RESULTS ON $\alpha-{ }^{*}$ CENTRALIZERS OF PRIME AND SEMIPRIME RINGS WITH INVOLUTION

EMINE KOÇ AND ÖZNUR GÖLBAŞI

Abstract

Let R be a prime or semiprime ring equipped with an involution * and α be an automorphism of R. An additive mapping $T: R \rightarrow R$ is called a left (resp. right) $\alpha-^{*}$ centralizer of R if $T(x y)=T(x) \alpha\left(y^{*}\right)$ (resp. $\left.T(x y)=\alpha\left(x^{*}\right) T(y)\right)$ holds for all $x, y \in R$, where α is an endomorphism of R. A left (resp. right) Jordan $\alpha-^{*}$ centralizer $T: R \rightarrow R$ is an additive mapping such that $T\left(x^{2}\right)=T(x) \alpha\left(x^{*}\right)$ (resp. $\left.T\left(x^{2}\right)=\alpha\left(x^{*}\right) T(x)\right)$ holds for all $x \in R$. In this paper, we obtain some results about Jordan $\alpha-^{*}$ centralizer of R with involution.

1. Introduction

This paper deals with the study of $\alpha-^{*}$ centralizers of prime and semiprime rings with involution $*$ and was motivated by work of [8] and [6].Throughout, R will represent an associative ring with center Z. Recall that a ring R is prime if $x R y=0$ implies $x=0$ or $y=0$, and semiprime if $x R x=0$ implies $x=0$. An additive mapping $x \mapsto x^{*}$ satisfying $(x y)^{*}=y^{*} x^{*}$ and $\left(x^{*}\right)^{*}=x$ for all $x, y \in R$ is called an involution and R is called a $*$-ring.

According B. Zalar [10], an additive mapping $T: R \rightarrow R$ is called a left (resp. right) centralizer of R if $T(x y)=T(x) y$ (resp. $T(x y)=x T(y))$ holds for all $x, y \in R$. If T is both left as well right centralizer, then it is called a centralizer. This concept appears naturally C^{*}-algebras. In ring theory it is more common to work with module homorphisms. Ring theorists would write that $T: R_{R} \rightarrow R_{R}$ is a homomorphism of a ring module R into itself instead of a left centralizer. In case $T: R \rightarrow R$ is a centralizer, then there exists an element $\lambda \in C$ such that $T(x)=\lambda x$ for all $x \in R$ and $\lambda \in C$, where C is the extended centroid of R. A left (resp. right) Jordan centralizer $T: R \rightarrow R$ is an additive mapping such that $T\left(x^{2}\right)=T(x) x$ (resp. $\left.T\left(x^{2}\right)=x T(x)\right)$ holds for all $x \in R$. Zalar proved that any left (right) Jordan centralizer on a 2 -torsion free semiprime ring is a left (right) centralizer. Recently, in [1], E. Albaş introduced the definition of α-centralizer of R, i. e. an

[^0]additive mapping $T: R \rightarrow R$ is called a left (resp. right) α-centralizer of R if $T(x y)=T(x) \alpha(y)($ resp. $T(x y)=\alpha(x) T(y))$ holds for all $x, y \in R$, where α is an endomorphism of R. If T is left and right α-centralizer then it is natural to call α-centralizer. Clearly every centralizer is a special case of a α-centralizer with $\alpha=i d_{R}$. Also, an additive mapping $T: R \rightarrow R$ associated with a homomorphism $\alpha: R \rightarrow R$, if $L_{a}(x)=a \alpha(x)$ and $R_{a}(x)=\alpha(x) a$ for a fixed element $a \in R$ and for all $x \in R$, then L_{a} is a left α-centralizer and R_{a} is a right α-centralizer. Albaş showed Zalar's result holds for α-centralizer.

On the other hand, in [3], J. Vukman and M. Fosner proved that an additive mapping $T: R \rightarrow R$, where R is a prime ring with characteristic different from two into, satisfying $T\left(x^{3}\right)=x T(x) x$ for all $x \in R$, is a two sided centralizer. In [5], the authors investigated this result for a α-centralizer of R.

