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SOME PROPERTIES OF SEQUENCE SPACE
_

BVθ (f, p, q, s)

MAHMUT IŞIK

Abstract. In this paper, we define the sequence space
_
BV θ (f, p, q, s) on a

seminormed complex linear space, by using a Modulus function. We give
various properties and some inclusion relations on this space.

1. INTRODUCTION

Let `∞ and c denote the Banach spaces of real bounded and convergent sequences
x = (xn) normed by ‖x‖ = sup

n
|xn| , respectively.

Let σ be a one to one mapping of the set of positive integers into itself such that
σk (n) = σ

(
σk−1 (n)

)
, k = 1, 2, ... .A continuous linear functional ϕ on `∞ is said

to be an invariant mean or a σ−mean if and only if
(i) ϕ (x) ≥ 0 when xn ≥ 0 for all n,
(ii) ϕ (e) = 1, where e = (1, 1, 1, ...) and
(iii) ϕ

({
xσ(n)

})
= ϕ ({xn}) for all x ∈ `∞.

If σ is the translation mapping n → n + 1, a σ−mean is often called a Banach
limit [3], and Vσ is the set of σ−convergent sequences, that is, the set of bounded
sequences all of whose invariant means are equal, is the set f̂ of almost convergent
sequences [11].
It can be shown (see Schaefer [24]) that

Vσ =
{
x = (xn) : lim

r
trn (x) = Le uniformly in n, L = σ − limx

}
, (1.1)

where

trn (x) =
1

r + 1

r∑
j=0

T jxn.

The special case of (1.1), in which σ (n) = n+ 1 was given by Lorentz [11].
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Subsequently invariant means have been studied by Ahmad and Mursaleen[1],
Mursaleen ([16],[17]), Raimi [20], Altinok et al. [2], Mohiuddine [13],[14], Mohiud-
dine and Mursaleen [15] many others.

We may remark here that the concept
_

BV of almost bounded variation have
been introduced and investigated by Nanda and Nayak [19] as follows:

_

BV =

{
x :
∑
r

|trn (x)| converges uniformly in n
}

where

trn (x) =
1

r (r + 1)

r∑
v=1

v (xn+v − xn+v−1) .

By a lacunary sequence θ = (kr)
∞
r=0,1,2,... , where k0 = 0, we shall mean an increasing

sequence of non-negative integers with kr − kr−1 → ∞ as r → ∞. The intervals
determined by θ will be denoted by Ir = (kr−1, kr] , and we let hr = kr−kr−1. The
ratio kr

kr−1
will usually be denoted by qr (see [7]) .

Karakaya and Savaş [10] were defined sequence spaces
_

BV θ (p) and

_
_

BV θ (p) as
follows:

_

BV θ (p) =

{
x :

∞∑
r=1

|ϕrn (x)|pr converges uniformly in n
}
,

_
_

BV θ (p) =

{
x : sup

n

∞∑
r=1

|ϕrn (x)|pr <∞
}
,

where

ϕr,n (x) =
1

hr + 1

∑
j=kr−1+1

xj+n −
1

hr

kr∑
j=kr−1+1

xj+n , r > 1.

Straightforward calculation shows that

ϕr,n (x) =
1

hr (hr + 1)

hr∑
u=1

u
(
x
kr−1+u+1+n

− x
kr−1+u+n

)
,

and

ϕr−1,n (x) =
1

hr (hr − 1)

hr−1∑
u=1

(
x
kr−1+u+1+n

− x
kr−1+u+n

)
.

Note that for any sequences x, y and scalar λ, we have

ϕr,n (x+ y) = ϕr,n (x) + ϕr,n (y) and ϕr,n (λx) = λϕr,n (x) .

The notion of modulus function was introduced by Nakano [18] in 1953. We
recall that a modulus f is a function from [0,∞) to [0,∞) such that
i) f (x) = 0 if and only if x = 0,
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(ii) f (x+ y) ≤ f (x) + f (y) , for all x ≥ 0, y ≥ 0,
(iii) f is increasing,
(iv) f is continuous from the right at 0.
A modulus may be bounded or unbounded. For example, f (x) = xp, (0 < p ≤ 1)

is unbounded but f (x) = x
1+x is bounded. Maddox [12] and Ruckle[21], Bhardwaj

[4], Et ([5], [6]), Işık ([8], [9]), Savas ([22], [23]) used a modulus function to construct
some sequence spaces.
A sequence space E is said to be solid (or normal) if (αkxk) ∈ E whenever

(xk) ∈ E for all sequences (αk) of scalars with |αk| ≤ 1.
It is well known that a sequence space E is normal implies that E is monotone .

