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CESÀRO SUMMABILITY OF INTEGRALS OF
FUZZY-NUMBER-VALUED FUNCTIONS

ENES YAVUZ, ÖZER TALO, AND HÜSAMETTİN ÇOŞKUN

Abstract. In the present study, we have introduced Cesàro summability of
integrals of fuzzy-number-valued functions and given one-sided Tauberian con-
ditions under which convergence of improper fuzzy Riemann integrals follows
from Cesàro summability. Also, fuzzy analogues of Schmidt type slow decrease
and Landau type one-sided Tauberian conditions have been obtained.

1. Introduction

Given a locally integrable function f : [0,∞) → C, the Cesàro operator Cf is
defined by

(Cf)(x) :=
1

x

∫ x

0

f(t)dt, x ∈ (0,∞).

In classical analysis, the Cesàro operator was investigated from various aspects and
a large number of results have appeared recently [1—5]. Titchmarsh [6] also used
the operator as a convergence method for divergent integrals and introduced the
Cesàro summability of integrals [7, p.11]. Following this introduction, the concept
of Cesàro summability of integrals received considerable attention and Tauberian
conditions under which Cesàro summable improper integrals converge have been
investigated [7—15]. Also, there are studies applying the concept to Fourier integrals
[6,16—19].
In the light of the developments mentioned above, establishment of the concept of

Cesàro summability of integrals for fuzzy analysis is also of importance for handling
divergent integrals of fuzzy-number-valued functions. The concept of integration
of fuzzy-number-valued functions has already been introduced by Dubois et al.
[20] and studied by many mathematicians [21—24]. Also, in particular, Bede and
Gal[25] have proved that there exists a mean value, or a Cesàro sum, for any
almost periodic fuzzy-number-valued function and given some applications of these
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functions to fuzzy differential equations and to fuzzy dynamical systems. At this
point, approaching the concept of ‘mean value’ from perspective of summability
theory, we define Cesàro summability of integrals of fuzzy-number-valued functions
and give various types of convergence conditions for Cesàro summable improper
integrals of fuzzy-number-valued functions.

2. Preliminaries

A fuzzy number is a fuzzy set on the real axis, i.e. u is normal, fuzzy convex,
upper semi-continuous and suppu = {t ∈ R : u(t) > 0} is compact [26]. We denote
the space of fuzzy numbers by E1. α-level set [u]α of u ∈ E1 is defined by

[u]α :=

{
{t ∈ R : u(t) ≥ α} , if 0 < α ≤ 1,

{t ∈ R : u(t) > α} , if α = 0.

Each r ∈ R can be regarded as a fuzzy number r defined by

r(t) :=

{
1 , if t = r,
0 , if t 6= r.

Let u, v ∈ E1 and k ∈ R. The addition and scalar multiplication are defined by
[u+ v]α = [u]α + [v]α = [u−α + v−α , u

+
α + v+α ], [ku]α = k[u]α

where [u]α = [u−α , u
+
α ], for all α ∈ [0, 1].

Lemma 1. [25] The following statements hold:
(i) 0 ∈ E1 is neutral element with respect to +, i.e., u+ 0 = 0 + u = u for all

u ∈ E1.
(ii) With respect to 0, none of u 6= r, r ∈ R has opposite in E1.
(iii) For any a, b ∈ R with a, b ≥ 0 or a, b ≤ 0 and any u ∈ E1, we have

(a+ b)u = au+ bu. For general a, b ∈ R, the above property does not hold.
(iv) For any a ∈ R and any u, v ∈ E1, we have a(u+ v) = au+ av.
(v) For any a, b ∈ R and any u ∈ E1, we have a(bu) = (ab)u.

The metric D on E1 is defined as

D(u, v) := sup
α∈[0,1]

d([u]α, [v]α) := sup
α∈[0,1]

max{|u−α − v−α |, |u+α − v+α |}.

where d is the Hausdorff metric.

Proposition 1. [25] Let u, v, w, z ∈ E1 and k ∈ R. Then,
(i) (E1, D) is a complete metric space.
(ii) D(ku, kv) = |k|D(u, v).
(iii) D(u+ v, w + v) = D(u,w).
(iv) D(u+ v, w + z) ≤ D(u,w) +D(v, z).
(v) |D(u, 0)−D(v, 0)| ≤ D(u, v) ≤ D(u, 0) +D(v, 0).
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Partial ordering relation on E1 is defined as follows:

u � v ⇐⇒ [u]α � [v]α ⇐⇒ u−α ≤ v−α and u+α ≤ v+α for all α ∈ [0, 1].

