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Abstract Starting from a molecular picture for the X (3872)

resonance, this state and its J PC = 2++ heavy-quark spin
symmetry partner [X2(4012)] are analyzed within a model
which incorporates possible mixings with 2P charmonium
(cc̄) states. Since it is reasonable to expect the bare χc1(2P)

to be located above the DD̄∗ threshold, but relatively close
to it, the presence of the charmonium state provides an effec-
tive attraction that will contribute to binding the X (3872),
but it will not appear in the 2++ sector. Indeed in the latter
sector, the χc2(2P) should provide an effective small repul-
sion, because it is placed well below the D∗ D̄∗ threshold.
We show how the 1++ and 2++ bare charmonium poles are
modified due to the D(∗) D̄(∗) loop effects, and the first one
is moved to the complex plane. The meson loops produce,
besides some shifts in the masses of the charmonia, a finite
width for the 1++ dressed charmonium state. On the other
hand, X (3872) and X2(4012) start developing some charmo-
nium content, which is estimated by means of the composite-
ness Weinberg sum rule. It turns out that in the heavy-quark
limit, there is only one coupling between the 2P charmonia
and the D(∗) D̄(∗) pairs. We also show that, for reasonable
values of this coupling, leading to X (3872) molecular prob-
abilities of around 70–90 %, the X2 resonance destabilizes
and disappears from the spectrum, becoming either a virtual
state or one being located deep into the complex plane, with
decreasing influence in the D∗ D̄∗ scattering line. Moreover,
we also discuss how around 10–30 % charmonium probabil-
ity in the X (3872) might explain the ratio of radiative decays
of this resonance into ψ(2S)γ and J/ψγ . Finally, we quali-
tatively discuss within this scheme, the hidden bottom flavor
sector, paying a special attention to the implications for the
Xb and Xb2 states, heavy-quark spin–flavor partners of the
X (3872).

a e-mail: elif.cincioglu@gmail.com

1 Introduction

The X (3872) state was first observed by the Belle collabo-
ration [1] in the B± → J/ψπ+π−K± channel as a narrow
peak and was confirmed by various other experiments [2–
5]. The averaged mass of X (3872) is 3871.69 ± 0.17 MeV,
which is only 0.16 MeV below the D0 D̄∗0 threshold and the
full width is less than 1.2 MeV [6]. In addition, the LHCb
experiment determined its J PC quantum numbers as 1++
[7]. The properties of X (3872) turned out to be difficult to
reconcile with a cc̄ state in a quark potential model picture
[8,9]. Alternative theoretical models have been proposed to
understand its structure. One of the popular descriptions of
X (3872) is as a molecular state consisting of a D and a D̄∗
[10–17].

One of the puzzling observations about X (3872) is the
ratio of its decays into final states with isospin-0 and
isospin-1. The ratio of the decay fractions of X (3872) into
J/ψπ+π− and into J/ψπ+π−π0 final states was first mea-
sured by Belle [18] to be:

Br(J/ψπ+π−π0)

Br(J/ψπ+π−)
= 1.0 ± 0.4 ± 0.3. (1)

For the same ratio, BABAR has obtained 1.0 ± 0.8 ± 0.3
[19]. Later Belle announced the updated results of the
measurements for the reaction J/ψπ+π−π0, and thus the
accepted combined result from Belle and BABAR is 0.8 ±
0.3 [20]. The decays into final states with two and three pions
proceed through virtual ρ and ω mesons, respectively. Con-
sidering the phase space differences between the ρ and ω

mesons, the production amplitude ratio is found to be [21]
∣
∣
∣
∣

A(J/ψρ)

A(J/ψω)

∣
∣
∣
∣
= 0.26 ± 0.07. (2)

Such a large isospin violation arises naturally in the molecu-
lar picture due to the mass difference between the D0 D̄∗0 and
D+D∗− components in the X (3872) wave function [17,22],
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and the remarkable proximity of the resonance to the D0 D̄0∗
threshold.

Other interesting X (3872) measurements are its radiative
decays. The ratio of the branching fractions into final states
with a photon and a J/ψ or a ψ(2S) has been measured as
[23,24]:

Rψγ = Br(X → ψ(2S)γ )

Br(X → J/ψγ )
= 2.46 ± 0.64 ± 0.29. (3)

One of the first works where the radiative decays of the
X (3872) was studied within an effective field theory frame-
work was carried out in [25]. There, the X (3872) → ψ(2S)γ

reaction was studied and some qualitative conclusions were
drawn. It was argued that the decay should receive a con-
tribution from long-distance physics, involving the propa-
gation of intermediate heavy charm mesons (D0 D̄∗0 − hc),
and short-distance dynamics, whose contribution is encoded
in a contact operator. The χc1(2P) state contributed to the
latter operator, through DD̄∗ → χc1(2P) → ψ(2S)γ . The
relative importance of these two types of contributions was
unknown, though it was shown in [25] that the angular dis-
tributions of the decay products can be used to distinguish
between them.

There were claims [26] that within the molecular picture,
such a large ratio cannot be naturally explained. This ratio can
be, however, accommodated assuming that there is a char-
monium admixture in the molecular state [27–30]. Thus for
instance, an enhanced decay of the X (3872) into ψ(2S)γ

compared to J/ψγ , and fully compatible with a predomi-
nantly molecular nature of X (3872) was found in Ref. [30],
where a phenomenological study allowing for both a molec-
ular as well as a compact component of the X (3872) was
carried out. Actually, an admixture of 5–12 % of a c̄c compo-
nent was sufficient to explain the data [30]. This charmonium
admixture is also favored by the production rate of X (3872)

in the p p̄ collisions which is about 1/20 of the rate of ψ(2S).
This production rate can easily be explained if one assumes
that the cc̄ component of X (3872) is approximately 5 % [31].

The validity of the claim of Ref. [30] was critically
reviewed in Ref. [32] from an effective field theory (EFT)
point of view. There, it was concluded, contrary to earlier
claims, that radiative decays do not allow one to draw con-
clusions on the nature of X (3872). Actually, the findings of
Ref. [30] were qualitatively confirmed, and in addition it was
pointed out that the observed ratio is not in conflict with a pre-
dominantly molecular nature of the X (3872). The study of
Ref. [32] suggests that, for radiative decays of the X (3872),
short-range contributions are of similar importance as their
long-range counter parts.

In the heavy-quark limit, an EFT to describe the X (3872)

and also other possible D(∗) D̄(∗) molecules has been pro-
posed in [33,34]. At very low energies, the leading order (LO)
interaction between the D(∗) D̄(∗) mesons can be described

just in terms of contact-range potentials, which are con-
strained by heavy-quark spin symmetry (HQSS). Pion
exchange and particle coupled channel1 effects are conjec-
tured to be sub-leading, and they are not considered at LO,
within the scheme advocated in [33,35], where it is assumed
that HQSS is respected in the interactions, but broken by the
heavy–light meson masses. This scheme, in principle, should
make sense for loosely bound molecules, as their binding is
smaller than the meson mass splittings, and it requires the
use of ultraviolet (UV) regulators sufficiently small to pre-
vent violations of HQSS. In [33,35], it is argued on general
grounds that expected coupled-channel effects should be sup-
pressed by the square of the ratio of the light scale over the
coupled-channel momentum scale, which in the charm sec-
tor is around 500–700 MeV. Moreover, the consideration of
coupled channels induced a strong dependence on the UV
regulator [33,35], which would require the inclusion of addi-
tional counter-terms to compensate for, increasing thus the
number of undetermined low energy constants (LECs).

Within the molecular description of the X (3872), among
others, the existence of a X2 [J PC = 2++] S-wave
D∗ D̄∗ bound state was predicted in the EFT approach of
Refs. [33,34], with a binding energy similar to that of the
X (3872) (MX2 − MX (3872) ≈ MD∗ − MD ≈ 140 MeV).
Both the X (3872) and the X2 would have partners in the
bottom sector [36],2 which we will call Xb and Xb2, respec-
tively, with masses approximately related by MXb2 −MXb ≈
MB∗ − MB ≈ 46 MeV. States with 2++ quantum numbers
exist as well as spin partners of the 1++ states in the spectra of
the conventional heavy quarkonia and tetraquarks. However,
the mass splittings would only accidentally be the same as the
fine splitting between the vector and pseudoscalar charmed
mesons.

Some exotic hidden charm sectors have also been studied
recently on the lattice [37–41], and evidence for the X (3872)

from DD̄∗ scattering on the lattice has been found [38].
The 2++ sector has not been exhaustively addressed yet,
though a state with these quantum numbers and a mass of
(mηc+1041±12) MeV= (4025±12) MeV, close to the value
predicted in Refs. [33,34], was reported in Ref. [37], though
the calculations were performed with a pion mass � 400
MeV. There exists also a feasibility study [42] of future lat-
tice QCD (LQCD) simulations, where the EFT approach of
Refs. [33,34] was formulated in a finite box.

Despite the theoretical predictions on the existence of the
X2, Xb and Xb2 states, none of these hypothetical parti-
cles has been observed so far. This negative result could be

1 We do not refer to charge channels, but rather to the mixing among
the DD̄, DD̄∗, D∗ D̄∗ pairs in a given I J (isospin and spin) sector.
2 In Ref. [36], the bottom and charm sectors are connected by assum-
ing the bare couplings in the four-meson interaction Lagrangian to be
independent of the heavy-quark mass.

123



Eur. Phys. J. C (2016) 76 :576 Page 3 of 25 576

because the current experiments are not yet sensitive enough
or due to the non-existence of these states. Nevertheless, they
are being and will be searched for in current and future exper-
iments such as BESIII, LHCb, CMS, Belle-II and PANDA.

The HQSS EFT approach of Refs. [33,34] does not
consider possible mixings between molecular heavy–light
meson–antimeson and quarkonium states. However, in the
LQCD simulation carried out in Ref. [38], it was needed
to consider both cc̄-charmonium and DD̄∗-molecular type
interpolating fields to find a signature3 of the X (3872).
As discussed above, the presence of cc̄ components in the
X (3872) seems also to be required to explain the experimen-
tal value for the ratio of radiative branching fractions Rψγ ,
quoted in Eq. (3). Moreover, the charmonium χc1(2P) state,
which would have the same quantum numbers 1++ as the
X (3872), has not been found yet.

The charmonium admixture in a molecular picture of the
X (3872)has been studied, among others, in Refs. [30,31,43].
In Ref. [31], direct interactions between the D and D̄∗
mesons are supposed to play a marginal role, being the cou-
pling to the cc̄ core more important in creating the X (3872)

than the direct DD̄∗ attraction, which is assumed to be inde-
pendent of the isospin as well as of the heavy-quark masses.
The strength of the DD̄∗ attraction is estimated to be barely
strong enough to make a weakly bound state by looking
at the experimental masses of the isovector Zb(10610) and
Zb(10650) resonances, placed very close to the B B̄∗ and
B∗ B̄∗ thresholds, respectively. This rationale might be incor-
rect since the DD̄∗ interaction for isospin 1 is suppressed in
the large NC (number of colors) counting with respect to that
in the isoscalar sector. A non-relativistic constituent quark
model is used in Ref. [43], and two- and four-quark configu-
rations are coupled using the phenomenological 3P0 model.
Finally, the approach of Ref. [30] is based on phenomeno-
logical hadron Lagrangians and the quark model results of
Ref. [10], where it is proposed that the X (3872) is a D0 D̄∗0

hadronic resonance stabilized by admixtures of ωJ/ψ and
ρ J/ψ . These works neither made use of HQSS, nor address
the dynamics of possible heavy-quark spin–flavor partners of
the X (3872) states. There exist however, some preliminary
results [44], obtained within the quark model of Ref. [43],
about the possible existence of heavy-quark spin–flavor part-
ners of the X (3872).

It is therefore timely and relevant to extend the HQSS
model of Refs. [33,34] to incorporate quarkonium degrees
of freedom, and their possible mixings with the molecular
components. This is the objective of the present work, where
we will make use of HQSS and the experimental ratio Rψγ

3 There, it was also found that the effect of the J/ψω channel is irrele-
vant for the dynamics of the X (3872). In that exploratory work, isospin
breaking effects were not considered, and thus the resonance reported
in [38] was purely isoscalar.

to constrain the interaction of the D(∗) D̄(∗) pairs with the
2P charmonia. (Due to the closeness of their masses, the
charmonium admixture in the X (3872) should correspond
to the 2P cc̄ states.) We will also study the effects of non-
zero quarkonium components on the predictions for the X2,
Xb and Xb2 states. We will show that even small mixings
between charmonium and molecular components in the X2

state might explain why it has not been observed yet. In the
hidden bottom sector, however, we will see how despite the
changes induced by the quarkonium admixtures, it might be
reasonable to expect that both Xb and Xb2 resonances should
be real QCD states, which might be observed in the short
future.

