ON MULTIPLICATIVE (GENERALIZED)-DERIVATIONS IN SEMIPRIME RINGS

DIDEM K. CAMCI AND NEŞET AYDIN

Abstract

In this paper, we study commutativity of a prime or semiprime ring using a map $F: R \longrightarrow R$, multiplicative (generalized)-derivation and a $\operatorname{map} H: R \longrightarrow R$, multiplicative left centralizer, under the following conditions: For all $x, y \in R, i) F(x y) \pm H(x y)=0$, ii) $F(x y) \pm H(y x)=0$, iii) $F(x) F(y) \pm H(x y)=0, i v) F(x y) \pm H(x y) \in Z, v) F(x y) \pm H(y x) \in Z, v i)$ $F(x) F(y) \pm H(x y) \in Z$.

1. Introduction

Let R be a ring with center $Z(R)$. For any $x, y \in R$, the symbol $[x, y]$ (resp. $x \circ y$) means that $x y-y x$ (resp. $x y+y x$). We use many times the commutator identities $[x y, z]=x[y, z]+[x, z] y$ and $[x, y z]=y[x, z]+[x, y] z$, for all $x, y, z \in R$. Recall that R is prime if for any $a, b \in R, a R b=(0)$ implies $a=0$ or $b=0$ and R is semiprime if for any $a \in R, a R a=(0)$ implies $a=0$. Therefore, it is known that if R is semiprime, then $a R b=(0)$ yields $a b=0$ and $b a=0$. In [3], Bresar was introduced the generalized derivation as the following: Let $F: R \longrightarrow R$ be a additive map and $g: R \longrightarrow R$ be a derivation. If $F(x y)=F(x) y+x g(y)$ holds for all $x, y \in R$, then F is called a generalized derivation associated with g. It is symbolized by (F, g). Hence the concept of generalized derivation involves the concept of derivation. In [4] Daif defined multiplicative derivation as the following. Let $D: R \longrightarrow R$ be a map. If $D(x y)=D(x) y+x D(y)$ holds for all $x, y \in R$, then D is said to be multiplicative derivation. Thus the concept of multiplicative derivation involves the concept of derivation. Next, in [5], Daif and El-Sayiad gave multiplicative generalized derivation as the following. Let $F: R \longrightarrow R$ be a map and $d: R \longrightarrow R$ be a derivation. If $F(x y)=F(x) y+x d(y)$ holds for all $x, y \in R$, then F is called a multiplicative generalized derivation associated with d. Hence the concept of multiplicative generalized derivation involves the concept of generalized derivation. Let $H: R \longrightarrow R$ be a map. If $H(x y)=H(x) y$

[^0]holds for all $x, y \in R$, then H is called a multiplicative left centralizer ([6]). In [11], Dhara and Ali gave definition of multiplicative (generalized)-derivation as the following. Let $F, f: R \longrightarrow R$ be two maps. If for all $x, y \in R, F(x y)=$ $F(x) y+x f(y)$, then F is called a multiplicative (generalized)-derivation associated with f. Hence the concept of multiplicative (generalized)-derivation involves the concept of multiplicative generalized derivation.

