N\right]$ copper(II) Complex

Dinçer Ülkü*, Cengiz Arici*, M. Nawaz Tahir*, Orhan Atakol** ${ }^{*}$ and Mustafa Taştekin**
*Department of Engineering Physics, Hacettepe University, Beytepe 06532, Ankara, Turkey
**Department of Chemistry, Science Faculty, Ankara University, Tandogan 06100, Turkey

Due to the super exchange mechanism over the O atoms, dimeric copper(II) complexes with double oxygen bridges show subnormal magnetic moments. ${ }^{1-3}$ There seems to be correlations between the magnetic properties of the systems and the dihedral angle between the bridging plane and the coordination square around copper, as well as with the $\mathrm{Cu}-\mathrm{O}-\mathrm{Cu}$ bridging angle. As a contribution of our previous work ${ }^{4-7}$ on dimeric Cu complexes, this structure determination was performed to obtain more information about the stereochemistry around the copper atom.

The crystalline ligand 4-[(2-hydroxybenzyl)imino]-2-hydroxy-2-penten was prepared from the mixture of 2hydroxybenzylamine ($1.23 \mathrm{~g} ; 0.01 \mathrm{~mol}$) and acetylacetone ($1.0 \mathrm{~g} ; 0.01 \mathrm{~mol}$) in 30 ml of hot ethanol after 24 h in air. To a solution of the ligand ($0.205 \mathrm{~g} ; 1 \mathrm{mmol}$) in 40 ml DMF above $130^{\circ} \mathrm{C}$, a solution of $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$. $\mathrm{H}_{2} \mathrm{O}(0.199 \mathrm{~g} ; 1 \mathrm{mmol})$ in 20 ml hot methanol was added dropwise and the mixture was set aside. The crystals were obtained after allowing the solution to stand for 36 h at room temperature. The chemical reaction of the title compound is shown in Fig. 1.

The complex includes two $\mathrm{Cu}\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}\right)$ structure units linked via phenolic O atoms (Fig. 2). The central CuOCuO bridging group is practically planar. The Cu and O atoms lie alternating $0.009 \AA$ above and below this least squares plane. The $\mathrm{Cu} 1-\mathrm{N} 1$ and $\mathrm{Cu} 2-\mathrm{N} 2$ bond lengths are $1.906(4)$ and $1.925(4) \AA$, respectively. The average $\mathrm{Cu}-\mathrm{O} 1$ [1.871(2) \AA] and $\mathrm{Cu}-\mathrm{O} 2$ $[1.946(9) \AA]$ bond distances could be considered equal within experimental error. The average value of the $\mathrm{Cu}-\mathrm{O}-\mathrm{Cu}$ bridging angle is $102.8(3)^{\circ}$. These values are

Fig. 1 Synthesis and chemical structure.

[^0]

Fig. 2 The ORTEP drawing of the titled compound with atom labeling.

Table 1 Crystal and experimental data

[^1]Table 2 Final atomic coordinates and equivalent isotropic thermal parameters for non-hydrogen atoms

Atom	x	y	z	$B_{\text {eq }} / 1{ }^{2}{ }^{2}$
Cu1	0.43842(2)	0.27842(3)	0.110	3.061(8)
Cu 2	$0.31676(2)$	$0.18031(4)$	0.2043(1)	3.494(9)
O1	0.5185(1)	0.2338(2)	$0.1486(5)$	3.90(7)
O 2	0.3529(1)	0.3136(2)	$0.1484(5)$	3.86(7)
O3	0.2358(1)	0.2226(2)	$0.1759(5)$	4.48(8)
O4	0.4021(1)	0.1461(2)	$0.1704(4)$	3.40 (6)
N1	0.4588(2)	$0.4114(3)$	$0.0262(5)$	3.16 (7)
N2	0.2991 (2)	$0.0558(3)$	$0.3249(5)$	3.27 (7)
Cl	$0.5660(2)$	0.2922 (3)	$0.1342(6)$	3.61 (9)
C2	$0.5656(2)$	0.3915(4)	$0.0780(7)$	4.0(1)
C3	0.5142(2)	0.4495(3)	0.0259(6)	3.41(8)
C4	$0.6247(2)$	0.2445(4)	$0.1918(9)$	5.2(1)
C5	0.5270(2)	0.5604(4)	-0.0238(8)	$5.0(1)$
C6	0.4055 (2)	$0.4735(4)$	-0.0265(6)	3.9(1)
C7	0.3625 (2)	0.4938(3)	$0.1127(7)$	3.41(8)
C8	0.3466 (2)	0.5933(3)	$0.1603(7)$	4.2(1)
C9	$0.3051(2)$	0.6106(4)	0.2851(9)	$5.5(1)$
C10	0.2794(2)	$0.5277(4)$	$0.3651(9)$	$5.5(1)$
C11	0.2952(2)	0.4279(4)	$0.3254(8)$	4.5 (1)
C12	0.3358(2)	0.4103(3)	0.1948 (7)	3.44(8)
C13	0.1891 (2)	0.1713(4)	0.2272 (7)	3.90(9)
C14	0.1910(2)	0.0792(4)	$0.3090(7)$	3.90(9)
C15	0.2438(2)	0.0231(3)	$0.3572(6)$	3.35(8)
C16	$0.1284(2)$	0.2201(4)	0.188(1)	5.4(1)
C17	0.2326 (2)	-0.0776(4)	0.4473(7)	4.6(1)
C18	$0.3536(2)$	-0.0007(4)	0.3832 (7)	3.63(9)
C19	0.3962(2)	-0.0299(3)	0.2448(6)	2.93(8)
C20	$0.4137(2)$	-0.1307(3)	0.2190(7)	3.61(9)
C21	$0.4546(2)$	-0.1560(3)	$0.0944(8)$	4.4(1)
C22	0.4779(2)	-0.0804(4)	-0.0033(7)	4.2(1)
C23	0.4613(2)	0.0221(4)	0.0194(7)	3.71(9)
C24	0.4203(2)	0.0469(3)	$0.1447(5)$	2.85(8)