In Ref. [45] and working in the strict heavy-quark limit,
the degeneracy of the X2 and X (3872) states was confirmed
as a robust result with respect to the inclusion of the one-pion
exchange interaction between the D(∗) mesons. There, it is
shown that this is true if all relevant partial waves as well as
particle channels which are coupled via the pion-exchange
potential are taken into account. Beyond the heavy-quark
limit and treating non-perturbatively the pions, in [45] it is
predicted, contrary to the findings of Refs. [33,42] obtained
with perturbative pions, a significant shift of the X2 mass and
width of the order of 50 MeV. The increase of the X2 binding
energy is only viewed in [45] as a qualitative result. However,
the conclusion on the broadening of the X2 is claimed in that
work as a reliable prediction, since it is argued there that is
related to unitarity. We think these findings have to be inter-
preted with some caution. First, one should bear in mind that
the UV cutoffs used in [45] are much larger (around a factor
of 2) than those considered in the approach of Refs. [33,42].
Thus some extra HQSS breaking corrections, beyond those
due to the heavy–light meson masses, are accounted for in
[45], which have indeed relevance in the numerical results.
Such corrections are largely cut in Refs. [33,42], and it is not
clear whether they should be considered or not, and given the
poor experimental status, it is difficult to disentangle among
both approaches. Second, the hadronic D-wave X2 → DD̄
and X2 → DD̄∗ two-body decays, driven via one pion
exchange, were predicted in [42] to be smaller altogether
than 5 MeV. There, large contributions from highly virtual
pions carrying large momenta, which lie outside the range of
applicability of the EFT as proposed in Refs. [33,42] were
found. Such contributions were further suppressed in [42] by
including an extra form factor in the vertices involving virtual
pions. As can be seen in Table 1 of the latter reference, X2

widths as large as 30 MeV could be obtained without includ-
ing this extra form factor. Thus, it is not surprising that values
of around 50 MeV were found in [45] for the width of this
resonance since there, as mentioned above, much larger UV
regulators were used.

In the following, we will use the EFT as conjectured in
Refs. [33,42] and will neglect pion exchange and coupled-
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channel effects in this preliminary study of the interplay
between quark and meson-molecular degrees of freedom.
However, one should consider also the possibility of a broad
X2 state from a purely molecular picture, as found in the
approach pursued in Ref. [45], which nevertheless would be
also affected by the consideration of the quark degrees of
freedom discussed in the present work.

This paper is organized as follows. In Sect. 2, and within a
framework suited to implement HQSS constraints, we intro-
duce the heavy-quark fields and their interactions, includ-
ing those responsible for the mixing between meson–meson
pairs and P-wave quarkonium states. Also in this sec-
tion, the 2P → 1S, 2S charmonium radiative transitions
are studied (Sect. 2.4). In the next section, Sect. 3, the
procedure used to obtain unitarized amplitudes, from the
HQSS interactions introduced in the previous section, is
described. A special attention (Sect. 3.2) is paid to a non-
perturbative re-summation based on the solution of a renor-
malized Lippmann–Schwinger equation (LSE). In Sect. 4,
some general properties of the poles of the unitarized ampli-
tudes and the compositeness condition, which will serve us
to quantify the importance of the molecular components in
the resonances, are discussed. Specific formulas for the two-
channel problem relevant to study the 1++ and 2++ hidden
charm or bottom meson molecules are given in the first part of
Sect. 5. Numerical results on the influence of the quarkonium
components in the properties of the X (3872), X2(4012), Xb

and Xb2 meson molecules are presented and discussed in
Sects. 5.1, 5.2 and 5.3. In Sect. 5.1, a numerical study of
the X (3872) → J/ψγ and ψ(2S)γ transitions, based on
Sect. 2.4 and Ref. [32], is presented and used to constrain
the charmonium content in the X (3872). The most relevant
findings of this work are summarized in Sect. 6, and finally,
the properties of the 1++ and 2++ hidden charm and bottom
poles discussed in the previous sections, but calculated with
a different UV regulator are collected in Appendix A.

2 LO effective Lagrangians

2.1 HQSS fields

We use the matrix field H (Q) [H (Q̄)] to describe the com-
bined isospin doublet of pseudoscalar heavy-mesons P(Q)

a =
(Qū, Qd̄) [P(Q̄)a = (uQ̄, d Q̄)t ] fields and their vector
HQSS partners P∗(Q)

a [P∗(Q̄)a] (see for example [46]),

H (Q)
a = 1 + /v

2

(

P∗(Q)
aμ γ μ − P(Q)

a γ5

)

, v · P∗(Q)
a = 0,

H (Q̄)a =
(

P∗(Q̄)a
μ γ μ − P(Q̄)aγ5

) 1 − /v

2
, v · P∗(Q̄)a = 0.

(4)

The matrix field Hc [Hc̄] annihilates P [P̄] and P∗ [P̄∗]
mesons with a definite velocity v. Under a parity transfor-
mation we have

H (Q,Q̄)(x0, �x) → γ 0H (Q,Q̄)(x0,−�x)γ 0, vμ → vμ. (5)

The field H (Q)
a [H (Q̄)a] transforms as a (2, 2̄) [(2̄, 2)] under

the heavy spin ⊗ SU(2)V isospin symmetry [46], this is to
say:

H (Q)
a → SQ

(

H (Q)U †
)

a
, H (Q̄)a →

(

UH (Q̄)
)a

S†
Q̄
. (6)

Their hermitian conjugate fields are defined by

H̄ (Q)a = γ 0[H (Q)
a ]†γ 0, H̄ (Q̄)

a = γ 0[H (Q̄)a]†γ 0, (7)

and they transform as [46]:

H̄ (Q)a →
(

U H̄ (Q)
)a

S†
Q, H̄ (Q̄)

a → SQ̄

(

H̄ (Q̄)U †
)

a
. (8)

The definition for H (Q̄)
a also specifies our convention for

charge conjugation, which is CP(Q)
a C−1 = P(Q̄)a and

CP∗(Q)
aμ C−1 = −P∗(Q̄)a

μ , and thus it follows that

CH (Q)
a C−1 = c H (Q̄)at c−1, C H̄ (Q)aC−1 = c H̄ (Q̄)t

a c−1

(9)

with c the Dirac space charge conjugation matrix satisfying
cγμc−1 = −γ t

μ, and t denotes the matrix transpose opera-
tion.

A heavy-quark–antiquark bound state, characterized by
the radial number n, the orbital angular momentum l, the spin
s and the total angular momentum J , is denoted by n 2s+1l J .
Parity and charge conjugation are given by P = (−1)l+1,
C = (−1)l+s . If spin dependent interactions are neglected
it is natural to describe the spin singlet n 1l J=l and the spin
triplet n 3l J=l−1,l,l+1 by means of a single multiplet Ĵ (n, l).
For l = 0, when the triplet s = 1 collapses into a single state
with total angular momentum j = 1, this is readily realized
by adopting the description [47]

Ĵ = 1 + /v

2

(

ψμγ μ − γ5η
) 1 − /v

2
. (10)

Here vμ denotes the four-velocity associated to the multiplet
Ĵ ; ψμ and η are the spin 1 and spin 0 components respec-
tively; the radial quantum number has been omitted. Notice
that the multiplet Ĵ does not have indices related to light
flavors.

The even parity P-wave quarkonium multiplet of states
are described by the matrix field [48] (ε0123 = +1):

Jμ = 1 + /v

2

(

χ
μα
2 γα + i√

2
εμαβγ χ1γ vαγβ

+ 1√
3
χ0(γ

μ − vμ) + hμγ5

)
1 − /v

2
(11)
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with Jμvμ = 0. The χ
μα
2 , χ

μ
1 , χ0 and hμ fields annihi-

late χQJ (nP) and hQ(nP) quarkonium states, with J PC =
0++, 1++, 2++ and 1+−, respectively. Note that the spin two
field is symmetric, traceless and orthogonal to vμ, as χ1μ

and hμ. Under parity and charge conjugation symmetries,
the matrix field Jμ transforms as follows:

Jμ(x0, �x) P→ γ 0 Jμ(x0,−�x)γ 0, vμ P→ vμ, (12)

Jμ C→ cJμt c. (13)

The hermitian conjugate field J̄μ is defined as

J̄μ = γ 0 Jμ†γ 0, (14)

and under heavy-quark/antiquark rotations, we have

Jμ → SQ JμS
†
Q̄
, J̄μ → SQ̄ J̄μS

†
Q . (15)

2.2 P(∗) P̄(∗) → P(∗) P̄(∗) scattering

At very low energies, the interaction between a heavy and
anti-heavy meson can be accurately described just in terms
of a contact-range potential. Pion exchange effects turn out
to be sub-leading [33,35]. The LO Lagrangian respecting
HQSS reads [49]

L4H = CA Tr
[

H̄ (Q)aH (Q)
a γμ

]

Tr
[

H (Q̄)a H̄ (Q̄)
a γ μ

]

+Cτ
A Tr

[

H̄ (Q)a �τ b
. aH

(Q)
b γμ

]

Tr
[

H (Q̄)c �τ d
. c H̄

(Q̄)
d γ μ

]

+ CB Tr
[

H̄ (Q)aH (Q)
a γμγ5

]

Tr
[

H (Q̄)a H̄ (Q̄)
a γ μγ5

]

+ Cτ
B Tr

[

H̄ (Q)a �τ b
. aH

(Q)
b γμγ5

]

× Tr
[

H (Q̄)c �τ d
. c H̄

(Q̄)
d γ μγ5

]

(16)

with �τ b
. a the element (a, b) [row, column] of the Pauli matri-

ces in isospin space, andC (τ )
A,B light flavor independent LECs,

which are also assumed to be heavy flavor independent and
have dimensions of E−2. Note that in our normalization the
heavy or anti-heavy meson fields, H (Q) or H (Q̄), have dimen-
sions of E3/2 (see [50] for details). This is because we use a
non-relativistic normalization for the heavy mesons, which
differs from the traditional relativistic one by a factor

√
MH .

For later use, the four LECs that appear in Eq. (16) are rewrit-
ten into C0A, C0B and C1A, C1B which stand for the LECs
in the isospin I = 0 and I = 1 sectors, respectively. The
relation between both sets reads

C0φ = Cφ + 3Cτ
φ, C1φ = Cφ − Cτ

φ, for φ = A, B.

(17)

2.3 QQ̄ n 2s+1PJ quarkonium–P(∗) P̄(∗) transition

There is only one HQSS consistent term describing the
LO interaction of the n 2s+1PJ quarkonium states with the

P(∗) P̄(∗)-pairs [51],

LHHQQ̄ = d

2
Tr[Ha(Q̄) J̄μH

(Q)
a γ μ]

+d

2
Tr[H̄a(Q) Jμ H̄

(Q̄)
a γ μ]. (18)

This expression accounts for the fact that the two heavy–light
mesons are coupled to the heavy–heavy state in S-wave, and
therefore the matrix elements do not depend on their relative
momentum. Thanks to HQSS, the same coupling controls
the interaction of heavy–light mesons both with the three
χ states and also with the h one. Another way to see that
the interaction term is unique is as follows. To describe the
S-wave molecular state, instead of using the basis in which
the meson–antimeson pair are coupled to a definite total spin
state | jP(∗) jP̄(∗) I J 〉, with I and J the total isospin and spin
of the system, one can choose a different basis in which the
heavy and light quarks are independently coupled to defi-
nite spins, and the whole system is combined to make the
definite spin of the whole state. The elements of such basis
are of the form |(sQsl)I J 〉, where sQ = 0, 1 (sl = 0, 1) is
the spin of the heavy (light) quark–antiquark pair, and I the
isospin of the configuration of the light degrees of freedom.
Only isoscalar S-wave molecular states will be relevant for
this discussion. The possible transitions between isoscalar
molecular and the quarkonia states can be described in terms
of the matrix elements of the form (for simplicity, we drop
out the isospin index)

〈n2s+1l J ′ |HQCD|(sQsl)J 〉 = δJ,J ′δs,sQ 〈nl||HQCD||sl〉 (19)

where we have made use of rotational invariance and of
HQSS, which guaranties that the spin of the heavy-quark
subsystem sQ is conserved. Using charge conservation, it can
also be shown that the matrix element with sl = 0 is zero.
Indeed, charge conjugation in the molecular states is given
by (−1)sl+sQ , which together with the action of this symme-
try, (−1)1+s , on the P-wave quarkonium states implies that
only the sl = 1 matrix element is different from zero.4

The parameter d in Eq. (18) is an unknown LEC, with
dimensions of E−1/2. It might depend on the radial quantum
number n, and it should be fitted to experimental data or be
determined otherwise. Moreover, for a consistent treatment
of mesons with two heavy quarks, 1/mQ corrections should
also be included [47], breaking the heavy-quark symmetry.
This leads to a possible dependence of thed LEC on the heavy
flavor configuration. Other parameters which are introduced
into the model by the inclusion of the quarkonium degrees
of freedom are the masses of these new states.

4 One can also argue that since sQ and J are conserved, the remaining
angular momentum, �J − �sQ should also be conserved. In the molecular
state it corresponds to sl (since L = 0 in the molecule), in the char-
monium state �J − �sQ corresponds to L = 1. Hence, conservation of
�J − �sQ implies that only the sl = L = 1 matrix element is non-zero.
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Expressed in terms of the individual fields, the interaction
Lagrangian of Eq. (18) reads

LHHQQ̄ = −√
2d

[

−√
2χ

†η
1

(

P P̄∗
η − P∗

η P̄
)

− √
3χ

†
0

(

P P̄ + 1

3
P∗

η P̄
∗η

)

+ h†η
(

P P̄∗
η + P∗

η P̄
)

+ iεαμρηv
αh†μP∗ρ P̄∗η + 2χ

†ρη
2 P∗

ρ P̄
∗
η

]

+ h.c.

(20)

where P(∗) P̄(∗) annihilates an isospin zero two-meson state,
normalized to 1. For instance in the case of charmed mesons,
the field combination would be

|00 >= − 1√
2

(

D0(∗) D̄0(∗) + D+(∗)D−(∗)
)

. (21)

Note that we use the isospin convention ū = |1/2,−1/2〉
and d̄ = −|1/2,+1/2〉, which induces D0 = |1/2,−1/2〉
and D+ = −|1/2,+1/2〉.