Inspired by the definition of centralizer, the notion of *-centralizer was extended as follow:

Let R be a ring with involution $*$. An additive mapping $T: R \rightarrow R$ is called a left (resp. right) ${ }^{*}$-centralizer of R if $T(x y)=T(x) y^{*}\left(\right.$ resp. $\left.T(x y)=x^{*} T(y)\right)$ holds for all $x, y \in R$. An additive mapping $T: R \rightarrow R$ is said to be a left (resp. right) Jordan ${ }^{*}$-centralizer if $T\left(x^{2}\right)=T(x) x^{*}$ (resp. $\left.T\left(x^{2}\right)=x^{*} T(x)\right)$ holds for all $x \in R$. For some fixed $a \in R$, the map $x \rightarrow a x^{*}$ is a Jordan left *-centralizer. Every left $*$-centralizer on a ring R is a Jordan left $*-$ centralizer. It is natural to question whether the converse of above statement is true and it was be shown that the answer to this question is affirmative if underlying $*$-ring is semiprime in [8]. In [2], the authors introduced the definition of $\alpha-^{*}$ centralizer of R, i. e. an additive mapping $T: R \rightarrow R$ is called a left (resp. right) $\alpha-^{*}$ centralizer of R if $T(x y)=T(x) \alpha\left(y^{*}\right)$ (resp. $\left.T(x y)=\alpha\left(x^{*}\right) T(y)\right)$ holds for all $x, y \in R$, where α is an endomorphism of R. They investigeted that T is a Jordan $\alpha-{ }^{*}$ centralizer under some conditions. Considerable work has been done on this topic during the last couple of decades (see [1-8], where further references can be found).

The main aim of the present article is a generalization of above results to the case $\alpha-{ }^{*}$ centralizer of R with involution.

2. Results

Lemma 1. [9, Lemma 1] Let R be a prime ring, the elements a_{i}, b_{i} in the central closure of R satisfy $\sum a_{i} x b_{i}=0$ for all $x \in R$. If $b_{i} \neq 0$ for some i, then a_{i} 's are C-independent.

Lemma 2. [5, Theorem 2.1] Let R be a 2 -torsion free semiprime ring with an identity element, α is a nonzero surjective homomorphism of R and $T: R \rightarrow R$ be an additive mapping such that $T\left(x^{3}\right)=\alpha(x) T(x) \alpha(x)$ holds for all $x \in R$. Then T is a α-centralizer of R.

Lemma 3. [3, Theorem 2.1] Let R be a 2 -torsion free ring, U a square closed Lie ideal of R which has a commutator right (resp. left) nonzero divisor, α is
an automorphism of R and $T: R \rightarrow R$ a left (resp. right) Jordan $\alpha-$ centralizer mapping of U into R. Then T is a left (resp. right) α-centralizer mapping of U into R.

Example 1. [4, Example] A semiprime ring may not contain a commutator nonzero divisor (after all,take commutative semiprime rings, or more generally, semiprime rings R containing a nonzero central idempotent element $e \in R$ such that $e R$ is commutative). Conversely, a ring may contain a commutator nonzero divisor, but is not semiprime. For example, let $R=T_{2}\left(A_{1}\right)$ be the ring of the 2×2 upper triangular matrices whose entries are elements from the Weyl algebra A_{1} (polynomials in x, y such that $x y-y x=1$). Then R is not semiprime, but the commutator of scalar matrices generated by x and y is the identity matrix.

Theorem 1. Let R be a 2 -torsion free semiprime ring, U a square closed Lie ideal of R, α is an automorphism of R and $T: R \rightarrow R$ a left (resp. right) Jordan α-centralizer mapping of U into R. Then T is a left (resp. right) $\alpha-$ centralizer mapping of U into R.

Proof. The proof is obvious from Lemma 3 and the well known fact that a semiprime ring may not contain a commutator nonzero divisor by above example.

Theorem 2. Let R be a non-commutative prime ${ }^{*}$-ring, α is an automorphism of R and $T: R \rightarrow R$ be a Jordan left $\alpha-{ }^{*}$ centralizer. If $T(x) \in Z$ for all $x \in R$, then $T=0$.

Proof. By the hyphotesis, we have

$$
\begin{equation*}
[T(x), y]=0 \text { for all } x, y \in R \tag{2.1}
\end{equation*}
$$

Replacing x by x^{2} in (2.1) and using this, we obtain that

$$
T(x)\left[\alpha\left(x^{*}\right), y\right]=0 \text { for all } x, y \in R .
$$

In the view of $T(x) \in Z$ and centre of prime ring is free from zero divisors, we get

$$
T(x)=0 \quad \text { or } \quad\left[\alpha\left(x^{*}\right), y\right]=0 \text { for all } x, y \in R .
$$

We obtain R is union of its two additive subgroups such that

$$
K=\{x \in R \mid T(x)=0\}
$$

and

$$
L=\left\{x \in R \mid \alpha\left(x^{*}\right) \in Z\right\} .
$$

Clearly each of K and L is additive subgroup of R. Morever, R is the set-theoretic union of K and L. But a group can not be the set-theoretic union of two proper subgroups, hence $K=R$ or $L=R$. In the former case, we have $T=0$ and the second case, R is commutative, a contradiction. This finishes the proof.

