SOME PROPERTIES OF SEQUENCE SPACE $\widehat{B V}_{\theta}(f, p, q, s)$

MAHMUT IŞIK

Abstract

In this paper, we define the sequence space $\overparen{B V_{\theta}}(f, p, q, s)$ on a seminormed complex linear space, by using a Modulus function. We give various properties and some inclusion relations on this space.

1. INTRODUCTION

Let ℓ_{∞} and c denote the Banach spaces of real bounded and convergent sequences $x=\left(x_{n}\right)$ normed by $\|x\|=\sup _{n}\left|x_{n}\right|$, respectively.

Let σ be a one to one mapping of the set of positive integers into itself such that $\sigma^{k}(n)=\sigma\left(\sigma^{k-1}(n)\right), k=1,2, \ldots$.A continuous linear functional φ on ℓ_{∞} is said to be an invariant mean or a σ-mean if and only if
(i) $\varphi(x) \geq 0$ when $x_{n} \geq 0$ for all n,
(ii) $\varphi(e)=1$, where $e=(1,1,1, \ldots)$ and
(iii) $\varphi\left(\left\{x_{\sigma(n)}\right\}\right)=\varphi\left(\left\{x_{n}\right\}\right)$ for all $x \in \ell_{\infty}$.

If σ is the translation mapping $n \rightarrow n+1$, a $\sigma-$ mean is often called a Banach limit [3], and V_{σ} is the set of σ-convergent sequences, that is, the set of bounded sequences all of whose invariant means are equal, is the set \hat{f} of almost convergent sequences [11].

It can be shown (see Schaefer [24]) that

$$
\begin{equation*}
V_{\sigma}=\left\{x=\left(x_{n}\right): \lim _{r} t_{r n}(x)=L e \text { uniformly in } n, L=\sigma-\lim x\right\} \tag{1.1}
\end{equation*}
$$

where

$$
t_{r n}(x)=\frac{1}{r+1} \sum_{j=0}^{r} T^{j} x_{n}
$$

The special case of (1.1), in which $\sigma(n)=n+1$ was given by Lorentz [11].

[^0]Subsequently invariant means have been studied by Ahmad and Mursaleen[1], Mursaleen ([16],[17]), Raimi [20], Altinok et al. [2], Mohiuddine [13],[14], Mohiuddine and Mursaleen [15] many others.

We may remark here that the concept $\overparen{B V}$ of almost bounded variation have been introduced and investigated by Nanda and Nayak [19] as follows:

$$
\widetilde{B V}=\left\{x: \sum_{r}\left|t_{r n}(x)\right| \text { converges uniformly in } n\right\}
$$

where

$$
t_{r n}(x)=\frac{1}{r(r+1)} \sum_{v=1}^{r} v\left(x_{n+v}-x_{n+v-1}\right)
$$

By a lacunary sequence $\theta=\left(k_{r}\right)_{r=0,1,2, \ldots}^{\infty}$, where $k_{0}=0$, we shall mean an increasing sequence of non-negative integers with $k_{r}-k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. The intervals determined by θ will be denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$, and we let $h_{r}=k_{r}-k_{r-1}$. The ratio $\frac{k_{r}}{k_{r-1}}$ will usually be denoted by q_{r} (see [7]).

Karakaya and Savaş [10] were defined sequence spaces $\overparen{B V_{\theta}}(p)$ and $\overparen{\overparen{B V}} \theta \theta$ (p as follows:

$$
\begin{aligned}
& \widetilde{B V}_{\theta}(p)=\left\{x: \sum_{r=1}^{\infty}\left|\varphi_{r n}(x)\right|^{p_{r}} \text { converges uniformly in } n\right\} \\
& \widetilde{\overparen{B V}}_{\theta}(p)=\left\{x: \sup _{n} \sum_{r=1}^{\infty}\left|\varphi_{r n}(x)\right|^{p_{r}}<\infty\right\}
\end{aligned}
$$

where

$$
\varphi_{r, n}(x)=\frac{1}{h_{r}+1} \sum_{j=k_{r-1}+1} x_{j+n}-\frac{1}{h_{r}} \sum_{j=k_{r-1}+1}^{k_{r}} x_{j+n}, r>1
$$