2.4 Charmonium radiative transitions

As we shall see, the study of the 2P → 1S, 2S charmonium
radiative transitions can help to constrain the mixing between
the D(∗) D̄(∗) and 2P charmonium degrees of freedom. We
write the Lagrangian for these radiative decays, within the
dipolar approximation, as follows [48]:

Lγ = δn Tr
(

J̄μ(2P) Ĵ (nS)
)

vνF
μν + h.c. (22)

= δnv
νFμν

{

2η†
ch

μ
c + 2χ

μσ
2c ψ†

σ (nS)

+ 2χ0c√
3

ψμ†(nS) − iεμ
.σαβψσ (nS)vαχ

β
c1

}

(23)

where n is the radial quantum number of the 0−+ and 1−−
charmonium states described by the field Ĵ (nS), Fμν is
the electromagnetic tensor and δn is a dimensional param-
eter ([E−1]), which also depends on the heavy flavor, at
least through the heavy-quark electric charge. The above
Lagrangian conserves parity, charge conjugation and it is
invariant under HQSS transformations since electric transi-
tions do not change the quark spin. It is straightforward to
obtain for the E1 χc1(2P) → ψ(nS)γ transition [48]

�
[

χc1(2P) → ψ(nS)γ
] = δ2

n

3π
E3

γ

Mψ(nS)

mχc1

(24)

where Eγ is the photon energy. The comparison with the
expressions given in Ref. [52] leads to the identification

δn =
(

4πα

3
e2
c

) 1
2 〈nS|r |2P〉,

〈nS|r |2P〉 =
∫ +∞

0
drr2RnS(r)r R2P(r), (25)

with ec = 2/3, the charm quark electric charge (in proton
electric charge units), and the normalization of the radial
wave functions given by

∫ +∞

0
drr2RnL(r)Rn′L(r) = δnn′ . (26)

3 Unitarized isoscalar amplitudes from HQSS LO
potentials

In this section, we first give the isoscalar amplitudes obtained
by solving the LSE’s in coupled channels using as kernels
the potentials deduced from the HQSS LO Lagrangians dis-
cussed in the previous section. We particularize for the hid-
den charm molecular and 2P quarkonium states, though the
extension to the bottom case is straightforward.

For DD̄∗, the C-parity states are [DD̄∗]± = (DD̄∗ ∓
D∗ D̄)/

√
2, and satisfy C[DD̄∗]± = ±[DD̄∗]±. In our con-

vention, the C-parity of these states is independent of the
isospin and it is equal to ±1. The relevant channels in the
different J PC sectors are

J PC = 0++ : {DD̄, D∗ D̄∗, χc0(2P)
}

,

J PC = 1++ :
{

1√
2

(

DD̄∗ − D∗ D̄
)

, χc1(2P)

}

,

J PC = 2++ : {D∗ D̄∗, χc2(2P)
}

,

J PC = 1+− :
{

1√
2

(

D∗ D̄ + DD̄∗) , D∗ D̄∗, hc(2P)

}

.

(27)

3.1 QM potentials

From the Lagrangians of Eqs. (16) and (20), we obtain Feyn-
man amplitudes, T FT, which in turn are used to define the
non-relativistic Quantum Mechanics (QM) potentials, with
the convention,

VQM
[

D(∗) D̄(∗) → D(∗) D̄(∗)
]

= T FT
[

D(∗) D̄(∗) → D(∗) D̄(∗)
]

√

2MD(∗)2MD̄(∗)2MD(∗)2MD̄(∗)

= −L4H

4
(28)
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VQM
cc̄

[

ψcc̄(2P) → D(∗) D̄(∗)
]

= T FT
[

ψcc̄(2P) → D(∗) D̄(∗)
]

√

2
◦
mcc̄ 2MD(∗)2MD̄(∗)

= −LHHQQ̄

2
√

2
(29)

with ψcc̄, the χcJ (2P) or hc(2P) charmonium state, and
◦
mcc̄

its common bare mass.5

The isoscalar
[

D(∗) D̄(∗) → D(∗) D̄(∗)
]

potentials have
been obtained in [33],

VQM(1++) = C0A + C0B, (30)

VQM(0++) =
(

C0A
√

3C0B√
3C0B C0A − 2C0B

)

, (31)

VQM(1+−) =
(

C0A − C0B 2C0B

2C0B C0A − C0B

)

, (32)

VQM(2++) = C0A + C0B . (33)

Particle coupled-channel6 effects turn out to be sub-leading
at the charm and bottom scales [33,35], and it was also the
case for those due to pion exchanges. Hence, in the phe-
nomenological analysis carried out in Refs. [34,36], the off-
diagonal elements of the 0++ and 1+− potentials were set to
zero. However, in the strict heavy-quark limit, where pseu-
doscalar and vector heavy–light mesons become degenerate,
coupled-channel effects need to be considered. In that limit,
and after diagonalizing the matrices, there are appear two dif-
ferent eigenvalues (C0a −3C0b) and (C0a +C0b), associated
to the spin sl = 0 and 1 configurations of the light degrees
of freedom, respectively. This gives rise to a large number
of degenerate molecular states in the heavy-quark limit, as
discussed in [45,53].

On the other hand, the
[

ψcc̄(2P) → D(∗) D̄(∗)
]

transition
amplitudes are obtained from the Lagrangian of Eq. (20),

VQM
cc̄ (1++) = d χc1(2P) → [DD̄∗]+ (34)

VQM
cc̄ (0++) = −d

2

(√
3

1

) (

χc0(2P) → DD̄
χc0(2P) → D∗ D̄∗

)

(35)

VQM
cc̄ (1+−) = − d√

2

(

1
1

) (

hc(2P) → [DD̄∗]−
hc(2P) → D∗ D̄∗

)

(36)

5 Note that, here, by bare mass we mean the mass of the charmonium
states when the LEC d is set to zero, d = 0, and thus it is not a physical
observable. Coupling to the D(∗) D̄(∗) meson pairs renormalizes this
bare mass, as we will discuss below. Since, in the effective theory,
the UV cutoff is finite, the difference between the bare and the physical
charmonium masses is a finite renormalization. This shift depends on the
UV regulator since the bare mass itself depends on the renormalization
scheme. The value of the bare mass, which is thus a free parameter, can
either be indirectly fitted to experimental observations, or obtained from
schemes that ignore the coupling of charmonium states to the mesons,
such as some constituent quark models. In the latter case, the issue
certainly would be to set the UV regulator to match the quark model
and the EFT approaches.
6 We do not refer to charge channels, but rather to the P P̄ and P∗ P̄∗
or P P̄∗ and P∗ P̄∗ mixings in the 0++ and 1+− sectors, respectively.

VQM
cc̄ (2++) = d χc2(2P) → D∗ D̄∗. (37)

Due to the use of contact interactions, the LSE shows an
ill-defined UV behavior, and it requires a regularization and
renormalization procedure. We employ a standard Gaussian
regulator (see, e.g. [54])

〈 �p ′; D(∗) D̄(∗) |VQM
� | �p ; D(∗) D̄(∗) 〉 = C0H f�( �p ′) f�( �p )

(38)

〈 �p ; D(∗) D̄(∗) |VQM
cc̄;�|ψcc̄(2P)〉 ∝ d f�( �p ) (39)

with f�( �p ) = e− �p 2/�2
, C0H any of the combinations of

isoscalar LECs that appear in Eqs. (30)–(33), and the propor-
tionality constants in Eq. (39) can be read off from Eqs. (34)–
(37). We take cutoff values � = 0.5–1 GeV [33,34], where
the range is chosen such that � will be bigger than the wave
number of the states, but at the same time it will be small
enough to preserve HQSS and prevent that the theory might
become sensitive to the specific details of short-distance
dynamics. The dependence of the results on the cutoff, when
it varies within this window, provides a rough estimate of the
expected size of sub-leading corrections.

3.2 Non-perturbative LSE re-summation

The interplay of quark and meson degrees of freedom in
a near-threshold resonance was addressed in Ref. [55]. We
study physical states which are mixture of a cc̄ bare state and
some molecular components. Let us consider a particular
J PC sector where there exist n + 1 coupled channels, and
assume that the first n channels are of molecular type,7 while
the last one is cc̄. The dynamics of such system of energy
E is governed by a generalized n + 1 dimension t-matrix
given by [55] (diagrammatically, the most relevant elements
are depicted in Fig. 1),

〈 �p ′|T (E)| �p 〉

= F�( �p ′ )

⎛

⎜
⎜
⎜
⎜
⎝

[

tVQM + �cc̄Gcc̄�
t
cc̄

]

n×n

[

�cc̄

1 − G0
cc̄�cc̄

]

n×1
[

�t
cc̄

1 − G0
cc̄�cc̄

]

1×n

[

�cc̄

1 − G0
cc̄�cc̄

]

1×1

⎞

⎟
⎟
⎟
⎟
⎠

F�( �p)

(40)

where the Gaussian matrix of form factors reads8

F�( �p ) =
(

Diag
[

f�( �p )
]

n×n 0
0 1

)

. (41)

7 We should nevertheless remind the reader here, once more, that molec-
ular coupled-channel effects should not be taken at LO for finite heavy-
quark masses, and that those effects appear at next-to-next leading
order [33,35].
8 For on-shell mesons, the form factor depends on the masses of the
involved mesons, and hence on the meson channel.
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Σcc̄ = =

P, P∗

P̄ , P̄∗

+
V

QM
cc̄ [V QM

cc̄ ]t

P, P∗

P̄ , P̄∗

P, P∗

P̄ , P̄∗

+...

V QM

=
Γcc̄ [V QM

cc̄ ]t

Γcc̄ = = cc̄

P, P∗

P̄ , P̄∗

+
cc̄

P, P∗

P̄ , P̄∗

+
cc̄

P, P∗

P̄ , P̄∗

P, P∗

P̄ , P̄∗

+...

Gcc̄ = =

G0
cc̄

+

G0
cc̄

Σcc̄ G0
cc̄

+

G0
cc̄

Σcc̄ G0
cc̄

Σcc̄ G0
cc̄

+...

tV QM = =
P, P∗

P̄ , P̄∗

P, P∗

P̄ , P̄∗

+

P, P∗

P̄ , P̄∗

+

P, P∗

P̄ , P̄∗

P, P∗

P̄ , P̄∗

+...

t4H =
t
V QM

+

Γt
cc̄ Gcc̄ Γcc̄

= + + +...

+ +

+ + +...

Fig. 1 Diagrammatic representation of different amplitudes: charmonium selfenergy (�cc̄), dressed charmonium propagator (Gcc̄) and
charmonium–D(∗) D̄(∗) vertex function (�cc̄), “partial” mesonic t-matrix (tVQM ), and full mesonic t-matrix (t4H ) defined in Eq. (50)

On the other hand, the “partial” mesonic t-matrix,9 tVQM

is solution, once the Gaussian form-factor diagonal matrix
f�( �p ) is also considered, of a LSE with kernel VQM, and it
is given by

tVQM =
(

1 − VQMGQM(E)
)−1

VQM (42)

with GQM(E), the diagonal meson-loop function, conve-
niently regularized with the Gaussian form factor. For an

9 We call it “partial”, because it does not incorporate QQ̄ effects on
the meson–meson scattering.

arbitrary energy E , its diagonal elements read [42]

GQM(E) =
∫

d3 �q
(2π)3

e−2�q 2/�2

E − M1 − M2 − �q 2/2μ + i0+

= − μ�

(2π)3/2 + μk

π3/2 φ(
√

2k/�) − i
μk

2π
e−2k2/�2

,

(43)

with μ−1 = M−1
1 +M−1

2 , k2 = 2μ(E−M1 −M2) and φ(x)
the Dawson integral given by
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φ(x) = e−x2
∫ x

0
ey

2
dy. (44)

Coming back to the different elements appearing in Eq. (40),
the non-relativistic bare G0

cc̄ and dressed Gcc̄ charmonium
propagators are given by

G0
cc̄(E) = 1

E− ◦
mcc̄

, Gcc̄(E) = 1

E− ◦
mcc̄ −�cc̄(E)

(45)

where �cc̄ is the charmonium self energy induced by the
meson loops,

�cc̄(E) =
[

VQM
cc̄

]t
GQM(E)�cc̄(E) (46)

with the dressed vertex function, �cc̄, given by

�cc̄(E) =
(

1 − VQMGQM(E)
)−1

VQM
cc̄ . (47)

Two final remarks. First the t-matrix given in Eq. (40) can
also be expressed as a solution of a LSE,

〈 �p ′|T (E)| �p 〉 = F�( �p ′ )
(

V̂−1 − Ĝ(E)
)−1

F�( �p ), (48)

V̂ =
(

VQM VQM
cc̄[

VQM
cc̄

]t
0

)

,

Ĝ(E) =
(

GQM(E) 0
0 G0

cc̄(E)

)

, (49)

and finally that the full (n × n)-mesonic t-matrix can be
obtained as a solution of a LSE equation with an energy
dependent effective potential Veff(E) [55],

〈 �p ′|t4H (E)| �p 〉 = f�( �p ′ )
[

tVQM + �cc̄Gcc̄�
t
cc̄

]

f�( �p )

=
(

f −1
� ( �p )

[

−GQM(E)+V−1
eff (E)

]

f −1
� ( �p ′ )

)−1
, (50)

Veff(E) = VQM + VQM
cc̄ G0

cc̄(E)
[

VQM
cc̄

]t

= VQM +
VQM
cc̄

[

VQM
cc̄

]t

E− ◦
mcc̄

. (51)

In the strict heavy-quark limit, where the full coupled-
channel effects should be considered, the effective matrix
potential Veff(E) gives rise to two different eigenvalues,

(C0a − 3C0b) and (C0a + C0b) + d2/(E− ◦
mcc̄). Thus, as

compared to those deduced from VQM, the interaction in the
sl = 0 configuration has not been modified, while the sl = 1
one is affected by the coupling to the quarkonium states. The
extra interaction becomes repulsive or attractive depending
on whether the energy E is above or below the bare charmo-

nium mass,
◦
mcc̄. Nevertheless we should stress, as mentioned

above, that in the present scheme
◦
mcc̄ is a free parameter and

it is not an observable, which gets dressed by the D(∗)-meson
loops and gives rise to the physical mass of the charmonium

states (see for instance the discussion below Table 1, Fig. 2
for the 1++ sector).