$B_{\mathrm{eq}}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*}\left(\boldsymbol{a}_{i} \cdot \boldsymbol{a}_{j}\right)$.
comparable with the corresponding values reported in the literature. ${ }^{4-7}$ The displacement of the Cu 1 and Cu 2 atoms from their coordination best planes are 0.0861(1) and $0.0378(9) \AA$ respectively. The dihedral angles between the bridging plane and the coordination planes around Cu 1 and Cu 2 are $9.9(3)^{\circ}$ and $12.6(3)^{\circ}$ respectively. The $\mathrm{Cu}-\mathrm{Cu}$ separation $[3.0478(6) \AA$] is comparable with the values found in the reported structures. ${ }^{47}$ Table 1 shows the crystal and experimental data, while final atomic parameters are given in Table 2. The bond distances and angles are shown in Table 3.

References

1. R. J. Butcher and E. Sinn, Inorg. Chem., 15, 1604 (1976).
2. M. Kato, H. B. Jonassen and J. C. Fanning, Chem. Rev., 99 (1964).
3. M. Kato and Y. Muto, Coord. Chem. Rev., 45 (1988).
4. M. N. Tahir, D. Ülkü, O. Atakol and A. Akay, Acta Crystallogr., C52, 2676 (1996).
5. D. Ülkü, F. Ercan, O. Atakol, I. Ercan and A. Gencer, Acta