We say a fuzzy number u is negative if and only if u(t) = 0 for all t ≥ 0 (see
[27]).
Combining the results of Lemma 6 in [28], Lemma 5 in [29], Lemma 3.4, Theorem
4.9 in [30] and Lemma 14 in[31], following Lemma is obtained.

Lemma 2. Let u, v, w, e ∈ E1 and ε > 0. The following statements hold:

(i) D(u, v) ≤ ε if and only if u− ε � v � u+ ε
(ii) If u � v + ε for every ε > 0, then u � v.
(iii) If u � v and v � w, then u � w.
(iv) If u � w and v � e, then u+ v � w + e.
(v) If u+ w � v + w then u � v.

Definition 1. A fuzzy-number-valued function f : [a, b]→ E1 is said to be contin-
uous at x0 ∈ [a, b] if for each ε > 0 there is a δ > 0 such that D(f(x), f(x0)) < ε
whenever x ∈ [a, b] with |x− x0| < δ. If f is continuous at each x ∈ [a, b], then we
say f is continuous on [a, b].

Definition 2. [32] A fuzzy-valued function f : [a, b] → E1 is called Riemann
integrable on [a, b], if there exists I ∈ E1 with the property : ∀ε > 0, ∃δ > 0 such
that for any division of [a, b] d : a = x0 < x1 < · · · < xn = b of norm v(d) < δ, and
for any points ξi ∈ [xi, xi+1] i = 0, n− 1, we have

D

(
n−1∑
i=0

f(ξi)(xi+1 − xi), I
)
< ε.

Then I =
b∫
a

f(x)dx.

Theorem 1. [32] If the fuzzy-number-valued function f : [a, b]→ E1 is continuous
(with respect to the metric D) and for each x ∈ [a, b], f(x) has the parametric
representation

[f(x)]α = [f−α (x), f+α (x)],

then
b∫
a

f(x)dx exists, belongs to E1 and is parametrized by b∫
a

f(x)dx


α

=

 b∫
a

f−α (x)dx,

b∫
a

f+α (x)dx

 .
Using the results of Anastassiou [22] we have

Theorem 2. If f : [a, b]→ E1 and g : [a, b]→ E1 are continuous then
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(i)
b∫
a

(αf(x) + βg(x))dx = α
b∫
a

f(x)dx+ β
b∫
a

g(x)dx where α and β are real numbers.

(ii)
b∫
a

f(x)dx =
c∫
a

f(x)dx+
b∫
c

f(x)dx where a < c < b.

(iii) The function F : [a, b]→ R+ defined by F (x) = D(f(x), g(x)) is continuous on
[a, b] and

D

 b∫
a

f(x)dx,

b∫
a

g(x)dx

 ≤ b∫
a

F (x)dx.

(iv)
x∫
a

f(t)dt is a continuous function in x ∈ [a, b].

(v)
b∫
a

f(x)dx �
b∫
a

g(x)dx whenever f(x) � g(x) for all x ∈ [a, b].

Definition 3. Suppose f(x) is a fuzzy-number-valued function defined on the un-
bounded interval [a,∞). Then we define∫ ∞

a

f(x)dx = lim
t→∞

∫ t

a

f(x)dx

provided the limit on the right-hand side exists in E1, in which case we say the
integral converges and is equal to the value of limit. Otherwise, we say the integral
diverges.

3. Main Results

Definition 4. Let f : [0,∞) → E1 be a continuous fuzzy-number-valued function

and s(t) =
t∫
0

f(x)dx. The Cesàro means of s(t) are defined by

σ(t) =
1

t

∫ t

0

s(u)du, t ∈ (0,∞). (3.1)

The integral ∫ ∞
0

f(x)dx (3.2)

is said to be Cesàro summable to a fuzzy number L if limt→∞ σ(t) = L. The value
of this limit is said to be the Cesàro sum of the integral.

Theorem 3. If the integral (3.2) converges to a fuzzy number L, then (3.1) also
converges to L.