4 Poles of the unitarized amplitudes
and the compositeness condition

4.1 Bound, resonant states and couplings

The dynamically generated meson states appear as poles of
the scattering amplitudes on the complex energy E-plane.
The poles of the scattering amplitude on the first Riemann
sheet (FRS) that appear on the real axis below threshold are
interpreted as bound states. The poles that are found on the
second Riemann sheet (SRS) below the real axis and above
threshold are identified with resonances. The mass and the
width of the state can be found from the position of the pole
on the complex energy plane. Close to the pole, the scattering
amplitude behaves as

Ti j ∼ gi g j

E − ER
. (52)

The mass MR and width �R of the state result from ER =
MR − i�R/2, while g j (complex in general) is the coupling
of the state to the j-channel.

The meson-loop function was given in Eq. (43). Note that
the wave number k is a multivalued function of E , with a
branch point at threshold (E = M1+M2). The principal argu-
ment of (E−M1 −M2) should be taken in the range [0, 2π [.
Note that this amounts to choosing the branch cut of the
square root function defining k, to lie on the positive real line.
The function kφ(

√
2k/�) does not present any discontinuity

for real E above threshold, and GQM(E) becomes a multival-
ued function because of the ik term. Indeed,GQM(E) has two
Riemann sheets. In the first one, 0 � Arg(E − M1 − M2) <

2π , we find a discontinuity GI
QM(E + iε)−GI

QM(E − iε) =
2i ImGI

QM(E + iε) for E > (M1 + M2). In the second Rie-
mann sheet, 2π � Arg(E − M1 − M2) < 4π , we trivially
find GI I

QM(E − iε) = GI
QM(E + iε), for real energies and

above threshold.

4.2 Components of the states and the compositeness
condition

It is difficult to pin down the exact nature of a hadronic
state since wave functions are not observables themselves.
The claims regarding the largest Fock components in a wave
function are often model dependent. The compositeness con-
dition, first proposed by Weinberg to explain the deuteron as
a neutron–proton bound state [56,57], has been advocated
as a model independent way to determine the relevance of
hadron-hadron components in a molecular state. However,
this is strictly only valid for bound states. For resonances, it
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Table 1 Properties of the 1++ hidden charm poles as a function of
d. We solve Eq. (61) with � = 1.0 GeV and for each value of d,
C0X is determined by Eq. (71). The position of the X (3872) is fixed at

MX = 3871.69 MeV in the FRS. The χc1(2P) pole is located in the

SRS. Finally, d crit(� = 1 GeV) =
√

MX− ◦
mχc1

GI
QM(MX )

= 0.370 fm1/2

d C0X gX (3872)

DD̄∗ X̃ X (3872)

(

mχc1 , �χc1

)

gχc1

DD̄∗ |X̃χc1 | Z̃χc1

[fm1/2] [fm2] [GeV−1/2] [MeV] [GeV−1/2]
0. −0.789 0.90 1 (3906.0,0) 0. 0. 1.

0.05 −0.774 0.89 0.98 (3906.6, 1.9) 0.01 + 0.16 i 0.02 0.99 + 0.01 i

0.1 −0.731 0.87 0.92 (3908.2, 7.9) 0.03 + 0.31 i 0.06 0.96 + 0.05 i

0.15 −0.659 0.83 0.84 (3910.5, 19.2) 0.07 + 0.44 i 0.14 0.92 + 0.11 i

0.20 −0.559 0.78 0.75 (3912.4, 37.8) 0.14 + 0.56 i 0.23 0.87 + 0.19 i

0.25 −0.429 0.73 0.66 (3912.0, 67.0) 0.24 + 0.65 i 0.36 0.82 + 0.31 i

0.30 −0.271 0.68 0.57 (3903.9, 112.8) 0.38 + 0.73 i 0.55 0.77 + 0.50 i

0.35 −0.084 0.63 0.49 (3864.5, 185.2) 0.63 + 0.85 i >1 0.70 + 1.01 i

d crit 0.000 0.61 0.47 (3798.3, 209.4) 0.93 + 1.09 i >1 0.53 + 2.12 i

0.375 0.020 0.61 0.46 (3754.4, 186.4) 1.21 + 1.37 i >1 0.29 + 3.66 i

0.3775 0.031 0.61 0.46 (3701.6, 93.5) 2.19 + 2.39 i >1 −0.44 + 12.27 i

0.40 0.132 0.59 0.43 (3827.1, 0) at SRS 0.96 X̃χc1 < 0 2.07

0.45 0.376 0.55 0.37 (3850.9,0) at SRS 0.63 X̃χc1 < 0 1.52

0.5 0.649 0.51 0.32 (3858.4,0) at SRS 0.51 X̃χc1 < 0 1.36

1.0 4.963 0.29 0.11 (3869.7, 0) at SRS 0.21 X̃χc1 < 0 1.08

2.0 22.217 0.15 0.03 (3871.3, 0) at SRS 0.10 X̃χc1 < 0 1.02

d � d crit ∼ d 2

◦
mχc1 −MX

O(1/d) O(1/d2) (MX − O( 1
d2 ), 0) at SRS O(1/d) X̃χc1 = −O( 1

d2 ) 1 + O( 1
d2 )

involves complex numbers and, therefore, a strict probabilis-
tic interpretation is lost. The probabilistic interpretation of the
compositeness condition has its origin in the sum rule [58–
60]

− 1 =
∑

i j

gi g j

(

δi j

[

∂GI I
i (E)

∂E

]

E=ER

+
[

GI I
i (E)

∂Vi j (E)

∂E
GI I

j (E)

]

E=ER

)

, (53)

which is satisfied by the residues of a pole, located in the
fourth quadrant of the SRS, of a t-matrix solution of a
coupled–channel LSE,

T−1 = −G + V−1. (54)

The above sum rule10 is also satisfied in the case of bound
states (poles located in the real axis of the FRS below the low-
est of the thresholds) replacing GI I ↔ GI . From Eq. (53),
one might think that a possible definition of the weight of a

10 We should note that Eq. (53) is not the original Weinberg condi-
tion [56,57], though it is undoubtedly inspired by the findings of this
work.

hadron-hadron component in a composite particle could be

Xi = ReX̃i = Re

(

−g2
i

[

∂GI I
i (E)

∂E

]

E=ER

)

. (55)

As follows from the analysis in [17,61], for bound states,
the quantity X̃i is real and it is related to the probability
of finding the state in the channel i . For resonances, X̃i is
still related to the squared wave function of the channel i ,
in a phase prescription that automatically renders the wave
function real for bound states, and so it can be used as a
measure of the weight of that meson-baryon channel in the
composition of the resonant state [59,61]. The deviation of
the sum of Xi from unity is related to the energy dependence
of the S-wave potential,
∑

i

Xi = 1 − Z , (56)

where

Z = Re Z̃

= Re

⎛

⎝−
∑

i j

[

giG
I I
i (E)

∂Vi j (E)

∂E
GI I

j (E)g j

]

E=ER

⎞

⎠ . (57)

Note that Eq. (53) guaranties that the imaginary parts of
∑

i X̃i and Z̃ must cancel. The quantity Z̃ , though complex
in general, is defined even for resonances, since it is related

123



Eur. Phys. J. C (2016) 76 :576 Page 11 of 25 576

threshold

X̃X(3872) = 0.49

X̃X(3872) = 0.57

SRS

χc1 dependence on d

mχc1 [MeV]

Γ χ
c 1

[M
eV

]

3950387538003725365035753500

250

200

150

100

50

0

Fig. 2 Hidden charm J PC = 1++ sector. Top and middle panels FRS
(Im(E) > 0) and SRS (Im(E) < 0) of |T11(E)| [fm2] (Eq. (59)) as a
function of the complex energy E [MeV], for d = 0.20, d crit, 0.3775
and 0.40 fm1/2. Note that, since the T -matrix is shown for only half
of the SRS (and also the FRS), the pole in the SRS conjugate to the
pole shown in the figures is not visible. Bottom panel dependence of
the χc1(2P) mass and width on d. Squares stand for the results of
Table 1 at different values of d, while the crosses illustrate the highly
non-linear behavior that appears when d takes values in the interval

[0.3776, 0.3785] fm1/2. In the latter case, when the pole reaches the
real axis, we find two poles, which start separating from each other and
move apart from the “meeting point” (intersection with the real axis).
Note that no information as regards the pole that departs from threshold
(cyan crosses) is given in Table 1. The curve is smooth except at the
point where the pole hits the real axis on the SRS, however, it looks like
a broken line because the points are connected by straight segments.
All calculations have been carried out with an UV cutoff � = 1 GeV
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to the field renormalization constant [62] that is obtained by
requiring that the residue of the renormalized two point func-
tion will be one. However, its probabilistic interpretation is
not straightforward. Thus, though X̃i can be interpreted as
a probability of finding a two-body component in a bound
state, this interpretation, strictly speaking, cannot be made in
the case of a resonance. Nevertheless, because it represents
the contribution of the channel wave function to the total
normalization, the compositeness X̃i will have an important
piece of information on the structure of the resonance. More-
over, in Ref. [63], it was claimed that one can formulate a
meaningful compositeness relation with only positive coef-
ficients thanks to a suitable transformation of the S matrix.
This in practice amounts to take the absolute value of X̃i

to quantify the probability of finding a specific component
in the wave function of a hadron. Notice, however, that the
recipe advocated in Ref. [63] is not applicable to all types of
poles. In particular the arguments of this reference exclude
the case of virtual states or resonant signals which are an
admixture between a pole and an enhanced cusp effect by
the pole itself. More specifically, the probabilistic interpreta-
tion given in [63] to |X̃i | is only valid when Re(ER) > Mi,th,
with Mi,th the corresponding threshold of the channel i .

For the present study, since the VQM and Vcc̄ potentials do
not depend on the energy, Eqs. (48) and (49) should guarantee
that the residues of the poles of the on-shell 〈 �p ′|T (E)| �p 〉 will
fulfill

−
∑

i

g2
i

⎛

⎝

∂
[

Ĝi (E)/F2
� i

]

∂E

⎞

⎠

E=ER

= 1 (58)

where the loop function should be computed in the FRS
or SRS as appropriate. Note that the above equation is not
strictly correct, and there exist minor corrections induced by
the mild energy dependence induced in the potentials inher-
ited from the form-factor matrix F�(E). We will make use of
the above sum rule to address the molecular meson–meson
content of the various poles obtained in the next subsection.

On the other hand, if we restrict ourselves to the full
mesonic t-matrix defined in Eq. (50), we will face a situation
like that described in Eqs. (56) and (57). This is because,
t4H is defined by means of an energy–dependent effective
potential result of integrating out the quarkonium degrees of
freedom. In the latter context, Xi and Z will be related to
the weights of the two-body molecular and the integrated out
elementary (quarkonium) components, respectively.

5 Quarkonium and the 1++ and 2++ meson molecules

HQSS predicts that in the heavy-quark limit, the interaction
in both the 1++ and 2++ sectors should be identical. More-
over, the dynamics in these sectors is governed by the sl = 1

configuration of the light degrees of freedom, which is pre-
cisely that affected by the coupling between quarkonium and
meson–antimeson states. At the charm scale, we expect some
HQSS breaking effects due to the D − D∗, and the bare
χc1(2P) − χc2(2P) mass differences.

As mentioned in the introduction, assuming the X (3872)

to be a DD̄∗ molecule, the existence of a X2[J PC = 2++] S-
wave D∗ D̄∗ bound state was predicted in Refs. [33,34], with
a binding energy similar to that of the X (3872). The X2 is
not affected by particle coupled-channel effects and its mass
only varies mildly, by about 2–3 MeV, when corrections from
the one pion exchange potential are taken into account [33].
This prediction is subject to some uncertainties because of the
approximate nature of HQSS. Hence, the state might move
slightly up above the D∗ D̄∗ threshold and become virtual
or might descend to a lower mass region [36]. Be that as
it may, one could be quite confident about the existence of
a molecular state with these quantum numbers close to the
D∗ D̄∗ threshold. However, the state has not been observed
yet.