Straightforward calculation shows that

$$
\varphi_{r, n}(x)=\frac{1}{h_{r}\left(h_{r}+1\right)} \sum_{u=1}^{h_{r}} u\left(x_{k_{r-1}+u+1+n}-x_{k_{r-1}+u+n}\right),
$$

and

$$
\varphi_{r-1, n}(x)=\frac{1}{h_{r}\left(h_{r}-1\right)} \sum_{u=1}^{h_{r}-1}\left(x_{k_{r-1}+u+1+n}-x_{k_{r-1}+u+n}\right)
$$

Note that for any sequences x, y and scalar λ, we have

$$
\varphi_{r, n}(x+y)=\varphi_{r, n}(x)+\varphi_{r, n}(y) \text { and } \varphi_{r, n}(\lambda x)=\lambda \varphi_{r, n}(x)
$$

The notion of modulus function was introduced by Nakano [18] in 1953. We recall that a modulus f is a function from $[0, \infty)$ to $[0, \infty)$ such that
i) $f(x)=0$ if and only if $x=0$,
(ii) $f(x+y) \leq f(x)+f(y)$, for all $x \geq 0, y \geq 0$,
(iii) f is increasing,
(iv) f is continuous from the right at 0 .

A modulus may be bounded or unbounded. For example, $f(x)=x^{p},(0<p \leq 1)$ is unbounded but $f(x)=\frac{x}{1+x}$ is bounded. Maddox [12] and Ruckle[21], Bhardwaj [4], Et ([5], [6]), Işık ([8], [9]), Savas ([22], [23]) used a modulus function to construct some sequence spaces.

A sequence space E is said to be solid (or normal) if $\left(\alpha_{k} x_{k}\right) \in E$ whenever $\left(x_{k}\right) \in E$ for all sequences $\left(\alpha_{k}\right)$ of scalars with $\left|\alpha_{k}\right| \leq 1$.

It is well known that a sequence space E is normal implies that E is monotone.
Definition 1.1 Let q_{1}, q_{2} be seminorms on a vector space X. Then q_{1} is said to be stronger than q_{2} if whenever $\left(x_{n}\right)$ is a sequence such that $q_{1}\left(x_{n}\right) \rightarrow 0$, then also $q_{2}\left(x_{n}\right) \rightarrow 0$. If each is stronger than the others q_{1} and q_{2} are said to be equivalent (one may refer to Wilansky [25]).

Lemma 1.2 Let q_{1} and q_{2} be seminorms on a linear space X. Then q_{1} is stronger than q_{2} if and only if there exists a constant T such that $q_{2}(x) \leq T q_{1}(x)$ for all $x \in X$ (see for instance Wilansky [25]).

Let $p=\left(p_{r}\right)$ be a sequence of strictly positive real numbers, X be a seminormed space over the field \mathbb{C} of complex numbers with the seminorm q, f be a Modulus function and $s \geq 0$ be a fixed real number. Then we define the sequence space $\widehat{B V}_{\theta}(f, p, q, s)$ as follows:
$\widehat{B V}_{\theta}(f, p, q, s)=\left\{x=\left(x_{k}\right) \in X: \sum_{r=1}^{\infty} r^{-s}\left[f\left(q\left(\varphi_{r n}(x)\right)\right)\right]^{p_{r}}<\infty\right.$, uniformly in $\left.n,\right\}$.
We get the following sequence spaces from $\widehat{B V}_{\theta}(f, p, q, s)$ by choosing some of the special p, f and s :
For $f(x)=x$, we get