Proof. Let

lim
t→∞

s(t) =

∫ ∞
0

f(x)dx = L
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for some L ∈ E1. Then given any ε > 0 there exists t0 > 0 such that D(s(t), L) < ε
2

whenever t ≥ t0 and there existsM > 0 such that D(s(t), L) < M whenever t < t0.
So we have

D(σ(t), L) = D

(
1

t

∫ t

0

s(u)du, L

)
= D

(
1

t

∫ t

0

s(u)du,
1

t

∫ t

0

Ldu

)
=

1

t
D

(∫ t

0

s(u)du,

∫ t

0

Ldu

)
≤ 1

t

∫ t

0

D(s(u), L)du

=
1

t

∫ t0

0

D(s(u), L)du+
1

t

∫ t

t0

D(s(u), L)du

≤ t0M

t
+
ε

2

(t− t0)
t

<
t0M

t
+
ε

2

Since lim
t→∞

t0M
t = 0, there exists t1 > 0 such that

∣∣ t0M
t

∣∣ < ε
2 whenever t ≥ t1. So

there exists t2 = max{t0, t1} such that
D(σ(t), L) < ε

whenever t ≥ t2. This completes the proof. �
By the following example it can be easily seen that the converse statement of

Theorem 3 is not true in general.

Example 1. Take the fuzzy-number-valued function f : [0,∞)→ E1 such that

(f(x))(t) =


(t− cosx).(x+ 1)2, if cosx ≤ t ≤ cosx+ 1

(1+x)2
,

2− (t− cosx).(x+ 1)2, if cosx+ 1
(1+x)2

≤ t ≤ cosx+ 2
(1+x)2

,

0, otherwise.

Then f is continuous and

f−α (x) = cosx+
α

(x+ 1)2
, f+α (x) = cosx+

2− α

(x+ 1)2∫ t

0

f−α (x)dx = sint+ α

(
1− 1

t+ 1

)
,

∫ t

0

f+α (x)dx = sint+ (2− α)

(
1− 1

t+ 1

)
Obviously

∞∫
0

f(x)dx is divergent. To calculate Cesàro mean, considering (3.1) we

have

σ−α (t) =
1

t

∫ t

0

s−α (u)du =
1

t

∫ t

0

(∫ u

0

f−α (x)dx

)
du = −cos t

t
+
1

t
+ α

(
1− ln(t+ 1)

t

)
σ+α (t) =

1

t

∫ t

0

s+α (u)du =
1

t

∫ t

0

(∫ u

0

f+α (x)dx

)
du = −cos t

t
+
1

t
+ (2− α)

(
1− ln(t+ 1)

t

)
.
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So we get

limt→∞ σ−α (t) = α
limt→∞ σ+α (t) = 2− α

}
=⇒ [L]α = [α, 2− α] and lim

t→∞
D(σ(t), L) = 0

Then
∞∫
0

f(x)dx is Cesàro summable to fuzzy number L such that

L(t) =


t if 0 ≤ t ≤ 1,

2− t if 1 ≤ t ≤ 2,

0 otherwise.

We need the following Lemma for the proofs of our main results.

Lemma 3. If s be a continuous fuzzy-number-valued function then for every λ > 1

1

λt− t

∫ λt

t

s(x)dx+
1

λ− 1
σ(t) = σ(λt) +

1

λ− 1
σ(λt) (3.3)

and for every 0 < ` < 1

1

t− `t

∫ t

`t

s(x)dx+
`

1− `σ(`t) = σ(t) +
`

1− `σ(t). (3.4)

Proof. Let s be a continuous fuzzy-number-valued function. Then for every λ > 1
we have

σ(λt) +
1

λ− 1
σ(λt) =

λ

λ− 1
σ(λt)

=
λ

λ− 1

1

λt

∫ λt

0

s(x)dx

=
1

(λ− 1)t

{∫ t

0

s(x)dx+

∫ λt

t

s(x)dx

}

=
1

λ− 1
σ(t) +

1

t(λ− 1)

∫ λt

t

s(x)dx



44 ENES YAVUZ, ÖZER TALO, AND HÜSAMETTİN ÇOŞKUN

by Lemma 1 and Theorem 2. On the other hand for every 0 < ` < 1, using Lemma
1 and Theorem 2 again, we get

σ(t) +
`

1− `σ(t) =
1

1− `σ(t)

=
1

1− `
1

t

∫ t

0

s(x)dx

=
1

1− `
1

t

{∫ `t

0

s(x)dx+

∫ t

`t

s(x)dx

}

=
`

1− `
1

`t

∫ `t

0

s(x)dx+
1

t(1− `)

∫ t

`t

s(x)dx

=
`

1− `σ(`t) +
1

t− `t

∫ t

`t

s(x)dx.

So equalities (3.3) and (3.4) are satisfied. �

As a result of Lemma 3 we conclude the following lemma.

Lemma 4. If integral (3.2) is Cesàro summable to a fuzzy number L, then for
every λ > 1

lim
t→∞

1

λt− t

∫ λt

t

s(x)dx = L (3.5)

and for every 0 < ` < 1

lim
t→∞

1

t− `t

∫ t

`t

s(x)dx = L. (3.6)

Now we give Tauberian conditions under which convergence of the improper
integral follows from Cesàro summability.