With the generalization of derivation, it is given following conditions of commutativity of prime or semiprime ring. As a first time, in Ashraf and Rehman's paper [7], if $d(x y) \pm x y \in Z(R)$ holds for all $x, y \in I$, then R is commutative where R is a prime ring, I is nonzero two sided ideal of R and $d: R \longrightarrow R$ is a derivation. In papers ([8], [12], [9], [11], [1], [10], [14]), studied following conditions. i) $F(x y) \pm x y \in Z(R), F(x y) \pm y x \in Z(R), F(x) F(y) \pm x y \in Z(R)$ for all $x, y \in I$, where R is a prime ring, I is a nonzero two sided ideal of $R, d: R \longrightarrow R$ is a derivation and $F: R \longrightarrow R$ is a generalized derivation ([8]). ii) $d([x, y])= \pm[x, y]$ for all $x, y \in I$, where R is a semiprime ring, I is a nonzero ideal of $R, d: R \longrightarrow R$ is a derivation. ([9]). iiie) $F([x, y])= \pm[x, y]$ for all $x, y \in I$, where R is a prime ring, I is a nonzero two sided ideal of $R, d: R \longrightarrow R$ is a derivation and $F: R \longrightarrow R$ is a generalized derivation ([10]). iv) $F([x, y]) \pm[x, y] \in Z(R)$ for all $x, y \in I$, where R is a prime ring, I is a nonzero two sided ideal of $R,(F, d)$ is a generalized derivation and $d(Z(R)$) is nonzero ([11]). v) $F(x y) \in Z(R)$, $F([x, y])=0, F(x y) \pm y x \in Z(R), F(x y) \pm[x, y] \in Z(R)$ for all $x, y \in I$, where R is a semiprime ring, I is a nonzero left ideal of R and (F, d) is a generalized derivation ([12]). vi) $F(x y) \pm x y=0, F(x y) \pm y x=0, F(x) F(y) \pm x y=0$, $F(x) F(y) \pm y x=0, F(x y) \pm x y \in Z(R), F(x y) \pm y x \in Z(R), F(x) F(y) \pm x y \in Z(R)$, $F(x) F(y) \pm y x \in Z(R)$ for all $x, y \in I$, where R is a semiprime ring, I is a nonzero left ideal of R and F is a multiplicative (generalized)-derivation ([1]). vii) $F(x) F(y) \pm[x, y] \in Z(R), F(x) F(y) \pm x \circ y \in Z(R), F[x, y] \pm[x, y]=0$, $F[x, y] \pm[x, y] \in Z(R), F(x \circ y) \pm(x \circ y)=0, F(x \circ y) \pm(x \circ y) \in Z(R)$, $F[x, y] \pm[F(x), y] \in Z(R), F(x \circ y) \pm(F(x) \circ y) \in Z(R)$ for all $x, y \in I$, where R is a semiprime ring, I is a nonzero left ideal of R and F is a multiplicative (generalized)-derivation ([14]).

Let R be a semiprime ring, $F: R \longrightarrow R$ be a multiplicative (generalized)derivation associated with the map f and the map $H: R \longrightarrow R$ be a multiplicative left centralizer. In this paper, we study following conditions. i) $F(x y) \pm H(x y)=0$, for all $x, y \in R$. ii) $F(x y) \pm H(y x)=0$, for all $x, y \in R$. iii) $F(x) F(y) \pm H(x y)=0$, for all $x, y \in R$. iv) $F(x y) \pm H(x y) \in Z(R)$, for all $x, y \in R$. v) $F(x y) \pm H(y x) \in$ $Z(R)$, for all $x, y \in R$. vi) $F(x) F(y) \pm H(x y) \in Z(R)$, for all $x, y \in R$. Moreover, given some corollaries for prime rings.

The material in this work is a part of first author's PH.D. Dissertation which is supervised by Prof. Dr. Neşet Aydın.

2. Results

Lemma 1. [13, Lemma 3] Let R be a prime ring and d be a derivation of R such that $[d(a), a]=0$, for all $a \in R$. Then R is commutative or d is zero.
Lemma 2. Let R be a semiprime ring. If F is a multiplicative (generalized)derivation associated with the map f, then f is a multiplicative derivation, that is, $f(x y)=f(x) y+x f(y)$ for all $x, y \in R$.

Proof. Since F is a multiplicative (generalized)-derivation we have

$$
F(x(y z))=F(x) y z+x f(y z), \forall x, y, z \in R
$$

and

$$
F((x y) z)=F(x) y z+x f(y) z+x y f(z), \forall x, y, z \in R
$$

Hence we get,

$$
x f(y z)=x f(y) z+x y f(z), \forall x, y, z \in R .
$$

From the last equation, we find that $R(f(y z)-f(y) z-y f(z))=(0)$, for all $y, z \in R$. Since the semiprimeness of R, we have, $f(y z)=f(y) z+y f(z)$, for all $y, z \in R$.

Lemma 3. Let R be a semiprime ring and F be a multiplicative (generalized)derivation associated with f. If $F(x y)=0$ holds for all $x, y \in R$, then $F=0$.