Definition 1.1 Let q1, q2 be seminorms on a vector space X. Then q1 is said to
be stronger than q2 if whenever (xn) is a sequence such that q1(xn)→ 0, then also
q2(xn)→ 0. If each is stronger than the others q1 and q2 are said to be equivalent
(one may refer to Wilansky [25]).

Lemma 1.2 Let q1 and q2 be seminorms on a linear space X. Then q1 is stronger
than q2 if and only if there exists a constant T such that q2 (x) ≤ Tq1 (x) for all
x ∈ X (see for instance Wilansky [25]).

Let p = (pr) be a sequence of strictly positive real numbers, X be a seminormed
space over the field C of complex numbers with the seminorm q, f be a Modulus
function and s ≥ 0 be a fixed real number. Then we define the sequence space
_

BVθ (f, p, q, s) as follows:

_

BV θ (f, p, q, s) =

{
x = (xk) ∈ X :

∞∑
r=1

r−s [f (q (ϕrn (x)))]
pr <∞, uniformly in n,

}
.

We get the following sequence spaces from
_

BVθ (f, p, q, s) by choosing some of
the special p, f and s :
For f (x) = x, we get

_

BVθ (p, q, s) =

{
x = (xk) ∈ X :

∞∑
r=1

r−s [(q (ϕrn (x)))]
pr <∞, uniformly in n

}
,

for pr = 1 for all r ∈ N, we get

_

BVθ (f, q, s) =

{
x = (xk) ∈ X :

∞∑
r=1

r−s [f (q (ϕrn (x)))] <∞, uniformly in n
}
,

for s = 0 we get

_

BVθ (f, p, q) =

{
x = (xk) ∈ X :

∞∑
r=1

[f (q (ϕrn (x)))]
pr <∞, uniformly in n

}
,
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for f(x) = x and s = 0 we get

_

BVθ (p, q) =

{
x = (xk) ∈ X :

∞∑
r=1

[(q (ϕrn (x)))]
pr <∞, uniformly in n

}
,

for pr = 1 for all r ∈ N, and s = 0 we get

_

BVθ (f, q) =

{
x = (xk) ∈ X :

∞∑
r=1

[f (q (ϕrn (x)))] <∞, uniformly in n
}
,

for f (x) = x, pr = 1 for all r ∈ N, and s = 0 we have

_

BVθ (q) =

{
x = (xk) ∈ X :

∞∑
r=1

q (ϕrn (x)) <∞, uniformly in n
}
.

The following inequalities will be used throughout the paper. Let p = (pr) be
a bounded sequence of strictly positive real numbers with 0 < pr ≤ sup pr = H,
D = max

(
1, 2H−1

)
, then

|ar + br|pr ≤ D {|ar|pr + |br|pr} , (1.2)

where ar, br ∈ C.

2. MAIN RESULTS

In this section we will prove the general results of this paper on the sequence

space
_

BVθ (f, p, q, s) , those characterize the structure of this space.

Theorem 2.1 The sequence space
_

BVθ (f, p, q, s) is a linear space over the field C
of complex numbers.

Proof. Let x, y ∈
_

BVθ (f, p, q, s) . For λ, µ ∈ C there exists Mλ and Nµ integers
such that |λ| ≤Mλ and |µ| ≤ Nµ. Since f is subadditive, q is a seminorm
∞∑
r=1

r−s [f (q (λϕrn (x) + µϕrn (y)))]
pr

≤
∞∑
r=1

r−s [f (|λ| q (ϕrn (x))) + f (q (|µ|ϕrn (y)))]
pr

≤ D (Mλ)
H
∞∑
r=1

r−s [f (q (ϕrn (x)))]
pr +D (Nµ)

H
∞∑
r=1

r−s [f (q (ϕrn (y)))]
pr <∞.

This proves that
_

BVθ (f, p, q, s) is a linear space.
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Theorem 2.2
_

BVθ (f, p, q, s) is a paranormed space (not necessarily totally para-
normed), paranormed by

g (x) =

( ∞∑
r=1

r−s [f (q (ϕrn (x)))]
pr

) 1
M

,

where M = max (1, sup pr) , H = sup
r
pr <∞.