$$
\widehat{B V}_{\theta}(p, q, s)=\left\{x=\left(x_{k}\right) \in X: \sum_{r=1}^{\infty} r^{-s}\left[\left(q\left(\varphi_{r n}(x)\right)\right)\right]^{p_{r}}<\infty, \text { uniformly in } n\right\}
$$

for $p_{r}=1$ for all $r \in \mathbb{N}$, we get

$$
\widetilde{B V}_{\theta}(f, q, s)=\left\{x=\left(x_{k}\right) \in X: \sum_{r=1}^{\infty} r^{-s}\left[f\left(q\left(\varphi_{r n}(x)\right)\right)\right]<\infty, \text { uniformly in } n\right\}
$$

for $s=0$ we get

$$
\widehat{B V}_{\theta}(f, p, q)=\left\{x=\left(x_{k}\right) \in X: \sum_{r=1}^{\infty}\left[f\left(q\left(\varphi_{r n}(x)\right)\right)\right]^{p_{r}}<\infty, \text { uniformly in } n\right\}
$$

for $f(x)=x$ and $s=0$ we get

$$
\widehat{B V}_{\theta}(p, q)=\left\{x=\left(x_{k}\right) \in X: \sum_{r=1}^{\infty}\left[\left(q\left(\varphi_{r n}(x)\right)\right)\right]^{p_{r}}<\infty, \text { uniformly in } n\right\}
$$

for $p_{r}=1$ for all $r \in \mathbb{N}$, and $s=0$ we get

$$
\widehat{B V}_{\theta}(f, q)=\left\{x=\left(x_{k}\right) \in X: \sum_{r=1}^{\infty}\left[f\left(q\left(\varphi_{r n}(x)\right)\right)\right]<\infty, \text { uniformly in } n\right\},
$$

for $f(x)=x, p_{r}=1$ for all $r \in \mathbb{N}$, and $s=0$ we have

$$
\widetilde{B V}_{\theta}(q)=\left\{x=\left(x_{k}\right) \in X: \sum_{r=1}^{\infty} q\left(\varphi_{r n}(x)\right)<\infty, \text { uniformly in } n\right\} .
$$

The following inequalities will be used throughout the paper. Let $p=\left(p_{r}\right)$ be a bounded sequence of strictly positive real numbers with $0<p_{r} \leq \sup p_{r}=H$, $D=\max \left(1,2^{H-1}\right)$, then

$$
\begin{equation*}
\left|a_{r}+b_{r}\right|^{p_{r}} \leq D\left\{\left|a_{r}\right|^{p_{r}}+\left|b_{r}\right|^{p_{r}}\right\} \tag{1.2}
\end{equation*}
$$

where $a_{r}, b_{r} \in \mathbb{C}$.

2. MAIN RESULTS

In this section we will prove the general results of this paper on the sequence space $\widehat{B V}_{\theta}(f, p, q, s)$, those characterize the structure of this space.

Theorem 2.1 The sequence space $\widehat{B V}_{\theta}(f, p, q, s)$ is a linear space over the field \mathbb{C} of complex numbers.

Proof. Let $x, y \in \widehat{B V}_{\theta}(f, p, q, s)$. For $\lambda, \mu \in \mathbb{C}$ there exists M_{λ} and N_{μ} integers such that $|\lambda| \leq M_{\lambda}$ and $|\mu| \leq N_{\mu}$. Since f is subadditive, q is a seminorm

$$
\begin{aligned}
& \sum_{r=1}^{\infty} r^{-s}\left[f\left(q\left(\lambda \varphi_{r n}(x)+\mu \varphi_{r n}(y)\right)\right)\right]^{p_{r}} \\
& \leq \sum_{r=1}^{\infty} r^{-s}\left[f\left(|\lambda| q\left(\varphi_{r n}(x)\right)\right)+f\left(q\left(|\mu| \varphi_{r n}(y)\right)\right)\right]^{p_{r}} \\
& \leq D\left(M_{\lambda}\right)^{H} \sum_{r=1}^{\infty} r^{-s}\left[f\left(q\left(\varphi_{r n}(x)\right)\right)\right]^{p_{r}}+D\left(N_{\mu}\right)^{H} \sum_{r=1}^{\infty} r^{-s}\left[f\left(q\left(\varphi_{r n}(y)\right)\right)\right]^{p_{r}}<\infty
\end{aligned}
$$