Proof. By the assumption, we have

$$
F(x y)=0, \forall x, y \in R
$$

If we replace x by $x z$ with $z \in R$, we get

$$
F(x z y)=0, \forall x, y, z \in R .
$$

Since F is a multiplicative (generalized)-derivation, we get

$$
F(x z) y+x z f(y)=0, \forall x, y, z \in R .
$$

Using the hypothesis we find that

$$
x z f(y)=0, \forall x, y, z \in R
$$

Since R is a semiprime ring, we obtain $x f(z)=0$, for all $x, z \in R$. This means $f=0$. From the definition of F, we get $F(x y)=F(x) y$, for all $x, y \in R$. By the hypothesis we see that

$$
F(x) y=0, \forall x, y \in R
$$

From the semiprimeness of R, we find that $F=0$.
Lemma 4. Let R be a semiprime ring and F be a multiplicative (generalized)derivation associated with f. If $F(x y) \in Z(R)$ holds for all $x, y \in R$, then $[f(x), x]=$ 0 for all $x \in R$.

Proof. By the hypothesis, we have

$$
F(x y) \in Z(R), \forall x, y \in R
$$

Taking $y z$ instead of y with $z \in R$, we get

$$
F(x y z) \in Z(R), \forall x, y, z \in R
$$

Since F is a multiplicative (generalized)-derivation, we have

$$
F(x y) z+x y f(z) \in Z(R), \forall x, y, z \in R
$$

From the hypothesis, we get

$$
[x y f(z), z]=0, \forall x, y, z \in R
$$

Replacing x by $r x$ with $r \in R$, so we have

$$
[r, z] x y f(z)=0, \forall x, y, z, r \in R
$$

In this equation replacing x by $f(z) x$, we find that

$$
[r, z] f(z) x y f(z)=0, \forall x, y, z, r \in R
$$

This implies that, for all $x, y, s \in R$,

$$
[x, y] f(y) s[x, y] f(y)=[x, y] f(y) \operatorname{sxy} f(y)-[x, y] f(y) \operatorname{syx} f(y)=0
$$

Since R is a semiprime ring, we find that

$$
[x, y] f(y)=0, \forall x, y \in R
$$

Replacing x by $x y$ with $y \in R$, we have

$$
[x, y] y f(y)=0, \forall x, y \in R
$$

Hence, we see that

$$
[x, y][f(y), y]=0, \forall x, y \in R
$$

If we replace x by $f(y) x$ and using the semiprimeness of R, we get $[f(y), y]=0$ for all $y \in R$.

Lemma 5. Let R be a ring, F be a multiplicative (generalized)-derivation associated with f and H be a multiplicative left centralizer. If the map $G: R \longrightarrow R$ is defined as $G(x)=F(x) \mp H(x)$ for all $x \in R$, then G is a multiplicative (generalized)derivation associated with f.

Proof. We suppose that, for all $x \in R$

$$
G(x)=F(x) \mp H(x) .
$$

So we have, for all $x, y \in R$

$$
\begin{aligned}
G(x y) & =F(x y) \mp H(x y)=F(x) y+x f(y) \mp H(x) y \\
& =(F(x) \mp H(x)) y+x f(y) \\
& =G(x) y+x f(y) .
\end{aligned}
$$

Then G is a multiplicative (generalized)-derivation associated with f.

Theorem 1. Let R be a semiprime ring, $F: R \longrightarrow R$ be a multiplicative (generalized)derivation associated with f and $H: R \longrightarrow R$ be a multiplicative left centralizer. If $F(x y) \mp H(x y)=0$ holds for all $x, y \in R$, then $f=0$. Moreover, $F(x y)=F(x) y$ holds for all $x, y \in R$ and $F= \pm H$.