Theorem 3. Let R be a 2 -torsion free semiprime ${ }^{*}$-ring, α is an automorphism of R such that $* \alpha=\alpha *$ and $T: R \rightarrow R$ be a Jordan left $\alpha-{ }^{*}$ centralizer. Then T is a reverse left $\alpha-^{*}$ centralizer, that is $T(x y)=T(y) \alpha\left(x^{*}\right)$ for all $x, y \in R$.

Proof. By the hyphotesis, we have

$$
\begin{equation*}
T\left(x^{2}\right)=T(x) \alpha\left(x^{*}\right) \text { for all } x \in R \tag{2.2}
\end{equation*}
$$

Applying involution both sides to (2.2), we conclude that

$$
\left(T\left(x^{2}\right)\right)^{*}=\alpha\left(x^{*}\right)^{*} T(x)^{*} \quad \text { for all } x \in R
$$

Using $* \alpha=\alpha *$, we get

$$
\left(T\left(x^{2}\right)\right)^{*}=\alpha(x) T(x)^{*} \quad \text { for all } x \in R
$$

Define $S: R \rightarrow R, S(x)=T(x)^{*}$ for all $x \in R$. Hence we have

$$
\begin{aligned}
S\left(x^{2}\right) & =T\left(x^{2}\right)^{*} \\
& =\left(T(x) \alpha\left(x^{*}\right)\right)^{*} \\
& =\alpha(x) T(x)^{*}=\alpha(x) S(x)
\end{aligned}
$$

for all $x \in R$. This means S is a Jordan right α-centralizer on R. By Theorem 1, S is a right α-centralizer that is, $S(x y)=\alpha(x) S(y)$ for all $x, y \in R$. This implies that

$$
\begin{align*}
T(x y)^{*} & =S(x y) \\
& =\alpha(x) S(y)=\alpha(x) T(y)^{*} \tag{2.3}
\end{align*}
$$

and so

$$
T(x y)^{*}=\alpha(x) T(y)^{*} \quad \text { for all } x, y \in R
$$

Applying involution both sides the last equation, we get

$$
T(x y)=T(y) \alpha\left(x^{*}\right) \text { for all } x, y \in R
$$

Hence T is a reverse left $\alpha-{ }^{*}$ centralizer.
Theorem 4. Let R be a 2 -torsion free semiprime *-ring with an identity element, α is an automorphism of R such that $* \alpha=\alpha *$ and $T: R \rightarrow R$ be an additive mapping such that $T\left(x^{3}\right)=\alpha\left(x^{*}\right) T(x) \alpha\left(x^{*}\right)$ holds for all $x \in R$. Then T is a reverse $\alpha-^{*}$ centralizer, that is $T(x y)=T(y) \alpha\left(x^{*}\right)=\alpha\left(y^{*}\right) T(x)$ for all $x, y \in R$.

Proof. By the hyphotesis, we have

$$
\begin{equation*}
T\left(x^{3}\right)=\alpha\left(x^{*}\right) T(x) \alpha\left(x^{*}\right) \text { for all } x \in R \tag{2.4}
\end{equation*}
$$

Applying involution both sides to (2.4) and using $* \alpha=\alpha *$, we obtain that

$$
T\left(x^{3}\right)^{*}=\left(\alpha\left(x^{*}\right) T(x) \alpha\left(x^{*}\right)\right)^{*}=\alpha(x) T(x)^{*} \alpha(x) \text { for all } x \in R
$$