This proves that $\widehat{B V}_{\theta}(f, p, q, s)$ is a linear space.

Theorem 2.2 $\widehat{B V}_{\theta}(f, p, q, s)$ is a paranormed space (not necessarily totally paranormed), paranormed by

$$
g(x)=\left(\sum_{r=1}^{\infty} r^{-s}\left[f\left(q\left(\varphi_{r n}(x)\right)\right)\right]^{p_{r}}\right)^{\frac{1}{M}}
$$

where $M=\max \left(1, \sup p_{r}\right), H=\sup _{r} p_{r}<\infty$.
Proof. It is clear that $g(\bar{\theta})=0$ and $g(x)=g(-x)$ for all $x \in \overparen{B V_{\theta}}(f, p, q, s)$, where $\bar{\theta}=(\theta, \theta, \theta, \ldots)$. It also follows from (1.2), Minkowski's inequality and definition f that g is subadditive and

$$
g(\lambda x) \leq K_{\lambda}^{H \backslash M} g(x),
$$

where K_{λ} is an integer such that $|\lambda|<K_{\lambda}$. Therefore the function $(\lambda, x) \rightarrow \lambda x$ is continuous at $x=\bar{\theta}$ and that when λ is fixed, the function $x \rightarrow \lambda x$ is continuous at $x=\bar{\theta}$. If x is fixed and $\varepsilon>0$, we can choose r_{0} such that

$$
\sum_{r=r_{0}}^{\infty} r^{-s}\left[f\left(q\left(\varphi_{r n}(x)\right)\right)\right]^{p_{r}}<\frac{\varepsilon}{2}
$$

and $\delta>0$ so that $|\lambda|<\delta$ and definition of f gives

$$
\sum_{r=1}^{r_{0}} r^{-s}\left[f\left(q\left(\lambda \varphi_{r n}(x)\right)\right)\right]^{p_{r}}=\sum_{r=1}^{r_{0}} r^{-s}\left[f\left(|\lambda| q\left(\varphi_{r n}(x)\right)\right)\right]^{p_{r}}<\frac{\varepsilon}{2}
$$

Therefore $|\lambda|<\min (1, \delta)$ implies that $g(\lambda x)<\varepsilon$. Thus the function $(\lambda, x) \rightarrow \lambda x$ is continuous at $\lambda=0$ and $\widehat{B V}_{\theta}(f, p, q, s)$ is paranormed space
Theorem 2.3 Let f, f_{1}, f_{2} be modulus functions q, q_{1}, q_{2} seminorms and $s, s_{1}, s_{2} \geq$ 0 . Then
(i) $\widehat{B V}_{\theta}\left(f_{1}, p, q, s\right) \cap \widehat{B V}_{\theta}\left(f_{2}, p, q, s\right) \subseteq \widehat{B V}_{\theta}\left(f_{1}+f_{2}, p, q, s\right)$,
(ii) If $s_{1} \leq s_{2}$ then $B V_{\theta}\left(f, p, q, s_{1}\right) \subseteq B V_{\theta}\left(f, p, q, s_{2}\right)$,
(iii) $\widehat{B V}_{\theta}\left(f, p, q_{1}, s\right) \cap \widehat{B V}_{\theta}\left(f, p, q_{2}, s\right) \subseteq \widehat{B V}_{\theta}\left(f, p, q_{1}+q_{2}, s\right)$,
(iv) If q_{1} is stronger than q_{2} then $B V_{\theta}\left(f, p, q_{1}, s\right) \subseteq B V_{\theta}\left(f, p, q_{2}, s\right)$.