Proof. By the hypothesis, we have

$$
F(x y)-H(x y)=0, \forall x, y \in R
$$

So we have

$$
G(x y)=0, \forall x, y \in R
$$

where $G(x)=F(x)-H(x)$. Using Lemma 3 and Lemma 5, we get

$$
G=0
$$

So we have

$$
\begin{equation*}
F=H \tag{2.1}
\end{equation*}
$$

Using the definition of F and (2.1) in the hypothesis, we get

$$
0=F(x y)-H(x y)=F(x) y+x f(y)-H(x) y=x f(y), \forall x, y \in R
$$

Since R is a semiprime ring, we obtain $f=0$. Thus, we get $F(x y)=F(x) y$ for all $x, y \in R$. Similar proof shows that the same conclusion holds as $F(x y)+H(x y)=$ 0 , for all $x, y \in R$. In this case, we obtain $F=-H$. Therefore the proof is completed.

Theorem 2. Let R be a semiprime ring, $F: R \longrightarrow R$ be a multiplicative (generalized)derivation associated with f and $H: R \longrightarrow R$ be a multiplicative left centralizer. If $F(x y) \mp H(y x)=0$ holds for all $x, y \in R$, then $f=0$. Moreover, $F(x y)=F(x) y$, for all $x, y \in R$ and $[F(x), x]=0$, for all $x \in R$.

Proof. By the hypothesis, we have

$$
\begin{equation*}
F(x y)-H(y x)=0, \forall x, y \in R \tag{2.2}
\end{equation*}
$$

Replacing y by $y z$ with $z \in R$ in (2.2), we obtain

$$
F(x y z)-H(y z x)=0, \forall x, y, z \in R
$$

Since F is a multiplicative (generalized)-derivation, we have

$$
(F(x y)-H(y x)) z+x y f(z)+H(y)[x, z]=0, \forall x, y, z \in R
$$

Using (2.2) in the last equation, we get

$$
\begin{equation*}
x y f(z)+H(y)[x, z]=0, \forall x, y, z \in R . \tag{2.3}
\end{equation*}
$$

If we replace z by x in (2.3), we get

$$
x y f(x)=0, \forall x, y \in R .
$$

Since R is a semiprime ring, we obtain $x f(x)=f(x) x=0$, for all $x \in R$. Hence we get,

$$
\begin{equation*}
[f(x), x]=0, \forall x \in R \tag{2.4}
\end{equation*}
$$

If we replace x by $x r$ with $r \in R$ in (2.3), we get the following equation. For all $x, y, z, r \in R$,

$$
\begin{aligned}
& 0=\operatorname{xry} f(z)+H(y)[x r, z] \\
& =\operatorname{xry} f(z)+H(y) x[r, z]+H(y)[x, z] r+x y f(z) r-x y f(z) r \\
& =\operatorname{xry} f(z)+H(y) x[r, z]-x y f(z) r+(x y f(z)+H(y)[x, z]) r .
\end{aligned}
$$

So, using (2.3) in this equation, we find that

$$
x[r, y f(z)]+H(y) x[r, z]=0, \forall x, y, z, r \in R
$$

In this equation replacing r by $f(z)$ and using (2.4), we get

$$
x[f(z), y] f(z)=0, \forall x, y, z \in R
$$

Since R is a semiprime ring, we have

$$
\begin{equation*}
[f(z), y] f(z)=0, \forall y, z \in R \tag{2.5}
\end{equation*}
$$

Replacing y by $y t$ with $t \in R$ in (2.5) and using (2.5), we find that

$$
[f(z), y] t f(z)=0, \forall y, z, t \in R
$$

This yields following equation.

$$
[f(z), y] t[f(z), y]=0, \forall y, z, t \in R
$$

From the semiprimeness of R, we find that

$$
\begin{equation*}
[f(z), y]=0, \forall y, z \in R \tag{2.6}
\end{equation*}
$$

Replacing x by $f(x)$ in (2.3) and using (2.6), we get, for all $x, y, z \in R, f(x) y f(z)=$ 0 . From the semiprimeness of R, this means

$$
\begin{equation*}
f=0 \tag{2.7}
\end{equation*}
$$

Hence, from the definition of F, we get

$$
\begin{equation*}
F(x y)=F(x) y, \forall x, y \in R \tag{2.8}
\end{equation*}
$$