Table 3 Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

Cu1-O1	1.872(3)	C3-C5	1.520(7)
$\mathrm{Cu}-\mathrm{O} 2$	1.952(3)	C6-C7	1.490(8)
Cu1-O4	1.954(3)	C7-C8	1.391(7)
$\mathrm{Cu1}-\mathrm{N} 1$	$1.906(4)$	C7-C12	1.397(7)
$\mathrm{Cu} 2-\mathrm{O} 2$	1.954(3)	C8-C9	$1.376(9)$
$\mathrm{Cu} 2-\mathrm{O} 3$	1.869(3)	C9-C10	1.374(9)
$\mathrm{Cu} 2-\mathrm{O} 4$	1.939(3)	C10-C11	1.378(8)
$\mathrm{Cu} 2-\mathrm{N} 2$	$1.925(4)$	C11-C12	1.399(8)
O1-C1	1.291(5)	C13-C14	1.366 (8)
O2- C 12	1.361(5)	C13-C16	1.504(7)
O3-C13	$1.289(6)$	C14-C15	1.420 (8)
O4-C24	1.363 (5)	C15-C17	1.516(7)
N1-C3	$1.309(6)$	C18-C19	1.505(7)
N1-C6	1.481 (6)	C19-C20	1.378(6)
N2-C15	1.309(7)	C19-C24	1.387(6)
N2-C18	$1.476(6)$	C20-C21	1.387(8)
C1-C2	$1.366(7)$	C21-C22	1.358(8)
C1-C4	$1.500(7)$	C22-C23	1.390(7)
C2-C3	1.418(7)	C23-C24	1.390(7)
O1-Cu1-O2	160.7(2)	N1-C3-C5	121.9(5)
O1-Cu1-O4	93.9(1)	C2-C3-C5	115.8(5)
O1-Cul-N1	96.9(2)	N1-C6-C7	112.1(4)
O2-Cu1-O4	77.0 (1)	C6-C7-C8	122.0(5)
O 2 - Cul- N 1	94.0(1)	C6-C7-C12	119.0(4)
O4-Cu1-N1	168.3(2)	C8-C7-C12	118.9(5)
$\mathrm{O} 2-\mathrm{Cu} 2-\mathrm{O} 3$	95.5(1)	C7-C8-C9	121.2(5)
O2-Cu2-O4	77.3(1)	C8-C9-C10	119.2(5)
$\mathrm{O} 2-\mathrm{Cu} 2-\mathrm{N} 2$	160.1(2)	C9-C10-C11	121.5(6)
O3-Cu2-O4	164.4(2)	C10-C11-C12	119.3(6)
$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{N} 2$	96.8(2)	O2-C12-C7	118.0(5)
O4-Cu2-N2	94.1(1)	O2-C12-C11	122.2(5)
$\mathrm{Cul}-\mathrm{Ol}-\mathrm{Cl}$	123.9(3)	C7-C12-C11	119.8(4)
$\mathrm{Cu} 1-\mathrm{O} 2-\mathrm{Cu} 2$	102.6(1)	O3-C13-C14	125.6(4)
Cu1-O2- Cl 2	121.5(3)	O3-C13-C16	114.6(5)
Cu2-O2-C12	129.9(3)	C14-C13-C16	119.8(5)
$\mathrm{Cu} 2-\mathrm{O} 3-\mathrm{C} 13$	124.2(3)	C13-C14-C15	127.3(4)
$\mathrm{Cu}-\mathrm{O} 4-\mathrm{Cu} 2$	103.0(1)	N2-C15-C14	122.1(4)
Cul-O4-C24	132.2(3)	N2-C15-C17	121.7(5)
Cu2-O4-C24	121.3(2)	C14-C15-C17	116.2(5)
Cu1-N1-C3	124.0(3)	N2-C18-C19	112.8(5)
Cu1-N1-C6	114.2(3)	C18-C19-C20	121.6(4)
C3-N1-C6	121.6(4)	C18-C19-C24	119.2(4)
Cu2-N2-C15	123.9(4)	C20-C19-C24	119.2(4)
Cu2-N2-C18	114.6(3)	C19-C20-C21	120.9(5)
C15-N2-C18	121.4(4)	C20-C21-C22	119.6(4)
O1-C1-C2	125.3(4)	C21-C22-C23	121.0(5)
O1-C1-C4	114.8(5)	C22-C23-C24	119.1(5)
C2-C1-C4	119.8(4)	O4-C24-C19	118.5(4)
C1-C2-C3	127.2(4)	O4-C24-C23	121.2(4)
N1-C3-C2	122.3(4)	C19-C24-C23	120.2(4)

Crystallogr., C53, 179 (1997).
6. O. Atakol, F. Ercan, D. Ülkü and N. Yılmaz, Anal. Sci., 13, 1051 (1997).
7. M. N. Tahir, D. Ülkü, M. Taştekin and O. Atakol, Anal. Sci., 13, 1055 (1997).
(Received August 26, 1997)
(Accepted November 25, 1997)

[^0]: ${ }^{\dagger}$ To whom correspondence should be addressed.

[^1]: Formula: $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{Cu}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$
 Formula weight=533.57
 Crystal system: orthorhombic
 Space group: $P \mathrm{ca} 2_{1} \quad Z=4$
 $a=21.885(3) \AA$
 $b=12.972(3) \AA$
 $c=8.082(2) \AA$
 $V=2294.4(8) \AA^{3}$
 $D_{\mathrm{x}}=1.544 \mathrm{~g} / \mathrm{cm}^{3}$
 $\mu\left(\right.$ Mo K $\left._{\alpha}\right)=1.890 \mathrm{~mm}^{-1}$
 $T=295 \mathrm{~K}$
 Dark
 $F(000)=1096$
 Crystal size: $0.5 \times 0.4 \times 0.35 \mathrm{~mm}$
 Radiation $=$ Mo K α_{α}
 $R=0.029$
 $R_{w}=0.035$
 No. of reflections used=2232
 No. of parameters=294
 Goodness-of-fit=0.94
 Measurements: Enraf Nonius CAD-4 diffractometer
 Program system: CAD-4 EXPRESS Software
 Structure determination: MoIEN
 Treatment of hydrogen atoms: geometric calculation Refinement: full matrix least-squares (MolEN)

