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SOME KOROVKIN TYPE RESULTS VIA POWER SERIES
METHOD IN MODULAR SPACES

T. YURDAKADIM

Abstract. In this paper, we obtain a Korovkin type approximation result
for a sequence of positive linear operators defined on modular spaces with the
use of power series method . We also provide an example which satisfies our
theorem.

1. Introduction

The classical Korovkin theorem states the uniform convergence of a sequence
of positive linear operators in C[a, b], the space of all continuous real valued func-
tions defined on [a, b] by providing the convergence only on three test functions
{1, x, x2}. There are also trigonometric versions of this theorem with the test func-
tions {1, cosx, sinx} and abstract Korovkin type results have also been studied
[13, 17]. These type of results let us to say the convergence with minimum cal-
culations and also have important applications in the polynomial approximation
theory, in various areas of functional analysis, in numerical solutions of differential
and integral equations [1, 2] . Recently some versions of Korovkin type theo-
rems have been given in modular spaces that include as particular cases Lp, Orlicz
and Musielak-Orlicz spaces [8, 19] with the use of more general convergences such
as convergences generated by summability methods, statistical, filter convergence
[9, 10, 11, 14, 15, 16, 20].
In this paper, we give a Korovkin type theorem in modular spaces by power series

method which includes both Abel and Borel methods. We also give an example
which satisfies our theorems.

2. Notation and Definitions

Let us begin with recalling some basic definitions and notations used in the
paper.
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Let (pj) be real sequence with p0 > 0 and p1, p2, p3, ... ≥ 0, and such that

the corresponding power series p(t) :=
∞∑
j=0

pjt
j has radius of convergence R with

0 < R ≤ ∞. If, for all t ∈ (0, R),

lim
t→R−

1

p(t)

∞∑
j=0

xjpjt
j = L

then we say that x = (xj) is convergent in the sense of power series method [18, 21].
Power series method includes many well known summability methods such as Abel
and Borel. Both methods have in common that their definitions are based on power
series and that they are not matrix methods (See [12, 22] for details ). In order
to see that power series method is more effective than ordinary convergence, let

x = (1, 0, 1, 0, ...), R =∞, p (t) = et and for j ≥ 0, pj =
1

j!
. Then it is easy to see

that

lim
t→∞

1

et

∞∑
j=0

xjt
j

j!
= lim
t→∞

1

et

∞∑
j=0

t2j

(2j)!
= lim
t→∞

1

et
{e

t + e−t

2
} =

1

2
.

So the sequence x = (xj) is convergent to 1
2 in the sense of power series method

but it is not convergent in the ordinary sense. Note that the power series method
is regular if and only if

lim
t→R−

pjt
j

p(t)
= 0, for each j ∈ N

hold [12]. Throughout the paper we assume that power series method is regular.
Let G = [a, b] be a bounded interval of the real line R provided with the Lebesgue

measure. We denote by X(G) the space of all real-valued measurable functions on
G with equality almost everywhere, by C(G) the space of all continuous real valued
functions on G, and by C∞(G) the space of all infinitely differentiable functions
on G. A functional % : X(G) → [0,∞] is a modular on X(G) provided that the
following conditions hold:
(i) %[f ] = 0 if and only if f = 0 a.e on G,
(ii) %[−f ] = %[f ] for every f ∈ X(G),
(iii) %[αf + βg] ≤ %[f ] + %[g] for every f, g ∈ X(G) and for any α, β ≥ 0 with
α+ β = 1.
A modular % is said to be Q-quasi convex if there exists a constant Q ≥ 1 such

that the inequality

%[αf + βg] ≤ Qα%[Qf ] +Qβ%[Qg]

holds for every f, g ∈ X(G), α, β ≥ 0 with α+ β = 1. In particular if Q = 1, then
% is called convex.
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A modular % is said to be Q-quasi semiconvex if there exists a constant Q ≥ 1
such that the inequality

%[af ] ≤ Qa%[Qf ]

holds for every f ∈ X(G), f ≥ 0 and a ∈ (0, 1]. It is clear that every Q-quasi
semiconvex modular is Q-quasi convex. A modular % is said to be monotone if
%[f ] ≤ %[g] for all f, g ∈ X(G) with |f | ≤ |g|.
We now consider some subspaces of X(G) by means of a modular % as follows

L%(G) := {f ∈ X(G) : lim
λ→0+

%[λf ] = 0}

and
E%(G) := {f ∈ L%(G) : %[λf ] <∞ for all λ > 0}

is called the modular space generated by % and is called the space of the finite
elements of L%(G) respectively. Observe that if % is Q-quasi semiconvex then the
space

{f ∈ X(G) : %[λf ] <∞ for some λ > 0}
coincides with L%(G). The notions about modulars have been introduced and widely
discussed in [4, 5, 6, 7, 8] .
Now we define the convergences in the sense of power series method in modular

spaces. Let {fj} be a function sequence whose terms belong to L%(G). Then, {fj}
is modularly convergent to a function f ∈ L%(G) in the sense of power series method
if and only if

lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%[λ0(fj − f)] = 0 for some λ0 > 0.