Applying (2.7) to (2.3), we have

$$
H(y)[x, z]=0, \forall x, y, z \in R .
$$

Replacing y by $y z$ in the last equation and using respectively (2.2) and (2.8), we get

$$
\begin{equation*}
F(z) y[x, z]=0, \forall x, y, z \in R \tag{2.9}
\end{equation*}
$$

If we replace x by $F(z)$ in (2.9), we obtain

$$
F(z) y[F(z), z]=0, \forall y, z \in R
$$

Hence for $y, z \in R$, we get

$$
[F(z), z] y[F(z), z]=(F(z) z-z F(z)) y[F(z), z]=0 .
$$

Consequently, since R is a semiprime ring, we find that $[F(z), z]=0$, for all $z \in R$. Similar proof shows that the same conclusion holds as $F(x y)+H(y x)=0$, for all $x, y \in R$. Therefore the proof is completed.

Theorem 3. Let R be a semiprime ring, $F: R \longrightarrow R$ be a multiplicative (generalized)derivation associated with f and $H: R \longrightarrow R$ be a multiplicative left centralizer. If $F(x) F(y) \mp H(x y)=0$ holds for all $x, y \in R$, then $f=0$. Moreover, $F(x y)=F(x) y$ for all $x, y \in R$ and $[F(x), x]=0$, for all $x \in R$.

Proof. By the hypothesis we have

$$
\begin{equation*}
F(x) F(y)-H(x y)=0, \forall x, y \in R \tag{2.10}
\end{equation*}
$$

Replacing y by $y z$ with $z \in R$ in (2.10), we get

$$
F(x) F(y z)-H(x y z)=0, \forall x, y, z \in R
$$

Since F is a multiplicative (generalized)-derivation, we have

$$
(F(x) F(y)-H(x y)) z+F(x) y f(z)=0, \forall x, y, z \in R
$$

Using (2.10) in the last equation, we get

$$
\begin{equation*}
F(x) y f(z)=0, \forall x, y, z \in R \tag{2.11}
\end{equation*}
$$

Replacing x by $u x$ with $u \in R$ in (2.11) and using (2.11), from the definition of F, we obtain

$$
u f(x) y f(z)=0, \forall x, y, z, u \in R
$$

In the last equation replacing y by $y r, r \in R$ and using that R is a semiprime ring, so we have $f=0$. Thus, we get $F(x y)=F(x) y$ for all $x, y \in R$. In (2.10) replacing x by $x y$, we have

$$
\begin{equation*}
F(x) y F(y)-H(x y) y=0, \forall x, y \in R \tag{2.12}
\end{equation*}
$$

Multiplying (2.10) by y on the right, we have

$$
\begin{equation*}
F(x) F(y) y-H(x y) y=0, \forall x, y \in R \tag{2.13}
\end{equation*}
$$

Subtracting (2.12) from (2.13), we get

$$
F(x)[F(y), y]=0, \quad \forall x, y \in R
$$

Replacing x by $x r$ with $r \in R$ in the last equation, we have

$$
F(x) r[F(y), y]=0, \forall x, y, r \in R
$$

In this case, for $x, r \in R$, we find that

$$
[F(x), x] r[F(x), x]=(F(x) x-x F(x)) r[F(x), x]=0
$$

Thus, since R is a semiprime ring, we obtain $[F(x), x]=0$, for all $x \in R$. Similar proof shows that the same conclusion holds as $F(x) F(y)+H(x y)=0$, for all $x, y \in R$.

Theorem 4. Let R be a semiprime ring, $F: R \longrightarrow R$ be a multiplicative (generalized)derivation associated with f and $H: R \longrightarrow R$ be a multiplicative left centralizer. If $F(x y) \mp H(x y) \in Z(R)$ holds for all $x, y \in R$, then $[f(x), x]=0$ for all $x \in R$.
Proof. By the supposition, we have

$$
F(x y) \mp H(x y) \in Z(R), \forall x, y \in R .
$$

So we have

$$
G(x y) \in Z(R), \quad \forall x, y \in R
$$

Using Lemma 4 and Lemma 5, we get

$$
[f(x), x]=0, \forall x \in R
$$

Theorem 5. Let R be a semiprime ring, $F: R \longrightarrow R$ be a multiplicative (generalized)derivation associated with f and $H: R \longrightarrow R$ be a multiplicative left centralizer. If $F(x y) \mp H(y x) \in Z(R)$ holds for all $x, y \in R$, then $[f(x), x]=0$ for all $x \in R$.