Within the EFT approach of Refs. [33,34], it is assumed
that the four-meson contact operator absorbs all the details of
the short-range dynamics present in the system, such as light
vector meson exchanges between the charmed mesons, or
other Fock components in the X (3872) and X2(4012) wave
functions. However, the effects due to the presence of the 2P
quarkonium states could be sizable, in particular in the 1++
sector, because one expects the corresponding cc̄ state to lie
close to the X (3872) [52]. The experimental χc2(2P) mass,
mexp

χc2 = 3927.2±2.6 MeV [6], is significantly lower than the
D∗ D̄∗ threshold, and hence it looks reasonable to expect a
limited influence of the charmonium level in the dynamics of
a loosely 2++ state located in the vicinity of the D∗ D̄∗ thresh-
old. However, one should bear in mind that if the χc1(2P) is
above the DD̄∗ threshold, but relatively close to it, the pres-
ence of the charmonium state would provide an effective
attraction that will contribute to binding the X (3872), but it
will not appear in the 2++ sector.11 Because we are dealing
with very weakly bound states, it might well occur that these
effects need to be explicitly considered and they cannot be
just accounted for in short-distance LECs. This is what we
want to qualitatively illustrate in this section. To that end,
and for simplicity, we work in the isospin-symmetric limit as
done in Refs. [33,36] and in the LQCD study of Ref. [38],
and use the averaged masses of the heavy mesons, which are
MD = 1867.24 MeV, MD∗ = 2008.63 MeV, while we take
the central value of the particle data group (PDG) averaged

11 Indeed, the χc2(2P) would provide an effective repulsion in this
case, since it is placed below the D∗ D̄∗ threshold. Nevertheless, as
commented before, the strength of such interaction would presumably
be small since the χc2(2P) mass is significantly (90 MeV) lighter than
the two body threshold.
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mass for the X (3872), MX = 3871.69 ± 0.17 MeV [6]. We
are aware of the importance of the isospin breaking effects in
the dynamics of this resonance, specially in its strong decays,
and we refer the reader to Refs. [34,64] for a comprehensive
discussion. Taking into account such effects might obscure
the approach, which in this exploratory study needs to be
qualitative, because the existing uncertainties in the masses
of the bare χc1(2P) and χc2(2P) states and in the value of
the LEC that mixes meson-molecular and quarkonium com-
ponents.

In the isoscalar 1++ and 2++ sectors (from now on, we
will be always referring to isoscalar sectors, but for the sake
of brevity, we will not explicitly mention it), the on-shell
t-matrix of Eq. (40) reads (we particularize it for the hid-
den charm sectors, but its extension to the bottom ones is
straightforward)

T (E) = �cc̄

1 − G0
cc̄�cc̄

×

⎛

⎜
⎜
⎝

f 2
�(E)

[

(d GQM)−2 − 1 − G0
cc̄�cc̄

GQM�cc̄

]

f�(E) (d GQM)−1

f�(E) (d GQM)−1 1

⎞

⎟
⎟
⎠

(59)

with the on-shell form factor, f�(E) = exp{−2μ(E −M1 −
M2)/�

2}, and the quarkonium self energy given by

�cc̄(E) = d 2 GQM(E)

1 − C0X GQM(E)
(60)

where C0X = C0A +C0B . The only differences between the
1++ and 2++ sectors are due to the meson and bare charmo-
nium masses, which appear in the loop function, GQM(E),
cc̄ bare propagator (G0

cc̄) and Gaussian form factors. We use

(M1 = MD , M2 = MD∗ ,
◦
mχc1 ) and (M1 = M2 = MD∗ ,

◦
mχc2 ) for the 1++ and 2++ sectors, respectively. As long as
d �= 0, poles12 of T (E) correspond to zeros of the inverse of
the dressed propagator

Gcc̄(ER)−1 = 0 ↔ 1 − G0
cc̄(ER)�cc̄(ER) = 0,

ER = MR − i�R/2 (61)

in either the FRS (in that case �R → 0−) or the SRS as
appropriate. In the vicinity of the pole, we have in the corre-
sponding Riemann sheet

12 Note that when d → 0, the t-matrix reduces to

lim
d→0

T (E) =
(

f 2
�

C0X
1−C0XGQM

0

0 0

)

.

�cc̄(E)

1 − G0
cc̄(E)�cc̄(E)

∼ 1

E − ER

�2
cc̄(ER)

1 − �′
cc̄(ER)

,

�′
cc̄(ER) = d�cc̄(E)

dE

∣
∣
∣
∣
E=ER

, (62)

from which it follows that the couplings to the meson–
antimeson and bare charmonium states are

g2
1 = �2

cc̄(ER)

1 − �′
cc̄(ER)

f 2
�

d 2
[

GQM(ER)
]2

= �′
cc̄(ER)

1 − �′
cc̄(ER)

f 2
�

G ′
QM(ER)

, (63)

g2
2 = �2

cc̄(ER)

1 − �′
cc̄(ER)

= (ER− ◦
mcc̄)

2

1 − �′
cc̄(ER)

= − 1

1 − �′
cc̄(ER)

1

G0′
cc̄(ER)

, (64)

where

G ′
QM(ER) = dGQM(E)

dE

∣
∣
∣
∣
E=ER

,

G0′
cc̄(ER) = dG0

cc̄(E)

dE

∣
∣
∣
∣
∣
E=ER

. (65)

On the other hand, Eq. (58) is satisfied, and it leads to

g2
1

(

d
[

GQM(E)/ f 2
�

]

dE

)

E=ER

+ g2
2

(

d G0
cc̄(E)

dE

)

E=ER

= �′
cc̄(ER)

1 − �′
cc̄(ER)

− 1

1 − �′
cc̄(ER)

+ · · ·
= −1 + · · · (66)

where the corrections neglected above are of order O
(

f ′
�(ER)/ f�(ER)

G ′
QM(ER)/GQM(ER)

)

. These corrections, which for ER =
MX are of the order of 5 %, appear because the form factor
induces a mild energy dependence in the 4H potential. As
expected from the discussion of Eq. (57), we find

g2
1

⎛

⎝

d
[

V−1
eff (E)/ f 2

�

]

dE

⎞

⎠

E=ER

= 1

1 − �′
cc̄(ER)

+ O
(

f ′
�(ER)/ f�(ER)

V−1′
eff (ER)/V−1

eff (ER)

)

. (67)

Thus, in the 1++ and 2++ sectors we define the molecular
(X̃ ) and charmonium (Z̃ ) probabilities, weights in general,
of the pole placed at ER = MR − i�R/2 as

X̃ = − �′
cc̄(ER)

1 − �′
cc̄(ER)

, Z̃ = 1

1 − �′
cc̄(ER)

, (68)
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and �′
cc̄(ER) is given by

�′
cc̄(ER) = G ′

QM(ER)(ER− ◦
mcc̄)

2

d 2G2
QM(ER)

, (69)

from which we trivially find that the resonance couples to the
charmonium state through the meson loops,

g2 = d
g1

f�
GQM(ER). (70)

Besides, we can fix C0X in the presence of the mixing LEC
d, by requiring the X (3872) resonance to be a 1++ bound
state located in the FRS below the DD̄∗ threshold. This leads
to

C0X = 1

GI
QM(MX )

− d 2

MX− ◦
mχc1

, (71)

which leaves us with only three undetermined parameters,

d,
◦
mχc1 , and

◦
mχc2 , for the present simultaneous analysis of

the 1++ and 2++ sectors, including mixing with charmonium
states.

5.1 Numerical results: X (3872) and χc1(2P)

One of the greatest uncertainties of the present approach
is the mass of the bare χc1(2P) state. This state has not
been identified yet, while most recent constituent quark mod-
els predict masses for the χc1(2P) ranging from around
3947.4 MeV [43,65] to 3906 MeV [66], including the value
of 3925 MeV obtained in the classic work of Barnes et
al. [52]. However, all these models overestimate the mea-
sured mass of the χc2(2P) for which these works report 3969,
3949, and 3975 MeV, respectively. (We expect small effects
from the D∗ D̄∗ loops, as discussed above.) In this exploratory
study, we take

◦
mχc1= 3906 MeV (72)

from Ref. [66], since this work provides the closest prediction
to the experimental mass of the χc2(2P) state. Nevertheless,
we should remind the reader here that the bare mass depends
on the UV regulator, since it is not a physical observable.
Furthermore, and as we already mentioned, there exists the
major problem of choosing the appropriate scale to match the
constituent quark model and the EFT. At this point, we have
adopted a pragmatic view, and thus predictions obtained with
two different UV cutoffs, spanning a physically motivated
range of values, will be presented. The expectation is that
the UV regulator dependence will be absorbed into the LECs
and thus predictions for observables at the end could become
at most mildly regulator dependent.

5.1.1 Influence of the d LEC on the properties of the 1++
hidden charm poles

In Table 1, we show the properties of the poles found in the
1++ hidden charm sector as a function of the mixing LEC
d. We solve Eq. (61) with an UV cutoff of � = 1 GeV,
the qualitative pattern of the results is similar for 500 MeV,
though some quantitative differences appear, as can be seen
in Table 6 of the appendix. Note that C0X = C0X (�), and
this dependence on the UV regulator should cancel that of
the meson-loop propagatorGQM (Eq. (43)), such that observ-
ables (resonances masses, widths, meson–meson scattering
lengths, etc.) become independent of the UV regulator (see
discussion in [33]), up to higher order terms. This is accom-
plished by definition for the X (3872) mass, but, however,
there exists some residual UV-cutoff dependence in its cou-
pling to the DD̄∗ meson pair (see Tables 1, 6). The mixing
parameter d also depends on �. Thus, when we say that
both, 1 and 0.5 GeV, UV cutoffs lead to a qualitative similar
dependence on d, we mean this, not for specific values of
d, but for results obtained for both cutoffs with values of d
which give rise to similar meson-molecular probabilities for
the X (3872) resonance (X̃ X (3872)).

In principle, we expect to find two poles,13 which will be
identified as the X (3872) and the physical χc1(2P) states.
Because of the election ofC0X in Eq. (71), the position of the
X (3872) is fixed at MX = 3871.69 MeV, while its molecular
probability (X̃ X (3872)) and the DD̄∗ coupling decrease with
d. This is because C0X absorbs all dependence on d, since
GI

QM(MX ) accounts only for the unitary logarithms and it
is independent of this LEC within the UV-cutoff scheme
adopted here, which guaranties that �′

cc̄(ER) in Eq. (69)
scales as 1/d2.

On the other hand, the mass and the width of the χc1(2P)

dressed state strongly depend on d. For moderate values of
this LEC, up to X̃ X (3872) > 0.57, the pole stays in the SRS
above threshold with its width increasing rapidly (f.i. top
left panel of Fig. 2). There is a point in the vicinity of d crit ,
value of the LEC for which C0X is zero, where the χc1(2P)

pole becomes below threshold and quite wide. Since SRS
and FRS are disconnected below threshold, such virtual state
becomes irrelevant (f.i. top right and middle left panels of
Fig. 2). When C0X = 0, the pole position equation reduces
to

ER = ◦
mχc1 +

(

MX− ◦
mχc1

) GQM(ER)

GI
QM(MX )

,

ER = MR − i�R/2, (73)

13 In the SRS, the poles appear as conjugate pairs [67] if they are not
on the real axis. We count these as single poles since they correspond
to the same resonance.
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X(3872) χc1 (2P )

ψ(ns)

γ

=

D

D̄∗

χc1 (2P )

ψ(ns)

γ

Fig. 3 Decay mechanism for the transition X (3872) → ψ(nS) through an intermediate charmonium χc1(2P) state. The identity between the two
diagrams follows from the relation between couplings in Eq. (70)

which, besides ER = MX in the FRS, has solutions in
the SRS, but below threshold. When C0X becomes positive
(repulsive), the pole moves fast to the real axis because there

exist solutions only when MR <
◦
mχc1 and

C0X

d2

(
(

MR− ◦
mχc1

)2 + �2
R

4

)

≤ |MR− ◦
mχc1 | (74)

as deduced from the imaginary part of Eq. (61), taking into

account that Re
(

GI I
QM

)

< 0 in this region. The intersec-

tion with the SRS real axis occurs for d ∼ 0.377823 fm1/2

that gives rise to a pole at ER = M0R − i0, with
M0R ∼ 3688.67 MeV. It turns out that in this inter-
section �′

cc̄(M0R − i0) = 1 leading to singularities in
X̃χc1 and Z̃χc1 , and provoking that not only the inverse
of the dressed propagator has a zero in this intersection
[

Gcc̄(M0R − i0)−1 = G0
cc̄(M0R)−1 − �cc̄(M0R − i0) = 0

]

,
but also its first derivative, ie. dG−1

cc̄ (E)/dE |E=M0R−i0 = 0.
Indeed, it is a double pole (see Eq. (62)) since, as mentioned
above, the poles appear as conjugate pairs, which obviously
coincide in the real axis producing a kink. Once the poles col-
lide on the real axis, they do not need to remain as a conjugate
pair. Indeed, as one pole approaches the threshold, with �′

cc̄
decreasing and departing from 1, a second pole moves away
from the threshold, with now �′

cc̄ taking values above 1. (This
behavior coincides with that discussed in Fig. 3 of Ref. [67].)
When d ∼ 0.37854 fm1/2, this second pole leaves the real
axis forming another conjugate pair, with a mass of around
3470 MeV quite far from threshold. The trajectories of this
new conjugate pair as d increases are either below thresh-
old, or above threshold, but in the latter case very deep in
the complex plane14 (widths of around 1 GeV). Hence, these
poles will not have any observable consequences, and for
simplicity, we will simply ignore them, and we have neither
included their details in Table 1. Actually in the following,
we will always refer to the pole that moves along the real
axis toward threshold. Once, this pole has reached the SRS
real axis (f.i. middle right plot of Fig. 2), its position, MR , is
solution (below threshold) of

14 Actually, the latter part of the trajectory could even be just an artifact
of the model.

(MR− ◦
mχc1)

(

1

GI I
QM(MR)

− 1

GI
QM(MX )

)

= d2

(

1 − MR− ◦
mχc1

MX− ◦
mχc1

)

, (75)

which differs from MX because GI
QM(MX ) �= GI I

QM(MX ).
This non-trivial d-behavior is illustrated in the bottom panel
of Fig. 2. Note also �′

cc̄(MX + i0) and �′
cc̄(MR − i0) have

different signs. Since the pole now becomes quite close to
the threshold, where both SRS and FRS are connected, it
might have visible effects in scattering observables, though
its molecular content and the square of the coupling to the
DD̄∗ scale as O(1/d2). The same occurs for the X (3872),
which in the d � dcrit limit appears to be a charmonium
state, mirror in the FRS of the pole found in the SRS. This
behavior is in good agreement with the findings of Ref. [68]
obtained using quite general arguments (see discussion after
Eq. (22) of this latter reference).