Theorem 4. Let fuzzy-number-valued function f : [0,∞) → E1 be continuous. If
integral (3.2) is Cesàro summable to a fuzzy number L, then it converges to L if
and only if for every ε > 0 there exist t0 ≥ 0 and λ > 1 such that for t > t0

1

λt− t

∫ λt

t

s(x)dx � s(t)− ε (3.7)

and another 0 < ` < 1 such that

1

t− `t

∫ t

`t

s(x)dx � s(t) + ε. (3.8)

Proof. Necessity. Let the integral (3.2) converge to L. Using inequality

D

(
1

λt− t

∫ λt

t

s(x)dx, s(t)

)
≤ D

(
1

λt− t

∫ λt

t

s(x)dx, L

)
+D(L, s(t)),
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if we consider the equality (3.5) in Lemma 4 then for λ > 1 we obtain

lim
t→∞

D

(
1

λt− t

∫ λt

t

s(x)dx, s(t)

)
= 0.

For 0 < ` < 1, validity of (3.8) can also be obtained analogously by using the
equality (3.6) of Lemma 4.
Suffi ciency. Assume that integral (3.2) is Cesàro summable to L and (3.7), (3.8)

are satisfied. By (3.7), there exist t1 ≥ 0 and λ > 1 such that for t > t1

1

λt− t

∫ λt

t

s(x)dx � s(t)− ε

3
·

Besides since

lim
t→∞

D

(
1

λ− 1
σ(t),

1

λ− 1
σ(λt)

)
= 0,

there exists t2 ≥ 0 such that for t > t2

D

(
1

λ− 1
σ(t),

1

λ− 1
σ(λt)

)
≤ ε

3
·

So by (i) of Lemma 2 we get that

1

λ− 1
σ(t)− ε

3
� 1

λ− 1
σ(λt) � 1

λ− 1
σ(t) +

ε

3
.

Also, since lim
t→∞

σ(λt) = L, there exists t3 ≥ 0 such that D(σ(λt), L) ≤ ε
3 for t > t3,

meaning

L− ε

3
� σ(λt) � L+

ε

3
·

Then considering the equality (3.3) , there exists t4 = max{t1, t2, t3} such that for
t > t4

s(t)− ε

3
+

1

λ− 1
σ(t) � L+

ε

3
+

1

λ− 1
σ(t) +

ε

3
·

So by (v) of Lemma 2, for t > t4 we have

s(t) � L+ ε. (3.9)

On the other hand, if we consider the condition (3.8), equality (3.4), Lemma 2 and
proceed in a similar way as that above, we get that there exists a t∗4 ≥ 0 such that
for t > t∗4

s(t) � L− ε. (3.10)

Then combining inequalities (3.9) and (3.10), we obtain

L− ε � s(t) � L+ ε

whenever t > max{t4, t∗4} and this completes the proof. �
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Definition 5. A fuzzy-number-valued function s(x) is said to be slowly decreasing
if for every ε > 0 there exist t0 ≥ 0 and λ > 1 such that

s(x) � s(t)− ε
whenever t0 < t < x ≤ λt.

Remark 1. Fuzzy-number-valued function s(x) is slowly decreasing if and only if
the family of real valued functions {s−α (x) | α ∈ [0, 1]} and {s+α (x) | α ∈ [0, 1]} are
equi-slowly decreasing i.e. ∀ε > 0 there exist t0 ≥ 0 and λ > 1 such that for all
α ∈ [0, 1]

s−α (x)− s−α (t) ≥ −ε and s+α (x)− s+α (t) ≥ −ε whenever t0 < t < x ≤ λt.

Lemma 5. If the fuzzy-number-valued function s(x) is slowly decreasing, then for
every ε > 0 there exist t0 ≥ 0 and 0 < λ < 1 such that for every t > t0

s(t) � s(x)− ε whenever λt < x ≤ t. (3.11)

Proof. The proof of the lemma is done by contradiction method. Assume that the
fuzzy-number-valued function s(x) is slowly decreasing and there exists ε0 > 0 such
that for all 0 < λ < 1 and t0 ≥ 0 there exist real numbers x and t > t0 for which

s(t) � s(x)− ε0 whenever λt < x ≤ t.
Therefore, there exists α0 ∈ [0, 1] such that

s−α0(t) < s−α0(x)− ε0 or s+α0(t) < s+α0(x)− ε0. (3.12)