Proof. By the hypothesis, we have

$$
\begin{equation*}
F(x y)-H(y x) \in Z(R), \forall x, y \in R \tag{2.14}
\end{equation*}
$$

If we replace y by $y z$ with $z \in R$ in (2.14), we get

$$
F(x y z)-H(y z x) \in Z(R), \forall x, y, z \in R
$$

Since F is a multiplicative (generalized)-derivation, we find that

$$
(F(x y)-H(y x)) z+x y f(z)+H(y)[x, z] \in Z(R), \forall x, y, z \in R
$$

From the (2.14), we have

$$
\begin{equation*}
[x y f(z), z]+[H(y)[x, z], z]=0, \forall x, y, z \in R . \tag{2.15}
\end{equation*}
$$

Replacing x by $x z$ in (2.15), we find that

$$
\begin{equation*}
[x z y f(z), z]+[H(y)[x, z], z] z=0, \forall x, y, z \in R . \tag{2.16}
\end{equation*}
$$

Multiplying (2.15) by z on the right, we find that

$$
\begin{equation*}
[x y f(z), z] z+[H(y)[x, z], z] z=0, \forall x, y, z \in R \tag{2.17}
\end{equation*}
$$

Subtracting (2.16) and (2.17) side by side, so we get

$$
[x[y f(z), z], z]=0, \forall x, y, z \in R
$$

In the last equation, we replace x by $r x$ with $r \in R$. Hence we get

$$
[r, z] x[y f(z), z]=0, \forall x, y, z, r \in R
$$

In this equation, replacing r by $y f(z)$ and using that semiprimeness of R, we obtain $[y f(z), z]=0$, for all $y, z \in R$. If we take $f(z) y$ instead of y and using last equation, we have $[f(z), z] y f(z)=0$, for all $y, z \in R$. From the last equation we have, $[f(z), z] y[f(z), z]=0$, for all $y, z \in R$. Since R is a semiprime ring, we find that $[f(z), z]=0$, for all $z \in R$.

Similar proof shows that if $F(x y)+H(y x) \in Z(R)$ holds for all $x, y \in R$, then $[f(x), x]=0$ for all $x \in R$.

Theorem 6. Let R be a semiprime ring, $F: R \longrightarrow R$ be a multiplicative (generalized)derivation associated with f and $H: R \longrightarrow R$ be a multiplicative left centralizer. If $F(x) F(y) \mp H(x y) \in Z(R)$ holds for all $x, y \in R$, then $[f(x), x]=0$ for all $x \in R$.
Proof. By the supposition, we have

$$
\begin{equation*}
F(x) F(y)-H(x y) \in Z(R), \forall x, y \in R . \tag{2.18}
\end{equation*}
$$

Replacing y by $y z$ with $z \in R$ in (2.18), we get

$$
F(x) F(y z)-H(x y z) \in Z(R), \forall x, y, z \in R .
$$

Since F is a multiplicative (generalized)-derivation, we have

$$
(F(x) F(y)-H(x y)) z+F(x) y f(z) \in Z(R), \forall x, y, z \in R .
$$

Using (2.18), we get

$$
\begin{equation*}
[F(x) y f(z), z]=0, \forall x, y, z \in R . \tag{2.19}
\end{equation*}
$$

Replacing x by $x z$ in (2.19) and using (2.19), hence we have

$$
[x f(z) y f(z), z]=0, \forall x, y, z \in R .
$$

In the last equation, replacing x by $f(z) x$ and using this equation, we find that

$$
[f(z), z] x f(z) y f(z)=0, \forall x, y, z \in R .
$$

This implies that

$$
[f(z), z] x[f(z), z] y[f(z), z]=0, \forall x, y, z \in R .
$$

It gives that, $(R[f(z), z])^{3}=0$ for all $z \in R$. Since there is no nilpotent left ideal in semiprime rings $([2])$, it gives that, $R[f(z), z]=0$ for all $z \in R$. Hence using semiprimeness of R, we conclude that $[f(z), z]=0$, for all $z \in R$. Similar proof shows that if $F(x) F(y)+H(x y) \in Z(R)$ holds for all $x, y \in R$, then $[f(x), x]=0$ for all $x \in R$.