The fact that in the limit d � dcrit , both poles become
dominantly charmonium can also be understood as follows.
In order to keep the position of the pole corresponding to
the X (3872) fixed, as d increases, C0 should also increase
and take large positive values.15 These large positive values
create a strong repulsive contact force between the D and D∗

15 Note that this variation of C0 depends on the procedure used to
renormalize the amplitudes. Since the position of the pole corresponding
to the X (3872) is fixed, from Eq. (61), one deduces that the value of
�(MX ) is also fixed. In the regularization scheme used in this work,
GQM is independent of d, and hence from Eq. (60), it is clear that, for
large values of d, C0 ∝ d2. Furthermore, since GQM is independent of
d, Eq. (69) dictates that �′

cc̄ ∝ 1/d2 and hence Z̃ � 1 and X̃ � 0, i.e.
we have a dominantly charmonium state. An alternative scheme would
be to keep C0 fixed, but change the regularization of the loop function
to keep the position of X (3872) fixed. In such scheme, GQM ∝ 1

d2 , as
can be seen from Eq. (60). This would be accomplished by means of an
appropriate subtraction in the loop function, which would effectively
account for some higher order terms in the interaction. In this scheme,
�′

cc̄ ∝ d2, and hence Z̃ � 0 and X̃ � 1. However, one should bear in
mind that the connection between the factors X̃ and Z̃ and the weights
of the wave functions of the various components in the state is inspired
by the findings of the work of Ref. [56,57] by Weinberg. The latter
results were found within non-relativistic quantum mechanics and for
weakly bound states. Undoubtedly, the connection is clearer when an
UV cutoff is used to suppress the contribution of momenta much higher
than the wave number associated to the bound state.
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Table 2 Properties of the 2++ hidden charm poles as a function of d.
We solve Eq. (61) with � = 1.0 GeV and C0X (d), determined from
Eq. (71), can be found in Table 1. The position of the dressed χc2(2P) is

fixed at mexp
χc2 = 3927.2 MeV in the FRS, and we also give the X (3872)

meson-molecular probabilities (X̃ X (3872)) for each value of d

d X̃ X (3872) gχc2

D∗ D̄∗ X̃χc2

◦
mχc2 MX2 − 2MD∗ − i

�X2
2 gX2

D∗ D̄∗ X̃ X2

[fm1/2] [GeV−1/2] [MeV] [MeV] [GeV−1/2]
0. 1 0.0 0.0 3927.2 −5.6 0.97 1.

0.05 0.98 0.27 0.01 3927.8 −4.5 0.90 0.996

0.10 0.92 0.51 0.02 3929.6 −1.8 0.67 0.991

0.15 0.84 0.69 0.04 3932.2 −0.0 at SRS −0.12 i >1

0.20 0.75 0.82 0.05 3935.2 −6.4 at SRS −0.76 i >1

0.22 0.71 0.86 0.06 3936.4 −21.2 at SRS −1.24 i >1

0.25 0.66 0.90 0.06 3938.3 −28.3 − 72.9
2 i 0.23 − 0.65 i 0.47 + 0.32 i

0.30 0.57 0.95 0.07 3941.2 −31.2 − 162.8
2 i 0.03 + 0.67 i 0.48 − 0.04 i

0.35 0.49 0.96 0.07 3943.8 −59.5 − 312.6
2 i 0.30 + 0.71 i 0.52 − 0.39 i

mesons. This strong repulsive force, suppresses the contri-
bution of the molecular component in the states.

Results for larger (smaller16) values of
◦
mχc1 are qualita-

tively similar, though larger (smaller) d values are needed
to reach the same amount of charmonium component
(Z̃ X (3872) = 1 − X̃ X (3872)) in the X (3872).

5.1.2 Radiative decays of the X (3872) and its charmonium
content

Using vector meson dominance and assuming that the
X (3872) is a hadronic molecule, with the dominant compo-
nent D0D∗0 plus a small admixture of the ρ Jψ and ωJ/ψ ,
the ratio of the X (3872) branching fractions into ψ(2S)γ

and J/ψγ was calculated in [26] to be about 4 × 10−3,
which strongly differs from the experimental value quoted in
Eq. (3). In sharp contrast, quark model calculations, assuming
a cc̄ 2 3P1 nature for the X (3872), predict a wide17 range for
this ratio, where the experimental ratio can be easily accom-
modated.

As mentioned in the Introduction, the study of Ref. [32]
suggests that, for radiative decays of the X (3872), short-
range contributions are of similar importance as their long-
range counter parts, and that the measured value for Rψγ

is not in conflict with a predominantly molecular nature of
the X (3872). Triangular DD(∗) D̄(∗) and DD̄∗ loop con-
tributions to these radiative decays were computed in [32]
(Fig. 1a–e of that reference), using dimensional regular-
ization with the MS subtraction scheme at various scales
μ = MX/2, MX , 2MX . The results of Table 2 of Ref. [32]

16 Note that Ref. [66] provides one of the smallest χc1(2P) bare masses
among all recent predictions available in the literature.
17 The results for X (3872) → J/ψγ are particularly sensitive to quark
model details (see for instance Table 2 of Ref. [26]).

can be summarized as follows:

�loops(X (3872) → J/ψγ )

=
(

9.7 + 19.9 log
2μ

MX

)

(rxrg)
2 [keV] (76)

�loops(X (3872) → ψ(2S)γ )

=
(

3.8 + 1.6 log
2μ

MX

)

(rxr
′
g)

2 [keV] (77)

where we have adjusted the two lower values, μ = MX/2
and μ = MX , given in the table for each decay mode. The
interpolating function works quite well in the case of the
ψ(2S)γ mode, while it underestimates by around 15 % the
width obtained in [32] for the J/ψγ decay at μ = 2MX . In
the above expressions, rx = gXDD̄∗/(0.97 GeV−1/2), rg =
g/(2 GeV−3/2) and r ′

g = g′/(2 GeV−3/2), with g and g′, the

spin-symmetric J/ψD(∗) D̄(∗) and ψ(2S)D(∗) D̄(∗) coupling
constants (see Eqs. (10)–(12) of Ref. [32]). Here we find in
Tables 1 and 6, gXDD̄∗ = 0.90 GeV−1/2 and 1.05 GeV−1/2

for � = 1 and 0.5 GeV, respectively. Hence, the estimate
taken in Ref. [32] is reasonable for the qualitative purposes
of the current work. The J/ψ and ψ(2S) coupling constants
to the charmed mesons cannot be measured directly and are
badly known. The value of 2 GeV−3/2 for g was taken in [32]
from the model estimates of Refs. [51,69]. The estimate of
g′ used to produce the central values of Table 2 in Ref. [32]
is just an educated guess, though values of g′/g ∼ 1.67 are
justified in the analysis of Ref. [30].

The charmed meson-loop contributions to the �(X (3872)

→ ψ(nS)γ ) decay show an important scale dependence, in
particular in the J/ψ mode. Indeed, the ratio of the X (3872)

branching fractions into ψ(2S)γ and J/ψγ calculated in
Ref. [32] lies in the interval (0.14–0.39)(g′/g)2, being the
ψ(2S) channel suppressed, although a lot less than claimed
in Ref. [26]. (Note that values of g′/g ∼ 2 would render the
ratio to be of order one in this purely molecular picture.) This
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supports the claim made in [32] that, for the radiative decays
of the X (3872), short-range contributions are important.

Since any physical amplitude should be independent of the
scale, the dependence displayed in Eqs. (76) and (77) should
be compensated by a corresponding variation in the counter-
term contribution depicted in diagram 1(f) of Ref. [32]. Since
the counter-terms parametrize short-range physics they may
be modeled by a charm quark loop. Hence, we could esti-
mate the size of the counter-term by employing the model
presented in this work and depicted in Fig. 3.

From Eqs. (24) and (64), one trivially finds

�
[

X (3872) → ψ(nS)γ
]

= (MX− ◦
mχc1)

2

(MX − mχc1)
2 + �2

χc1
4

× 1

1 − �′
cc̄(MX )

× δ2
n

3π
E3

γ

Mψ(nS)

MX
(78)

with Eγ = (M2
X −M2

ψ(nS))/(2MX ). The first factor deviates
from one when the width of the dressed χc1(2P) starts grow-

ing and becomes comparable with MX− ◦
mχc1 . The factor

1/(1−�′
cc̄(MX )) is Z̃ X (3872) = 1− X̃ X (3872) (see Eq. (68)),

and it can be identified with the probability to find the com-
pact component χc1(2P) in the physical wave function of the
X (3872). On the other hand, the last factor is

δ2
n

3π
E3

γ

Mψ(nS)

MX
=
{

89 keV, 2S
60 keV, 1S

(79)

using the matrix elements δ1S = 0.046 GeV−1 and δ2S =
0.38 GeV−1. We have estimated δnS from the widths given
in Table III of Ref. [52] for the 2P E1 radiative transitions
calculated with the non-relativistic potential model. (We have
used MJ/ψ = 3096.92 MeV, Mψ(2S) = 3686.11 MeV and
the mass predicted in Ref. [52] for the χc1(2P) state.)

The estimate in Eq. (78) depends on the renormalization
scheme and should cancel the dependence on scale of the
meson-loop contributions. Here, we have computed it using
an UV cutoff, � = 1 GeV, while the meson loops were
evaluated in [32] using dimension regularization with the
MS subtraction scheme at μ = MX/2, MX , 2MX .

We pay attention to the two-meson-loop function, and

compare GQM(E)/
(

4MDMD∗e−k2/�2
)

(Eq. (43)), with

GMS(s, μ), defined as

GMS(s, μ) = i
∫

d4q

(2π)4

1

q2 − M2
D

1

(P − q)2 − M2
D∗

= G(s) + 1

16π2

{

−2 + 1

MD + MD∗

×
(

MD log
M2

D

μ2 + MD∗ log
MD∗

μ2

)}

(80)

with Pμ the total four momentum (P2 = s), and the finite and
scale independent function G(s) = GMS(s, μ) − GMS(s =
(MD + MD∗)2, μ), given in Eq. (A9) of Ref. [70]. From
such comparison, and looking at the FRS and in the vicinity
of s = M2

X , we find that scales μ of the other of MX would
correspond to UV cutoffs, �, much larger than 1 GeV, or
equivalently � = 1 GeV would correspond to a MS scale μ

of the order of 1 GeV, significantly smaller than MX .
We cannot increase the size of the UV cutoff within the

EFT proposed in [33,34] to describe the X (3872), since we
will be breaking HQSS and our estimate of the counter-term
will not be realistic. However, we can run down the charmed
meson-loop contribution to the radiative decays calculated in
[32] to scales μ ∼ 1 GeV. In the case of the ψ(2S)γ mode
such running seems stable and leads to (Eq. (77))

�loops(X (3872) → ψ(2S)γ ) ∼ 2.7(rxr
′
g)

2 [keV] at μ

= 1 GeV, (81)

while we will assume that the hadron loop contribution to
the X (3872) → J/ψγ decay is much smaller than 1 keV at
scales of the order of 1 GeV, as the running in Eq. (76) seems
to suggest. Thus, we consider, following the discussion in
Ref. [32] (taking into account also the results of Eqs. (78)
and (79)),

Rψγ (r ′
g, Z̃ X (3872))

= Br (X → ψ(2S)γ )

Br (X → J/ψγ )

∣
∣
∣
∣
loops + counter−term of Fig. 3

∼ 70Z̃ X (3872) × f (Z̃ X (3872)) + (1 − Z̃ X (3872))2.7r ′ 2
g

56Z̃ X (3872) × f (Z̃ X (3872))

(82)

where f (Z̃ X (3872)) (shown in the left panel of Fig. 4)
accounts for the dressed and bare charmonium propagator
ratio squared that appear in Eq. (78). The above approxi-
mation for Rψγ only makes sense as long as Z̃ X (3872) is
larger than let us say 0.05 to justify having neglected the
meson-loop contribution in the X (3872) → J/ψγ mode.
We have also neglected any correction due to an imprecise
knowledge of the XDD̄∗ coupling, rx , and more impor-
tantly to possible destructive or constructive interferences
between the meson-loop and the counter-term (quark-loop)
contributions in the ψ(2S)γ decay. We are aware that the
latter effects might be important [30], but we cannot prop-
erly estimate them in this exploratory study, where we aim at
discussing the implications of the existence of quarkonium
components in the X (3872) in the dynamics of the predicted
X2(4012) resonance, as well as in the properties of the pos-
sible partners of these charmed resonances in the bottom
sector. Note that the sign of g′ is uncertain, which is also a
limitation for the scheme of Ref. [30]. Moreover, we should
also acknowledge that the counter-term needed in [32] might
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Fig. 4 Function f (Z̃ X (3872)) (left) entering in the definition of the ratio
Rψγ (r ′

g, Z̃ X (3872)) in Eq. (82). This latter ratio is shown in the right

panel for three different values of g′ = 1,
√

2 and 2 (units of 2 GeV−3/2),

together with the experimental band Rψγ = 2.5 ± 0.7 from Ref. [24].
All calculations have been carried out with an UV cutoff � = 1 GeV

involve contributions for other type of short-range physics, as
for instance higher momentum components of the hadronic
X (3872) wave function. Thus, the discussion below can only
be qualitative.