Proof. It is clear that g
(
θ̄
)

= 0 and g (x) = g (−x) for all
_

x ∈ BVθ (f, p, q, s) ,

where θ̄ = (θ, θ, θ, ...) . It also follows from (1.2), Minkowski’s inequality and defin-
ition f that g is subadditive and

g (λx) ≤ KH\M
λ g (x) ,

where Kλ is an integer such that |λ| < Kλ. Therefore the function (λ, x) → λx is
continuous at x = θ̄ and that when λ is fixed, the function x → λx is continuous
at x = θ̄. If x is fixed and ε > 0, we can choose r0 such that

∞∑
r=r0

r−s [f (q (ϕrn (x)))]
pr <

ε

2
.

and δ > 0 so that |λ| < δ and definition of f gives
r0∑
r=1

r−s [f (q (λϕrn (x)))]
pr =

r0∑
r=1

r−s [f (|λ| q (ϕrn (x)))]
pr <

ε

2
.

Therefore |λ| < min (1, δ) implies that g (λx) < ε. Thus the function (λ, x)→ λx is

continuous at λ = 0 and
_

BVθ (f, p, q, s) is paranormed space
Theorem 2.3 Let f, f1, f2 be modulus functions q, q1, q2 seminorms and s, s1, s2 ≥
0. Then
(i)

_

BVθ (f1, p, q, s) ∩
_

BVθ (f2, p, q, s) ⊆
_

BVθ (f1 + f2, p, q, s) ,

(ii) If s1 ≤ s2 then
_

BVθ (f, p, q, s1) ⊆
_

BVθ (f, p, q, s2) ,

(iii)
_

BVθ (f, p, q1, s) ∩
_

BVθ (f, p, q2, s) ⊆
_

BVθ (f, p, q1 + q2, s) ,

(iv) If q1 is stronger than q2 then
_

BVθ (f, p, q1, s) ⊆
_

BVθ (f, p, q2, s) .
Proof. i) The proof follows from the following inequality

r−s [(f1 + f2) (q (ϕrn (x)))]
pr ≤ Dr−s [f1 (q (ϕrn (x)))]

pr +Dr−s [f2 (q (ϕrn (x)))]
pr .

ii), iii) and iv) follow easily.

Corollary 2.4 Let f be a modulus function, then we have

(i) If q1 ∼=(equivalent to) q2, then
_

BVθ (f, p, q1, s) =
_

BVθ (f, p, q2, s) ,

(ii)
_

BVθ (f, p, q) ⊆
_

BVθ (f, p, q, s) ,

(iii)
_

BVθ (f, q) ⊆
_

BVθ (f, q, s) .
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Theorem 2.5. Suppose that 0 < mr ≤ tr <∞ for each r ∈ N. Then
_

BVθ (f,m, q) ⊆
_

BVθ (f, t, q) .

Proof. Let x ∈
_

BVθ (f,m, q) . This implies that

[f (q (ϕrn (x)))]
mr ≤ 1

for suffi ciently large values of k, say k ≥ k0 for some fixed k0 ∈ N . Since f is non
decreasing, we have

∞∑
r=k0

r−s [f (q (ϕrn (x)))]
tr ≤

∞∑
r=k0

r−s [f (q (ϕrn (x)))]
mr .

It gives x ∈
_

BVθ (f, t, q) .

The following result is a consequence of the above result.

Corollary 2.6

(i) If 0 < pr ≤ 1 for each r, then
_

BVθ (f, p, q) ⊆
_

BVθ (f, q) ,

(ii) If pr ≥ 1 for all r, then
_

BVθ (f, q) ⊆
_

BVθ (f, p, q) .

Theorem 2.7 The sequence space
_

BVθ (f, p, q, s) is solid.

Proof. Let x ∈
_

BVθ (f, p, q, s) , i.e.
∞∑
r=1

r−s [f (q (ϕrn (x)))]
pr <∞.

Let (αr) be sequence of scalars such that |αr| ≤ 1 for all r ∈ N. Then the result
follows from the following inequality.

∞∑
r=1

r−s [f (q (αrϕrn (x)))]
pr ≤

∞∑
r=1

r−s [f (q (ϕrn (x)))]
pr .

Corollary 2.8 The sequence space
_

BVθ (f, p, q, s) is monotone.
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