By Lemma 2, every multiplicative (generalized)-derivation $F: R \longrightarrow R$ associated with an additive map f is always a multiplicative generalized derivation in semiprime ring. Thus our next corollary is about multiplicative generalized derivation.
Corollary 1. Let R be a prime ring and $F: R \longrightarrow R$ be a multiplicative generalized derivation associated with a nonzero derivation d and $H: R \longrightarrow R$ be a multiplicative left centralizer. If one of the following conditions holds, for all $x, y \in R$, then R is commutative.
i) $F(x y) \mp H(x y) \in Z(R)$,
ii) $F(x y) \mp H(y x) \in Z(R)$,
iii) $F(x) F(y) \mp H(x y) \in Z(R)$.

Proof. By Theorem 4, Theorem 5 and Theorem 6, we have $[d(x), x]=0$ for all $x \in R$. Then by Lemma $1, R$ must be commutative.

Using the examples of similar in [1], the following examples show that the importance hypothesis of semiprimeness.

Example 1. Let $R=\left\{\left.\left(\begin{array}{lll}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}\right\}$, where \mathbb{Z} is the set of all integers and the maps $F, f, H: R \longrightarrow R$ defined by

$$
\begin{aligned}
F\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right) & =\left(\begin{array}{ccc}
0 & 0 & \lambda b \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), f\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & \lambda a^{2} & \lambda b^{2} \\
0 & 0 & \lambda c \\
0 & 0 & 0
\end{array}\right) \\
H\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right) & =\left(\begin{array}{ccc}
0 & \lambda a & \lambda b \\
0 & 0 & \lambda c \\
0 & 0 & 0
\end{array}\right), \text { where } \lambda \in \mathbb{Z}
\end{aligned}
$$

Since $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) R\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)=(0), R$ is not semiprime. Moreover, it is easy to show that, F is a multiplicative (generalized)-derivation associated with f and $H(x y)=H(x) y, F(x y)-H(x y)=0$ holds for all $x, y \in R$. But, we observe that $f(R) \neq 0$ and $F(x y) \neq F(x) y$ for $x, y \in R$. Hence the semiprimeness hypothesis in the Theorem 1 is crucial.

Example 2. Let $R=\left\{\left.\left(\begin{array}{lll}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}\right\}$, where \mathbb{Z} is the set of all integers and the maps $F, f, H: R \longrightarrow R$ defined by

$$
\begin{aligned}
F\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right) & =\left(\begin{array}{ccc}
0 & \lambda a & 0 \\
0 & 0 & \lambda c \\
0 & 0 & 0
\end{array}\right), f\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & \lambda a b & \lambda b^{2} \\
0 & 0 & -\lambda c \\
0 & 0 & 0
\end{array}\right) \\
H\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right) & =\left(\begin{array}{ccc}
0 & \lambda^{2} a & \lambda^{2} b \\
0 & 0 & \lambda^{2} c \\
0 & 0 & 0
\end{array}\right), \text { where } \lambda \in \mathbb{Z} .
\end{aligned}
$$

Then R is not semiprime and it is easy to show that, F is a multiplicative (generalized)derivation associated with f and $H(x y)=H(x) y, F(x) F(y)-H(x y)=0$ holds for all $x, y \in R$. But, we observe that $f(R) \neq 0$ and $F(x y) \neq F(x) y$ for $x, y \in R$. Hence the semiprimeness hypothesis in the Theorem 3 is essential.