In the right panel of Fig. 4, the ratio Rψγ (r ′
g, Z̃ X (3872))

is shown as a function of ZX (3872) for three different val-
ues of the ψ(2S)D(∗) D̄(∗) coupling constant, together with
the experimental band given in Eq. (3) (we have added in
quadratures statistical and systematic errors).

From Fig. 4, we conclude that moderate X (3872) charmo-
nium contents in the range Z̃ X (3872) = 0.1 − 0.3 lead to suc-
cessful descriptions of the Rψγ considering ratios g′/g > 1
in line with the expectations of Ref. [30]. Indeed, if this ratio
is of the order of 2, larger X (3872) charmonium contents can
be easily accommodated, though in that case the experimen-
tal ratio of decay fractions of X (3872) into J/ψπ+π− and
J/ψπ+π−π0 final states might be difficult to be explained.

From the results in Table 1, and bearing in mind all sort
of shortcomings mentioned above, we expect the mixing
parameter d(� = 1 GeV) to lie in the 0.1–0.25 fm1/2 inter-
val, which would correspond to X (3872) meson-molecular
probabilities in the 0.9–0.65 range.

5.1.3 Discussion

From the above considerations, the dressed charmonium state
χc1(2P) should have a mass around 3910–3925 MeV, with a
width in the range 5–70 MeV and a sizable molecular (DD̄∗)
component, in the interval 6–40 %, depending on the specific
value of d (see Tables 1, 6). These results are similar to those
found in the quark model of Ref. [43], where charmonium
and DD̄∗ configurations are coupled using the 3P0 approxi-
mation. There, the elusive X (3872) meson appears as a new
state with a high probability for the DD̄∗ molecular configu-
ration, and a sizable cc̄ 23P1 component (7–30 % depending

on the strength of the used 3P0 interaction). The original
χc1(2P) state acquires also a sizable meson-molecular con-
tent (10–20 %), and it is identified in [43] with the X (3940),
whose PDG mass and width are [6] 3942 ± 9 MeV and
37+27

−17 MeV, respectively. Our predicted width for the char-
monium dressed state is in good agreement with that of the
X (3940), though the mass is somehow low. The mass of
the bare cc̄ 23P1 state used in [43] is significantly larger
(3947.4 MeV) than that used here (3906 MeV), which ren-
ders the mass of the dress charmonium state in [43] natu-
rally closer to that of the X (3940) resonance. Note, how-
ever, that neither the width of the dressed cc̄ 23P1 state nor
the ratio Rψγ of X (3872) radiative decays are calculated in
[43]. Moreover, within the approach of the latter reference the
meson loops slightly decrease the mass of the charmonium
state, opposite to what we find in this work.

The phenomenological work of Ref. [30] relies in the
inspired quark model findings of Ref. [10] to quantify the
molecular components of the X (3872), while the interplay
between its charmonium and molecular components is deter-
mined from the ratio Rψγ of radiative decays, as we have
qualitatively done here. The findings of Ref. [30] favor an
admixture of 5–12 % of a c̄c component, which can be easily
accommodated within our results.

Thus, our results together with those of Refs. [30,43] do
not support other interpretations of the X (3872), for instance
that of Ref. [71], where this resonance is described as a cc̄
core plus higher Fock components due to the coupling to the
meson–meson continuum, which is thought to be compatible
with the meson χc1(2P).

5.2 Numerical results: the 2++ hidden charm sector

The effective interactions in the 1++ and 2++ sectors at the
X (3872) mass and the D∗ D̄∗ threshold are
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Fig. 5 Hidden charm J PC = 2++ sector. FRS (Im(E) > 0) and SRS
(Im(E) < 0) of |T11(E)| [fm2] (Eq. (59)) as a function of the complex
energy E [MeV], for d = 0.20 (left), 0.22 (middle) and 0.25 (right)
fm1/2. Note that, since the T -matrix is shown for only half of the SRS
(and also the FRS), the pole in the SRS conjugate to the pole shown in
the figures is not visible. In the first two plots, there appear one pole
in the FRS (χc2(2P)) located at 3927.2 MeV and two more in the real
axis of the SRS below threshold and disconnected from the FRS. In the
left (middle) plot, the pole located at 4010.9 (3996.0) MeV would cor-

respond to the X2(4012) (HQSS partner of the X (3872)) state, while
the other one, located at 3959.5 (3978.1) MeV, arises because of the
bare χc2 pole included in the amplitudes. Finally in the right plot, there
are appear the FRS χc2(2P) pole and a second one deep into the SRS
complex plane. All calculations have been carried out with an UV cutoff
� = 1 GeV. The “serrated” appearance of the poles in the first plot is
due to the coarse mesh used to create the surface plot. It can be elim-
inated by using a finer mesh, which would require the computation of
the amplitude for a larger number of complex energies

V 1++
eff (E = MX ) = C0X + d 2

MX− ◦
mχc1

= 1

GQM(MX )
, (83)

V 2++
eff (E = 2MD∗) = C0X + d 2

2MD∗− ◦
mχc2

= V 1++
eff (E = MX ) + d 2

×
(

(2MD∗ − MX ) − (
◦
mχc2 − ◦

mχc1)

(2MD∗− ◦
mχc2)(

◦
mχc1 −MX )

)

, (84)

and hence V 2++
eff (E) − V 1++

eff (E = MX ) > 0, for E in
the vicinity of the D∗ D̄∗ threshold, because we expect

(2MD∗ − MX ) ∼ mπ > (
◦
mχc2 − ◦

mχc1). Indeed, for
d = d crit , C0X = 0, and thus the net interaction in the
2++ sector will be repulsive since 2MD∗ >

◦
mχc2 .

In the following, we will fix
◦
mχc2 such that the dressed 2P

quarkonium mass (mχc2 ) will be equal to mexp
χc2 . In Table 2,

we show the properties of the poles found in the 2++ hidden
charm sector as a function of the mixing LEC d. We solve
Eq. (61) with an UV cutoff of 1 GeV as in the case of Table 1.

First, we see that
◦
mχc2 and mexp

χc2 differ just by a few MeVs,
and hence we check that the D∗ D̄∗ loops have little influ-
ence on the charmonium level, though it develops a sizable

coupling to the meson pair. Moreover,
◦
mχc2> mexp

χc2 , since
�cc̄(m

exp
χc2) < 0 in the FRS and for this regime of C0X values

and energies. As d increases, the molecular X2(4012) (HQSS
partner of the X (3872)) state approaches to 2MD∗ , and for
d > 0.15 fm1/2 it crosses to the SRS, moving quickly away
from threshold along the real axis.18 Actually, what happens

18 Note that �cc̄(E) > 0 in the SRS, for real energies below 2MD∗
and d around 0.15 fm1/2 because the loop factor (1 − C0XGI I

QM) takes
negative values.

is that the X2(4012) pole at the SRS merges with a replica
of the bare χc2(2P) pole, as illustrated in Fig. 5, and the
new pole gets deep into the complex plane when d increases
above 0.22 fm1/2.

From the above discussion of the X (3872) radiative
decays, we expect the mixing LEC d to take values in the
range 0.1–0.25 fm1/2 for � = 1 GeV, which in turn would
imply that the X2(4012) would likely lie in the SRS, below
threshold disconnected from the FRS, either in the real axis
or deep into the complex plane. Note that, for values of d
close to d � 0.15 fm1/2, even in cases where the pole is
in the SRS below threshold, it could, however, have sizable
effects on the observables, since it would be close to the
D∗ D̄∗ threshold, where SRS and FRS are connected. Con-
sidering equivalent molecular components of the X (3872),
the conclusions obtained with � = 0.5 GeV are qualitatively
similar, as can be seen in Table 6.19

Thus, the different interplay of the charmonium compo-
nents in the X (3872) and in its hypothetical 2++ HQSS part-
ner makes plausible that the latter state is not accessible to
the direct observation, or, in other words, that it does not

19 The � = 0.5 and � = 1 GeV X2 predicted masses, calculated
neglecting the quarkonium mixing (d = 0), are similar (they differ by
less than 1 MeV) and for d = 0 the X2 state would be located around
5 MeV below the D∗ D̄∗ threshold. The χc2(2P) is much lighter, around
85–90 MeV, and in this case the form factor f� that appears in Eq. (63)
is around twice larger for � = 0.5 GeV than for � = 1 GeV. We see
this dependence on the UV cutoff in gχc2

D∗ D̄∗ , coupling of the χc2(2P)

state to the D∗ D̄∗ meson pair, which for similar molecular components
of the X (3872) is around 2–3 times larger for � = 0.5 GeV than when
it is calculated using � = 1 GeV, reflecting a large off-shell ambiguity
for this coupling. This cutoff dependence cancels out for instance in the
completeness relation of Eq. (66) or in the relation among quarkonium
and meson–molecular couplings of Eq. (70).
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Table 3 Masses of several hidden bottom states and thresholds in MeV.
We use the isospin averaged B-meson mass, MB = 5279.40 MeV, and
for the vector meson we take MB∗ = 5324.83 MeV [6]. The Xb and
Xb2 are heavy-quark spin–flavor partners of the X (3872) predicted in
[36]. We quote here the masses found in this reference for � =1 and

0.5 GeV, and the errors account for heavy-quark symmetry breaking
corrections. The masses of the χbJ (nP) are taken from the PDG [6],
with errors added in quadratures, except for that of the 2++ 3P state.
† : Theory predictions for the χb2(3P) − χb1(3P) mass splitting vary
from 8 to 12 MeV [72–74]. We set here this splitting to 10 MeV

1++ 2++

State Mass B B̄∗ threshold State Mass B∗ B̄∗ threshold

Xb (� = 1 GeV) [36] 10539+25
−27 10604.2 Xb2(� = 1 GeV) [36] 10584+25

−27 10649.7

Xb (� = 0.5 GeV) [36] 10580+9
−8 Xb2(� = 0.5 GeV) [36] 10626+8

−9

χb1(1P) 9892.78 ± 0.40 χb2(1P) 9912.21 ± 0.40

χb1(2P) 10255.46 ± 0.55 χb2(2P) 10268.65 ± 0.55

χb1(3P) 10512.1 ± 2.3 χb2(3P) 10522.1†

exist as an actual QCD state.20 Within the model developed
in Ref. [43], it is also found insufficient attraction in the
2++ sector to create an additional, mostly D∗ D̄∗ molecu-
lar, state [44]. Moreover, we should remind the reader here
that in the scheme of Ref. [45], mass and width of this state
were strongly affected by the one-pion exchange interaction
in coupled channels.

This state in the 2++ sector was predicted in [33,34,36],
where it was also shown that even considering 15–20 %
HQSS violations its existence seemed to be granted. How-
ever, the X2(4012) has not been observed yet, and hence the
study carried out here might shed light on this issue. This also
shows that corrections stemming from charmonium admix-
ture in the molecular X (3872), enhanced/distorted by thresh-
old effects, need to be explicitly considered exhibiting their
energy dependence, and they cannot be just accounted for in
the short-distance meson–meson LECs.

5.3 Numerical results: the hidden bottom 1++ and 2++
sectors

In Table 3, we compile the masses of the bottomonium states
quoted in the PDG in the 1++ and 2++ sectors, together with
those of the hidden bottom partners of the X (3872) and the
X2(4012) predicted in [36]. As we warned the reader in the
introduction, the bottom and charm sectors were connected
in [36] by assuming the bare couplings in the 4H interaction
Lagrangian of Eq. (16) to be independent of the heavy-quark
mass. Neither the Xb, nor the Xb2 have been observed yet,
as it happens for the X2(4012). Moreover, their predicted
masses show an important UV-cutoff dependence. We first
focus on the � = 1 GeV case because for this value of the
UV cutoff, the predicted binding energies of both Xb and

20 This is somewhat an abuse of language. We call “actual QCD states”
states that produce observable effects. If a SRS pole is located below
threshold but deep in the complex plane, or it is close to the real axis, but
much below the threshold, it will not produce any observable effects,
and hence it will be impossible to detect.

Xb2 are much larger than those obtained in the � = 0.5 GeV
case (� 65 MeV versus � 25 MeV). Nevertheless results for
the latter UV cutoff can be found in the appendix, and it will
be considered for the general discussion.