Define $S: R \rightarrow R, S(x)=T(x)^{*}$ for all $x \in R$. Hence we have

$$
\begin{aligned}
S\left(x^{3}\right) & =T\left(x^{3}\right)^{*} \\
& =\alpha(x) T(x)^{*} \alpha(x)=\alpha(x) S(x) \alpha(x)
\end{aligned}
$$

for all $x \in R$. Hence we obtain that

$$
S\left(x^{3}\right)=\alpha(x) S(x) \alpha(x) \text { for all } x \in R
$$

Using Lemma 2, we conclude that S is a two sided α-centralizer that is, $S(x y)=$ $\alpha(x) S(y)=S(x) \alpha(y)$ for all $x, y \in R$. This implies for all $x, y \in R$

$$
\begin{align*}
T(x y)^{*} & =S(x y) \\
& =\alpha(x) S(y)=\alpha(x) T(y)^{*} \tag{2.5}
\end{align*}
$$

and

$$
\begin{aligned}
T(x y)^{*} & =S(x y) \\
& =S(x) \alpha(y)=T(x)^{*} \alpha(y)
\end{aligned}
$$

Applying involution both sides the two last equations and using $* \alpha=\alpha *$, we get

$$
T(x y)=T(y) \alpha\left(x^{*}\right)=\alpha\left(y^{*}\right) T(x) \text { for all } x, y \in R
$$

Theorem 5. Let R be a 2 -torsion free non-commutative prime ${ }^{*}$-ring, α is an automorphism of R such that $* \alpha=\alpha *$ and $T, S: R \rightarrow R$ be two Jordan left $\alpha-{ }^{*}$ centralizer. If $[S(x), T(x)]=0$ holds for all $x \in R$ and $T \neq 0$, then there exists $\lambda \in C$ such that $S=\lambda T$.

Proof. We know that S and T are reverse left $\alpha-{ }^{*}$ centralizers by Theorem 3. Now we assume that

$$
\begin{equation*}
[S(x), T(x)]=0 \text { for all } x \in R \tag{2.6}
\end{equation*}
$$

Lineerizing (2.6) and using this, we have

$$
\begin{equation*}
[S(x), T(y)]+[S(y), T(x)]=0 \text { for all } x, y \in R \tag{2.7}
\end{equation*}
$$

Replacing x by $z x$ in (2.7) and using this, we arrive at

$$
\begin{equation*}
S(x)\left[\alpha\left(z^{*}\right), T(y)\right]+T(x)\left[S(y), \alpha\left(z^{*}\right)\right]=0 \text { for all } x, y, z \in R \tag{2.8}
\end{equation*}
$$

Writing z^{*} instead of z in (2.8) and using α is an automorphism of R, we get

$$
\begin{equation*}
S(x)[z, T(y)]+T(x)[S(y), z]=0 \text { for all } x, y, z \in R \tag{2.9}
\end{equation*}
$$

Taking $w x$ instead of x in (2.9), we find that

$$
S(x) \alpha\left(w^{*}\right)[z, T(y)]+T(x) \alpha\left(w^{*}\right)[S(y), z]=0 \text { for all } x, y, z, w \in R .
$$

Again replacing w^{*} instead of w and using α is an automorphism of R, we obtain that

$$
\begin{equation*}
S(x) w[z, T(y)]+T(x) w[S(y), z]=0 \text { for all } x, y, z, w \in R . \tag{2.10}
\end{equation*}
$$

Using Lemma 1, we have $[z, T(y)]=0$ for all $y, z \in R$ or $S(x)=\lambda(x) T(x)$ where $\lambda(x) \in C$. But $[z, T(y)] \neq 0$ for some $z, y \in R$ because of $T \neq 0$ (see Theorem 2). Hence we get $S(x)=\lambda(x) T(x)$ where $\lambda(x) \in C$.

Returning (2.10), we can write

$$
\begin{aligned}
0 & =S(x) w[z, T(y)]+T(x) w[S(y), z] \\
& =\lambda(x) T(x) w[z, T(y)]+T(x) w[\lambda(y) T(y), z] \\
& =(\lambda(x)-\lambda(y)) T(x) w[z, T(y)]
\end{aligned}
$$

for all $z, y \in R$. By the primeness of R, the last equation yields that either $(\lambda(x)-$ $\lambda(y)) T(x)=0$ or $[z, T(y)]=0$. Again using $[z, T(y)] \neq 0$ some $z, y \in R$, we have $(\lambda(x)-\lambda(y)) T(x)=0$ for all $x, y \in R$. This implies $\lambda(x) T(x)=\lambda(y) T(x)$, and so, $S(x)=\lambda(y) T(x)$ for all $x, y \in R$. This completes the proof.

Theorem 6. Let R be a semiprime ${ }^{*}$-ring, α is an automorphism of R such that $* \alpha=\alpha *$ and $T: R \rightarrow R$ be a mapping (not necessary additive mapping) such that $T(x) \alpha\left(y^{*}\right)=\alpha\left(x^{*}\right) T(y)$ holds for all $x, y \in R$. Then T is a reverse left $\alpha-{ }^{*}$ centralizer of R.