Example 3. Let $R=\left\{\left.\left(\begin{array}{lll}0 & 0 & 0 \\ a & 0 & 0 \\ b & c & 0\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}\right\}$, where \mathbb{Z} is the set of all integers and the maps $F, f, H: R \longrightarrow R$ defined by

$$
\begin{aligned}
F\left(\begin{array}{lll}
0 & 0 & 0 \\
a & 0 & 0 \\
b & c & 0
\end{array}\right) & =\left(\begin{array}{ccc}
0 & 0 & 0 \\
a^{2} & 0 & 0 \\
b+c & 0 & 0
\end{array}\right), f\left(\begin{array}{lll}
0 & 0 & 0 \\
a & 0 & 0 \\
b & c & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
a & 0 & 0 \\
b^{2} & 0 & 0
\end{array}\right) \\
H\left(\begin{array}{lll}
0 & 0 & 0 \\
a & 0 & 0 \\
b & c & 0
\end{array}\right) & =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
a b & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Since $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right) R\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)=(0), R$ is not a semiprime ring. It yields that F is a multiplicative (generalized)-derivation associated with f and $H(x y)=$ $H(x) y, F(x) F(y)-H(x y)=0$ holds for all $x, y \in R$. But, we see that $f(R) \neq 0$ and $F(x y) \neq F(x) y$ for $x, y \in R$. Hence the semiprimeness hypothesis in the Theorem 3 is essential.

Acknowledgement. The authors are very thankful to the referee for his/her valuable suggestions and comments.

References

[1] Dhara B. and Ali S., On multiplicative (generalized)-derivations in prime and semiprime rings, Aequat. Math. (2013), 86(1-2), $65-79$.
[2] Herstein I. N., Rings with involution, The University of Chicago Press, Chicago, 1976.
[3] Bresar M., On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. (1991), 33, $89-93$.
[4] Daif M. N., When a multiplicative derivation is additive, Int. J. Math.\&Math. Sci. (1991), 14(3), $615-618$.
[5] Daif M. N. and El-Sayiad M. S. T., Multiplicative generalized derivations which are additive, East-west J. Math. (1997), 9(1), $31-37$.
[6] El Sayiad M. S. T., Daif M. N. and Filippis V.D., Multiplicativity of left centralizers forcing additivity, Bol. Soc. Paran. Mat. (2014), 32(1), $61-69$.
[7] Ashraf M. and Rehman N., On derivations and commutativity in prime rings, East-west J. Math.(2001), 3(1), $87-91$.
[8] Ashraf M., Ali A. and Ali S., Some commutativity theorems for rings with generalized derivations, Southeast Asian Bull. Math. (2007), 31, $415-421$.
[9] Daif M. N. and Bell H. E., Remarks on derivations on semiprime rings, Int.J.Math.छMath. Sci. (1992), 15(1), $205-206$.
[10] Quadri M. A., Khan M. S. and Rehman N., Generalized derivations and commutativity of prime rings, Indian J.Pure Appl.Math. (2003), 34(9), 1393 - 1396.
[11] Dhara B., Remarks on generalized derivations in prime and semiprime rings, Int. J. Math. \mathcal{B} Math. Sci. (2010), 2010, Article ID 646587, 6 pages.
[12] Ali A., Filippis V. D. and Shujat F., On one sided ideals of a semiprime ring with generalized derivations, Aequat. Math. (2013), 85(3), $529-537$.
[13] Posner E. C., Derivations in prime rings, Proc. Amer. Math. Soc. (1957), 8, 1093 - 1100.
[14] Ali A., Dhara B., Khan S. and Ali F., Multiplicative (generalized)-derivations and left ideals in semiprime rings, Hacettepe J. Math. Stat. (2015), 44(6), 1293-1306.

Current address: Didem K. Camcı: Çanakkale Onsekiz Mart University Dept. Math. Çanakkale - TURKEY

E-mail address: didemk@comu.edu.tr
Current address: Neşet Aydın: Çanakkale Onsekiz Mart University Dept. Math. Çanakkale TURKEY

E-mail address: neseta@comu.edu.tr

[^0]: Received by the editors: April 04, 2016, Accepted: Aug. 02, 2016.
 2010 Mathematics Subject Classification. Primary 16N60; Secondary 16U80, 16W25.
 Key words and phrases. Prime ring, semiprime ring, derivation, multiplicative derivation, generalized derivation, multiplicative (generalized)-derivation.