We fix
◦
mχb1 and

◦
mχb2 by requiring that the dressed quarko-

nium masses mχbJ will match those of the 3P states quoted
in Table 3. The bare states lie below the Xb and Xb2 states,
which produces some repulsion, as in the case of the hidden
charm X2 state. Constituent quark models predict additional
bottomonium states. Here, we pay attention to the spectrum
obtained in the recent work of Ref. [74], where the non-
relativistic QQ̄ interaction used in Ref. [43] is employed and
a global agreement with the experimental pattern is found.
Among the higher levels reported in [74], the 4 3P1(10737),
2 3F2(10569), 4 3P2(10744) and 3 3F2(10782) might have
some relevance for the present discussion [44]. The 4P
states are heavier than the Xb and Xb2, and they are located
around 130 and 95 MeV above the B B̄∗ and B∗ B̄∗ thresholds,
respectively. These levels would produce extra attractions.
On the other hand and because of the large orbital angular
momentum, the F-states in the 2++ sector seem to play a
really sub-dominant role [44] in the dynamics of the Xb2.
We will examine here the worst of the scenario for the exis-
tence of the Xb and Xb2 states, and we will consider only the
3P states, neglecting any attraction from the 4P bottomonia.

The contact interaction term C0X is fixed from the
X (3872) mass, and thus its magnitude depends on the LEC
d that mixes the molecular DD̄∗ and χc1(2P) components.
The presence of the charmonium state provides an effec-
tive attraction that contributes to binding the X (3872), which
translates in a smaller |C0X |, as seen in Tables 1 and 6 for
� = 1 and 0.5 GeV, respectively. Assuming the same value
for C0X in the bottom sector, we still need to determine the
mixing parameter in the bottom sector (dbottom), which as
discussed in Sect. 5.3 depends in principle on the heavy-
quark flavor. Through this LEC, the 3P bottomonium states
will produce some repulsion in the effective B(∗) B̄(∗) inter-
action.
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Table 4 Properties of the 1++ hidden bottom poles as a function of
d. We solve Eq. (61) with � = 1.0 GeV and C0X (d), determined from
Eq. (71), can be found in Table 1. The position of the dressed χb1(3P) is

fixed atmexp
χb1 = 10512.1 MeV in the FRS, and we also give the X (3872)

meson-molecular probabilities (X̃ X (3872)) for each value of d

d X̃ X (3872) gχb1

B B̄∗ X̃χb1

◦
mχb1 EXb − MB − MB∗ gXb

B B̄∗ X̃ Xb

[fm1/2] [GeV−1/2] [MeV] [MeV] [GeV−1/2]
0. 1 0.0 0.0 10512.1 −65.9 2.30 1.

0.05 0.98 0.98 0.09 10515.0 −60.7 2.04 0.91

0.10 0.92 1.46 0.20 10521.4 −47.6 1.55 0.80

0.15 0.84 1.59 0.24 10527.8 −30.8 1.11 0.77

0.20 0.75 1.57 0.23 10532.6 −13.1 0.69 0.80

0.25 0.66 1.49 0.21 10536.1 −0.1 0.16 0.96

0.30 0.57 1.40 0.18 10538.5 4.9 − 68.2
2 i 0.05 − 0.26 i 0.43 + 0.16 i

0.35 0.49 1.29 0.16 10540.2 44.8 − 181.4
2 i 0.12 + 0.28 i 0.55 − 0.21 i

For practical purposes, we will assume the mixing of
molecular and quarkonium components independent of both
flavor and the QQ̄ radial21 quantum number in the heavy-
quark limit. Even if inexact, these assumptions will allow
us, at least qualitatively, to obtain an idea of the effects of
quarkonium-molecular configurations admixtures on the Xb

and Xb2 states. Thus and from the discussion in Sect. 5.1.2,
we consider the C0X values fixed from the X (3872), and
associated to d(� = 1 GeV) in the range 0.1–0.25 fm1/2,
and we use the same values for dbottom(� = 1 GeV) to
take into account the repulsion induced by the χb1(3P) and
χb2(3P) states. Pole positions calculated using � = 1 GeV
and different values of the mixing parameter d are presented
in Tables 4 and 5 for the 1++ and 2++ sectors, respectively.
The d-dependence is quite similar in the two sectors and it
is mostly dictated by the proximity of the resonances to the
bottomonium levels. We find moderate bare–dressed quarko-
nium mass differences of the order 5–25 [5–20] MeV, and
molecular meson contents in the dressed state ranging in the
interval 10–20 % [5–10 %] for the χb1(3P) [χb2(3P)] state.
On the other hand, we see that as long the X (3872) meson-
molecular component is larger than 65 % (Z̃ X (3872) < 35 %),
both the Xb and the Xb2 states should exist and should be
observed in future experiments. However, the different inter-
play of the quarkonium components in the X (3872) and in
its hypothetical 1++ and 2++ hidden bottom partners pro-
duces significant changes in the masses of the latter states.
Thus, instead of bindings of the order of 65 MeV, we would
expect the molecular bottom states to lie still below, but much
closer to their respective two-meson thresholds, about 45–

21 Note that in charmonium, we considered the cc̄ pair in the 2P wave,
while in bottomonium, the 3P-states would be the closest ones to the
Xb and Xb2 resonances.

50 MeV at most.22 Indeed, for the largest considered admix-
tures, d(� = 1 GeV) = 0.2–0.25 fm1/2, the Xb and Xb2

could have binding energies of only few MeV or less.
Results obtained using � = 0.5 GeV are presented in the

Table 7 of the appendix. Besides the trivial dependence of
the mixing parameter d, and of gχb1

B B̄∗ and gχb2

B B̄∗ on the UV

cutoff,23 the conclusions are qualitatively similar to those
discussed above in the � = 1 GeV case. Thus, we find also
now moderate bare–dressed quarkonium mass differences,
though smaller than for � = 1 GeV, as it also occurs for
the molecular meson contents of the χbJ (3P) dressed states.
For X (3872) meson–molecular components larger than 65 %
(Z̃ X (3872) < 35%), both the Xb and the Xb2 should also exist
when � = 0.5 GeV is used, though they would be less bound
than in the � = 1 GeV case, and for the smallest X (3872)

molecular component scenarios, these states would appear
now as poles in the SRS, located relatively close to their
respective thresholds. Moreover, as long as the Xb and Xb2

would remain bound, they would present mostly a molecular
nature, with quarkonium bb̄ 33P1,2 components quite small
(≤ 5 %) and less important than in the � = 1 GeV case,
where the quarkonium probabilities could be larger, even of
the order of 10 or 20 %. If the poles show up in the SRS, their
molecular contents turn out to be greatly reduced.

The 1++ and 2++ hidden bottom sectors were analyzed
in Ref. [44] within the quark model of Ref. [43]. As men-
tioned earlier, the 3P0 phenomenological approximation is

22 The heavy-quark symmetry breaking uncertainties quoted in Table 3
for these states would account to a great extent for the changes induced
by charmonium contents of the X (3872) smaller than 10–15 %.
23 In the case of the couplings, it is mostly due to the factor f� that
appears in their definition in Eq. (63), as we already discussed for the
case of the χc2(2P). Indeed in the hidden bottom sector, the quarkonium
bb̄ 33P1,2 states are located well below (� 90 and 130 MeV, respec-
tively) their respective two-meson thresholds, and f� induces a large
dependence of the couplings on �, around a factor of 4 in the 1++ sector
and of 8 in the 2++ one.
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Table 5 Properties of the 2++ hidden bottom poles as a function of
d. We solve Eq. (61) with � = 1.0 GeV and C0X (d), determined from
Eq. (71), can be found in Table 1. The position of the dressed χb2(3P) is

fixed atmexp
χb2 = 10522.1 MeV in the FRS, and we also give the X (3872)

meson-molecular probabilities (X̃ X (3872)) for each value of d

d X̃ X (3872) gχb2

B∗ B̄∗ X̃χb2

◦
mχb2 EXb2 − 2MB∗ gXb2

B∗ B̄∗ X̃ Xb2

[fm1/2] [GeV−1/2] [MeV] [MeV] [GeV−1/2]
0. 1 0.0 0.0 10522.1 −66.2 2.31 1.

0.05 0.98 0.69 0.02 10523.4 −62.5 2.17 0.98

0.10 0.92 1.20 0.06 10526.9 −52.3 1.82 0.94

0.15 0.84 1.50 0.10 10531.3 −37.2 1.37 0.91

0.20 0.75 1.64 0.11 10535.7 −19.4 0.90 0.90

0.25 0.66 1.67 0.12 10539.5 −3.1 0.41 0.93

0.30 0.57 1.64 0.11 10542.5 −18.0 − 37.4
2 i 0.16 − 0.28 i 0.46 + 0.75 i

0.35 0.49 1.59 0.11 10545.0 27.1 − 195.1
2 i 0.09 + 0.28 i 0.57 − 0.15 i

employed in [44] to couple quarkonium and two-meson
degrees of freedom. As argued here, for J PC = 1++ some
repulsion from the bottomonium state below the B B̄∗ thresh-
old is found in [44], but, however, there, it is not given a
definitive answer to the existence or not existence of the Xb

state, since the results of that work depends critically of the
strength parameter of the 3P0 model within its uncertainties.
In any case, its existence is not discarded. In the 2++ sector,
an additional state, with a mass of 10648 MeV is found in
[44], and it is pointed out that there is a similar repulsion and
attraction from the states below (3P) and above (4P) thresh-
old. This state would be just 1 or 2 MeV below the B∗ B̄∗
threshold, and it could be easily accommodated within our
expectations.

6 Conclusions

In this work, we have set up a scheme based on HQSS to study
quarkonium admixtures in molecular states like the X (3872)

or its heavy-quark spin–flavor partners, X2, Xb and Xb2, not
discovered yet. We have discussed how the interplay of the
charmonium components in the X (3872) produces an extra
attraction, and thus we have argued that one would need less
attractive meson–meson interactions to bind the state. Such
an attraction does not appear in the 2++ sector, where one
should expect instead some repulsion from the charmonium
degrees of freedom. The 1++ bare charmonium pole would
be modified due to the DD̄(∗) loop effects, and it would be
moved to the complex plane acquiring also a finite width.
Despite having neglected isospin breaking terms and work-
ing at LO in the heavy-quark expansion, these effects still
depend on two unknowns LEC’s. The mass of the X (3872)

imposes a relation among them, and we have considered the
ratio Rψγ of the X (3872) branching fractions into J/ψγ or
ψ(2S)γ to further constrain the range of variation of these

two LEC’s. To that end, we have used the EFT prediction for
Rψγ obtained in Ref. [32], where meson–loop contributions
were calculated, and complemented it with the quark–loop
contribution driven by the X (3872) → χc1(2P) transition
derived here. We have found that around a 10–30 % charmo-
nium probability (estimated by means of the compositeness
sum rule of Eq. (53)) in the X (3872) might explain the exper-
imental value of the ratio Rψγ , confirming that this ratio is
not in conflict with a predominantly molecular nature of the
X (3872). In turn, the dressed χc1(2P) would have a mass
and a width, which would make plausible its identification
with the X (3940) resonance.

For 10–30 % cc̄ 2 3P1 content in the X (3872), the X2 reso-
nance destabilizes and disappears from the spectrum, becom-
ing either a virtual state or being located deep into the com-
plex plane, with decreasingly influence in the D∗ D̄∗ scatter-
ing line. The crucial point here is that the χc2(2P) state is
located well below the expected mass of the X2 in the vicin-
ity of the D∗ D̄∗ threshold. In sharp contrast to what hap-
pens in the X (3872) sector, where the χc1(2P) is close (but
above) to the two-meson threshold, the χc2(2P) produces a
meson–meson repulsive interaction. The X2(4012) has not
been observed yet, contrary to the HQSS expectations [36],
and thus the study carried out here might help to understand
this fact, because we have shown that this resonance might
not be accessible to the direct observation.

In the hidden bottom sectors and despite the changes
induced by the quarkonium admixtures, it is reasonable to
expect that both Xb and Xb2 resonances might be observed
in the short future. Nevertheless, we should remind the reader
here once more that our conclusions in the bottom sector rely
on the assumption that the contact term in the 4H Lagrangian
and the LEC d, which controls the admixtures of quarko-
nium and two-meson configurations, are independent of the
heavy flavor. Moreover, we have also assumed that the latter
parameter does not depend on the QQ̄ radial configuration.
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Hence, it is difficult to estimate the systematic uncertain-
ties that affect our analysis of the Xb and Xb2 resonances.
However one should bear in mind, in sharp contrast with
the χc1(2P)− X (3872) case, the bottomonium states are far
(� 100 MeV) from the B(∗) B̄(∗) thresholds. Thus, it seems
reasonable that effects due to the extra repulsion induced by
the 3P bottomonia in the Xb and Xb2 molecular states, when
they are placed close to their respective two-meson thresh-
olds, should not play a role as important as in the X (3872).

The picture that comes out from our study turns out to
be in a remarkable agreement, at least qualitatively, with the
findings of the quark model of Refs. [43,44]. In this work, the
3P0 phenomenological approximation is employed to couple
quarkonium and two-meson degrees of freedom. Thus, the
X2 state is not found in [43], while the X (3872) emerges with
a charmonium content similar to that favored by our study
of its radiative decays. In the 2++ hidden bottom sector, an
additional state with a mass of 10648 MeV is reported in [44].
Such state would correspond to the Xb2, and this mass could
be accommodated within our predictions. In the 1++ sector,
the quark model does not provide a definite answer about the
the existence of the Xb, since the results of Ref. [44] depends
critically of the strength parameter of the 3P0 model within
its uncertainties.
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Appendix A: UV � = 500 MeV results

In this appendix, we compile the properties of the 1++ and
2++ hidden charm (Table 6) and hidden bottom (Table 7)
poles as a function of the mixing LEC d, when an UV cutoff
� = 0.5 GeV is used to regularized the 4H -interactions.
These results complement to those collected in Tables 1, 2,
4 and 5, which were obtained with � = 1 GeV.
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