Proof. i) The proof follows from the following inequality
$r^{-s}\left[\left(f_{1}+f_{2}\right)\left(q\left(\varphi_{r n}(x)\right)\right)\right]^{p_{r}} \leq D r^{-s}\left[f_{1}\left(q\left(\varphi_{r n}(x)\right)\right)\right]^{p_{r}}+D r^{-s}\left[f_{2}\left(q\left(\varphi_{r n}(x)\right)\right)\right]^{p_{r}}$.
ii), iii) and iv) follow easily.

Corollary 2.4 Let f be a modulus function, then we have
(i) If $q_{1} \cong\left(\right.$ equivalent to) q_{2}, then $\widetilde{B V}_{\theta}\left(f, p, q_{1}, s\right)=\widehat{B V}_{\theta}\left(f, p, q_{2}, s\right)$,
(ii) $\widehat{B V}_{\theta}(f, p, q) \subseteq \widehat{B V}_{\theta}(f, p, q, s)$,
(iii) $\widehat{B V}_{\theta}(f, q) \subseteq \widehat{B V}_{\theta}(f, q, s)$.

Theorem 2.5. Suppose that $0<m_{r} \leq t_{r}<\infty$ for each $r \in \mathbb{N}$. Then $\widehat{B V_{\theta}}(f, m, q) \subseteq$ $\widetilde{B V}_{\theta}(f, t, q)$.

Proof. Let $x \in \widehat{B V}_{\theta}(f, m, q)$. This implies that

$$
\left[f\left(q\left(\varphi_{r n}(x)\right)\right)\right]^{m_{r}} \leq 1
$$

for sufficiently large values of k, say $k \geq k_{0}$ for some fixed $k_{0} \in \mathbb{N}$. Since f is non decreasing, we have

$$
\sum_{r=k_{0}}^{\infty} r^{-s}\left[f\left(q\left(\varphi_{r n}(x)\right)\right)\right]^{t_{r}} \leq \sum_{r=k_{0}}^{\infty} r^{-s}\left[f\left(q\left(\varphi_{r n}(x)\right)\right)\right]^{m_{r}}
$$

It gives $x \in \overparen{B V_{\theta}}(f, t, q)$.
The following result is a consequence of the above result.

Corollary 2.6

(i) If $0<p_{r} \leq 1$ for each r, then $\overparen{B V}_{\theta}(f, p, q) \subseteq \overparen{B V}_{\theta}(f, q)$,
(ii) If $p_{r} \geq 1$ for all r, then $\widehat{B V}_{\theta}(f, q) \subseteq \widehat{B V}_{\theta}(f, p, q)$.

Theorem 2.7 The sequence space $\overparen{B V}_{\theta}(f, p, q, s)$ is solid.
Proof. Let $x \in \widehat{B V}_{\theta}(f, p, q, s)$, i.e.

$$
\sum_{r=1}^{\infty} r^{-s}\left[f\left(q\left(\varphi_{r n}(x)\right)\right)\right]^{p_{r}}<\infty
$$

Let $\left(\alpha_{r}\right)$ be sequence of scalars such that $\left|\alpha_{r}\right| \leq 1$ for all $r \in \mathbb{N}$. Then the result follows from the following inequality.

$$
\sum_{r=1}^{\infty} r^{-s}\left[f\left(q\left(\alpha_{r} \varphi_{r n}(x)\right)\right)\right]^{p_{r}} \leq \sum_{r=1}^{\infty} r^{-s}\left[f\left(q\left(\varphi_{r n}(x)\right)\right)\right]^{p_{r}}
$$

Corollary 2.8 The sequence space $\overparen{B V}_{\theta}(f, p, q, s)$ is monotone.