Also, {fj} is strongly convergent to a function f ∈ L%(G) in the sense of power
series method if and only if

lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%[λ(fj − f)] = 0 for every λ > 0.

Recall that {fj} is modularly convergent to a function f ∈ L%(G) if and only if

lim
j→∞

%[λ0(fj − f)] = 0 for some λ0 > 0,

also {fj} is strongly convergent to a function f ∈ L%(G) if and only if

lim
j→∞

%[λ(fj − f)] = 0 for every λ > 0.

If there exists a constant M > 0 such that

%[2u] ≤M%[u]

holds for all u ≥ 0 then it is said to be that % satisfies the ∆2-condition. A modular
% is said to be

• finite if χG, the characteristic function associated with G, belongs to L%(G),
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• absolutely finite if % is finite and for every ε > 0, λ > 0 there exists δ > 0
such that %[λχB ] < ε for any measurable subset B ⊂ G with |B| < δ,

• strongly finite if χG ∈ E%(G),
• absolutely continuous if there is a positive constant a with the property:
for all f ∈ X(G) with %[f ] < ∞, the following condition holds: for every
ε > 0 there is a δ > 0 such that %[afχB ] < ε whenever B is any measurable
subset of G with |B| < δ.

Recall that if a modular % is monotone and finite, then we have C(G) ⊂ L%(G)
[4]. In a similar manner, if % is monotone and strongly finite, then C(G) ⊂ E%(G).

3. Modular Korovkin Theorem by Power Series Method

Let % be monotone and finite modular onX(G). Assume thatD is a set satisfying
C∞(G) ⊂ D ⊂ L%(G). We can construct such a subset D since % is monotone and
finite. Assume further that T := {Tj} is a sequence of positive linear operators
from D into X(G) for which there exists a subset XT ⊂ D containing C∞(G) such
that the inequality

lim sup
t→R−

1

p(t)

∞∑
j=0

pjt
j%[λ(Tjh)] ≤ P%(λh) (3.1)

holds for every h ∈ XT , λ > 0 and for an absolute positive constant P . Throughout
the paper we use the test functions defined by ei(x) = xi, i = 0, 1, 2, ....

Theorem 1. Let % be a strongly finite, monotone, absolutely continuous and Q-
quasi semiconvex modular on X(G). Let Tj, j ∈ N, be a sequence of positive linear
operators from D into X(G) satisfying (3.1). If

lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%[λ(Tjei − ei)] = 0,

for every λ > 0 and i = 0, 1, 2, then for every f ∈ L%(G) such that f − g ∈ XT for
every g ∈ C∞(G)

lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%[γ(Tjf − f)] = 0,

for some γ > 0.

Proof. Let g ∈ C(G) and first we show that

lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%[µ(Tjg − g)] = 0, for every µ > 0. (3.2)

Since g is uniformly continuous on G then there exists a constant M > 0 such that
|g(x)| ≤M for every x ∈ G. Given ε > 0, we can choose δ > 0 such that |y−x| < δ
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implies |g(y)− g(x)| < ε where x, y ∈ G. One can see that for all x, y ∈ G

|g(y)− g(x)| < ε+
2M

δ2
(y − x)2.

Since {Tj} is a sequence of positive linear operators, we get

|Tj(g;x)− g(x)| = |Tj(g(.)− g(x);x) + g(x)(Tj(e0(.);x)− e0(x))|
≤ Tj(|g(.)− g(x)|;x) + |g(x)||Tj(e0(.);x)− e0(x)|

≤ Tj(ε+
2M

δ2
(.− x)2;x) +M |Tj(e0(.);x)− e0(x)|

≤ εTj(e0(.);x) +
2M

δ2
Tj((.− x)2;x) +M |Tj(e0(.);x)− e0(x)|

≤ ε+ (ε+M)|Tj(e0(.);x)− e0(x)|

+
2M

δ2
[Tj(e2(.);x)− 2e1(x)Tj(e1(.);x) + e2(x)Tj(e0(.);x)]

≤ ε+ (ε+M)|Tj(e0(.);x)− e0(x)|+ 2M

δ2
|Tj(e2(.);x)− e2(x)|

+
4M |e1(x)|

δ2
|Tj(e1(.);x)− e1(x)|+ 2Me2(x)

δ2
|Tj(e0(.);x)− e0(x)|

≤ ε+ (ε+M +
2Mr2

δ2
)|Tj(e0(.);x)− e0(x)|

+
4Mr

δ2
|Tj(e1(.);x)− e1(x)|+ 2M

δ2
|Tj(e2(.);x)− e2(x)|

where r := max{|a|, |b|}. So the last inequality gives for any µ > 0 that

µ|Tj(g;x)− g(x)| ≤ µε+ µK|Tj(e0(.);x)− e0(x)|+ µK|Tj(e1(.);x)− e1(x)|
+µK|Tj(e2(.);x)− e2(x)|

where K := max{ε+M + 2Mr2

δ2
, 4Mr
δ2

, 2M
δ2
}. By applying the modular % in the both

sides of the above inequality, since % is monotone, we have

%[µ(Tj(g; .)− g(.))] ≤ %[µε+ µK|Tje0 − e0|+ µK|Tje1 − e1|+ µK|Tje2 − e2|].