At this point we recall the reformulated condition of Móricz [9] for a slowly decreas-
ing real valued function f such that

lim
λ→1−

lim inf
t→∞

min
λt≤x≤t

[f(t)− f(x)] ≥ 0. (3.13)

No matter which case we choose in (3.12), one of the real valued functions s−α0(t)
and s+α0(t) does not satisfy the condition (3.13). So at least one of them is not slowly
decreasing which contradicts the hypothesis that fuzzy-number-valued function s(x)
is slowly decreasing. �
It is clear that if function s is slowly decreasing then conditions (3.7) and (3.8)

are satisfied by (i) and (v) of Theorem 2. So next corollary immediately follows:

Corollary 1. If f is a continuous fuzzy-number-valued function such that integral
(3.2) is Cesàro summable to a fuzzy number L and its integral function s(t) is slowly
decreasing, then the integral (3.2) converges to L.

Theorem 5. Let f be a continuous fuzzy-number-valued function on [0,∞). If
there exist negative constant fuzzy number u and a real number x0 ≥ 0 such that

xf(x) � u for x > x0, (3.14)

then fuzzy-number-valued function s(t) =
t∫
0

f(x)dx is slowly decreasing.
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Proof. Let xf(x) � u be satisfied under the given conditions on u and x0 in the
theorem. Then for x > x0 we have

xf−α (x) ≥ u−α ≥ u−0 , xf+α (x) ≥ u+α ≥ u+1 ≥ u−0 .

For the sake of simplicity let take u−0 = −H where H > 0. Then

xf−α (x) ≥ −H ⇒ f−α (x) ≥ −H
x

, xf+α (x) ≥ −H ⇒ f+α (x) ≥ −H
x

are satisfied. Then for x0 < t < x ≤ λt when λ > 1, we have

s−α (x)− s−α (t) =

∫ x

t

f−α (u)du ≥ −H
∫ x

t

du

u
= −H ln

x

t
≥ −H lnλ

and

s+α (x)− s+α (t) =

∫ x

t

f+α (u)du ≥ −H
∫ x

t

du

u
= −H ln

x

t
≥ −H lnλ.

Choosing λ = eε/H , we get the inequalities

s−α (x) ≥ s−α (t)− ε , s+α (x) ≥ s+α (t)− ε

and then s(x) � s(t)− ε holds whenever x0 < t < x ≤ λt. �

Example 2. Let the fuzzy-number-valued function f : [0,∞)→ E1 be given as

(f(x))(t) =


t

2−sin x , if 0 ≤ t ≤ 2− sinx,

2− t
2−sin x , if 2− sinx ≤ t ≤ 2(2− sinx).

Then

f−α (x) = (2− sinx)α , f+α (x) = (2− sinx)(2− α).

Since f±α (x) ≥ 0 holds for each α ∈ [0, 1] and x > 0, we have

xf−α (x) ≥ 0 , xf+α (x) ≥ 0

which means that xf(x) � 0. So s(t) is slowly decreasing.

As a result of Theorem 5 the following one-sided Tauberian condition is obtained.

Corollary 2. If f is a continuous fuzzy-number-valued function such that integral
(3.2) is Cesàro summable to a fuzzy number L and condition (3.14) is satisfied,
then the integral (3.2) converges to L.

We note that one may extend Cesàro summability method to continuous fuzzy-
number-valued functions and give analogs of Theorem 3—4, Corollary 1 for Cesàro
summability of fuzzy-number-valued functions. The proofs are done identically by
replacing integral function s with general continuous fuzzy-number-valued function
in corresponding proofs and hence omitted.
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Definition 6. A continuous fuzzy-number-valued function f : [0,∞)→ E1 is said
to be Cesàro summable to a fuzzy number L if

lim
t→∞

1

t

∫ t

0

f(x)dx = L.

Theorem 6. Let f be a continuous fuzzy-number-valued function. If limt→∞ f(t) =
L, then f is Cesàro summable to fuzzy number L.

Theorem 7. If a continuous fuzzy-number-valued function f is Cesàro summable
to a fuzzy number L, then limt→∞ f(t) = L if and only if for every ε > 0 there exist
t0 ≥ 0 and λ > 1 such that for t > t0

1

λt− t

∫ λt

t

f(x)dx � f(t)− ε

and another 0 < ` < 1 such that

1

t− `t

∫ t

`t

f(x)dx � f(t) + ε.

Theorem 8. If a continuous fuzzy-number-valued function f is Cesàro summable
to a fuzzy number L and f is slowly decreasing, then limt→∞ f(t) = L.
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