References

[1] Ahmad, Z.U. and Mursaleen, M. An application of Banach limits, Proc. Amer. Math. Soc. 103, (1988), 244-246.
[2] Altinok, H. Altin, Y. Işik, M. The sequence space $B V_{\sigma}(M, p, q, s)$ on seminormed spaces. Indian J. Pure Appl. Math. 39(1) (2008), 49-58
[3] Banach, S. Theorie des Operations Linearies, Warszawa, 1932.
[4] Bhardwaj, V.K. A generalization of a sequence space of Ruckle, Bull. Calcutta Math. Soc. 95(5) (2003), 411-420.
[5] Et, M. Spaces of Cesàro difference sequences of order r defined by a modulus function in a locally convex space. Taiwanese J. Math. 10(4) (2006), 865-879.
[6] Et, M. : Strongly almost summable difference sequences of order m defined by a modulus. Studia Sci. Math. Hungar. 40(4) (2003), 463-476.
[7] Freedman, A.R. Sember, J. J. Raphael, M. Some Cesàro-type summability spaces. Proc. London Math. Soc. 3(3) 37 (1978), 508-520.
[8] Issik, M. Generalized vector-valued sequence spaces defined by modulus functions. J. Inequal. Appl. 2010, Art. ID 457892, 7 pp.
[9] Işik, M. Strongly almost (w, λ, q)-summable sequences. Math. Slovaca. 61(5) (2011), 779788.
[10] Karakaya, V. and Savaş, E. On almost p-bounded variation of lacunary sequences. Comput. Math. Appl. 61(6) (2011), 1502-1506.
[11] Lorentz, G. G. A contribution the theory of divergent series, Acta Math. 80 (1948), 167-190.
[12] Maddox.I. J. Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc. 100 (1986), 161-166.
[13] Mohiuddine, S. A. An application of almost convergence in approximation theorems. Appl. Math. Lett. 24 (2011), no. 11, 1856-1860
[14] Mohiuddine, S. A. Matrix transformations of paranormed sequence spaces through de la Vallee-Pousion mean, Acta Scientiarum,Technology, 37(1) (2015), 71-75.
[15] Mursaleen, M. Mohiuddine, S. A. Some matrix transformations of convex and paranormed sequence spaces into the spaces of invariant means. J. Funct. Spaces Appl. 2012, Art. ID 612671, 10 pp
[16] Mursaleen, M. On some new invariant matrix methods of summability, Quart. J. Math. Oxford 34(2), (1983), 77-86.
[17] Mursaleen, M. Matrix transformations between some new sequence spaces, Houston J. Math. 9 , (1983), 505-509.
[18] Nakano,H. Concave modulars, J. Math. Soc. Japan. 5 (1953), 29-49.
[19] Nanda, S. and Nayak, K. C. Some new sequence spaces, Indian J.Pure Appl.Math. 9(8) (1978) 836-846.
[20] Raimi, R. A. Invariant means and invariant matrix method of summability, Duke Math. J. 30, (1963), 81-94.
[21] Ruckle,W. H. FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973-978.
[22] Savaş, E. and Patterson, R. F. Double sequence spaces defined by a modulus. Math. Slovaca 61(2) (2011), 245-256.
[23] Savaş, E. On some new double sequence spaces defined by a modulus. Appl. Math. Comput. 187(1) (2007), 417-424.
[24] Schaefer, P. Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36 (1972), 104110.
[25] Wilansky, A. Functional Analysis, Blaisdell Publishing Company, New York, 1964.
Current address: Harran University, Faculty of Education, Sanliurfa-TURKEY
E-mail address: misik63@yahoo.com

[^0]: Received by the editors: June 08, 2016; Accepted: February 01, 2017.
 2010 Mathematics Subject Classification. 40A05, 40C05, 40D05.
 Key words and phrases. Modulus function, sequence spaces, seminorm.