Proof. By the hypothesis, we get

$$
\begin{equation*}
T(x) \alpha\left(y^{*}\right)=\alpha\left(x^{*}\right) T(y) \text { for all } x, y \in R \tag{2.11}
\end{equation*}
$$

We calculate the following equation using (2.11) and α is an automorphism of R :

$$
\begin{aligned}
(T(x+y)-T(x)-T(y)) \alpha\left(z^{*}\right) & =T(x+y) \alpha\left(z^{*}\right)-T(x) \alpha\left(z^{*}\right)-T(y) \alpha\left(z^{*}\right) \\
& =\alpha\left((x+y)^{*}\right) T(z)-\alpha\left(x^{*}\right) T(z)-\alpha\left(y^{*}\right) T(z) \\
& =\left(\alpha\left((x+y)^{*}\right)-\alpha\left(x^{*}\right)-\alpha\left(y^{*}\right)\right) T(z) \\
& =\alpha\left((x+y)^{*}-x^{*}-y^{*}\right) T(z) \\
& =\alpha\left(x^{*}+y^{*}-x^{*}-y^{*}\right) T(z)=0
\end{aligned}
$$

Hence we have

$$
(T(x+y)-T(x)-T(y)) \alpha\left(z^{*}\right)=0
$$

Writing z^{*} instead of z and using α is an automorphism of R in this equation, we arrive at

$$
(T(x+y)-T(x)-T(y)) z=0 \text { for all } x, y, z \in R
$$

Since R is semiprime ring, we obtain that

$$
T(x+y)=T(x)+T(y) \text { for all } x, y \in R
$$

Similarly, we calculate the relation $\left(T(y x)-T(x) \alpha\left(y^{*}\right)\right) \alpha\left(z^{*}\right)$ using (2.11), we find that $T(y x)=T(x) \alpha\left(y^{*}\right)$ for all $x, y \in R$. Hence T is a reverse left $\alpha-{ }^{*}$ centralizer of R.

References

[1] Albaş, E., On τ-centralizers of semiprime rings, Siberian Math. J. (2007), 48 (2), 191-196.
[2] Ashraf, M. and Mozumder, M. R., On Jordan $\alpha-{ }^{*}$ centralizers in semiprime rings with involution, Int. J. Contemp. Math. Sciences (2012), 7(23), 1103-1112.
[3] Cortes, W. and Haetinger, C., On Lie ideals σ-centralizers of 2 -torsion free rings, Math. J. Okayama Univ. (2009), 51, 111-119.
[4] Cortes, W. and Haetinger, C., On Jordan generalized higher derivations in rings, Turkish J. of Math. (2005), 29(1), 1-10.
[5] Daif, M. N., Tammam El-Sayiad and Haetinger, H., On θ-centralizers of semiprime rings, Aligarh Bull. Math. (2011), 30(1-2), 51-59.
[6] Huang, S. and Haetinger, C., On θ-centralizers of semiprime rings, Demonstratio Mathematica (2012), XLV(1), 29-34.
[7] Shakir, A. and Haetinger, C., Jordan α-centralizers in rings and some applications, Bol. Soc. Paran. Mat. (2008), 26(1-2),71-80.
[8] Shakir, A., Nadeem, A. Dar and Vukman, J., Jordan left $*$-centralizers of prime and semiprime with involutions, Beitr Algebra Geom. (2013), 54, 609-624.
[9] Vukman, J., Centralizers on semiprime rings, Comment. Math. Univ. Carolin. (2001), 42 (2), 237-245.
[10] Zalar, B., On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 1991, 32(4), 609-614.

Current address: Cumhuriyet University, Faculty of Science, Department of Mathematics, Sivas - TURKEY

E-mail address: eminekoc@cumhuriyet.edu.tr,
Current address: Cumhuriyet University, Faculty of Science, Department of Mathematics, Sivas - TURKEY

E-mail address: ogolbasi@cumhuriyet.edu.tr

[^0]: Received by the editors: Received: May 10, 2016 , Accepted: July 17, 2016.
 2010 Mathematics Subject Classification. Primary 16W10 ; Secondary 16N60.
 Key words and phrases. Semiprime ring, prime ring, centralizer, $\alpha-{ }^{*}$ centralizer.