So we may write that

%[µ(Tj(g; .)−g(.))] ≤ %[4µε]+%[4µK(Tje0−e0)]+%[4µK(Tje1−e1)]+%[4µK(Tje2−e2)].

Since % is Q-quasi semiconvex and strongly finite, we have

%[µ(Tj(g; .)− g(.))] ≤ Qε%[4µQ] + %[4µK(Tje0 − e0)] + %[4µK(Tje1 − e1)]
+%[4µK(Tje2 − e2)]
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without loss of generality where 0 < ε ≤ 1. Hence

1

p(t)

∞∑
j=0

pjt
j%[µ(Tj(g; .)− g(.))] ≤ Qε%[4µQ] +

1

p(t)

∞∑
j=0

pjt
j%[4µK(Tje0 − e0)]

+
1

p(t)

∞∑
j=0

pjt
j%[4µK(Tje1 − e1)] +

1

p(t)

∞∑
j=0

pjt
j%[4µK(Tje2 − e2)]

and taking limit superior as t→ R− in the both sides, by using hypothesis, we get

lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%[µ(Tjg − g)] = 0

which proves our claim. Now let f ∈ L%(G) satisfying f − g ∈ XT for every
g ∈ C∞(G). Since |G| <∞ and % is strongly finite and absolutely continuous, it is
known that % is also absolutely finite on X(G) (see [3]). Using the properties of %
and it is also known from [8] that the space C∞(G) is modularly dense in L%(G),
i.e., there exists a sequence {gk} ⊂ C∞(G) such that

lim
k
%[3λ0(gk − f)] = 0 for some λ0 > 0.

This means that, for every ε > 0, there is a positive number k0 = k0(ε) so that

%[3λ0(gk − f)] < ε for every k ≥ k0.

On the other hand, by linearity and positivity of the operators Tj we may write
that

λ0|Tjf − f | ≤ λ0|Tj(f − gk0)|+ λ0|Tjgk0 − gk0 |+ λ0|(gk0 − f)|.

Applying the modular % in the both sides of the above inequality, since % is monotone

%[λ0(Tjf − f)] ≤ %[3λ0(Tj(f − gk0))] + %[3λ0(Tjgk0 − gk0)] + %[3λ0((gk0 − f))].

Then it follows from the above inequalities that

%[λ0(Tjf − f)] ≤ %[3λ0(Tj(f − gk0))] + %[3λ0(Tjgk0 − gk0)] + ε.

Hence, using the facts that gk0 ∈ C∞(G) and f − gk0 ∈ XT , we have

1

p(t)

∞∑
j=0

pjt
j%[λ0(Tjf − f)] ≤ 1

p(t)

∞∑
j=0

pjt
j%[3λ0(Tj(f − gk0))]

+
1

p(t)

∞∑
j=0

pjt
j%[3λ0(Tjgk0 − gk0)] + ε.
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Taking limit superior as t→ R− in both sides, we obtain that

lim sup
t→R−

1

p(t)

∞∑
j=0

pjt
j%[λ0(Tjf − f)] ≤ ε+ P%[3λ0(f − gk0)]

+ lim sup
t→R−

1

p(t)

∞∑
j=0

pjt
j%[3λ0(Tjgk0 − gk0)]

(3.3)

which gives

lim sup
t→R−

1

p(t)

∞∑
j=0

pjt
j%[λ0(Tjf−f)] ≤ ε+εP+lim sup

t→R−

1

p(t)

∞∑
j=0

pjt
j%[3λ0(Tjgk0−gk0)].

By (3.2), we get

lim sup
t→R−

1

p(t)

∞∑
j=0

pjt
j%[3λ0(Tjgk0 − gk0)] = 0

and this implies

lim sup
t→R−

1

p(t)

∞∑
j=0

pjt
j%[λ0(Tjf − f)] ≤ ε+ εP.

Since ε is arbitrary positive real number, we have

lim sup
t→R−

1

p(t)

∞∑
j=0

pjt
j%[λ0(Tjf − f)] = 0

and also 1
p(t)

∞∑
j=0

pjt
j%[λ0(Tjf − f)] is nonnegative then

lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%[λ0(Tjf − f)] = 0.

This completes the proof. �

If the modular % satisfies the ∆2-condition, then one can get the following result
from the above theorem.

Theorem 2. Let % and T = {Tj} be as in the above theorem. If % satisfies the
∆2-condition, then the followings are equivalent:

• lim
t→R−

1
p(t)

∞∑
j=0

pjt
j%[λ(Tjei − ei)] = 0, for every λ > 0 and i = 0, 1, 2.

• lim
t→R−

1
p(t)

∞∑
j=0

pjt
j%[γ(Tjf − f)] = 0, for every λ > 0 then every f ∈

L%(G) such that f − g ∈ XT , for every g ∈ C∞(G).
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4. Concluding Remarks

Take G = [0, 1] and let ϕ : [0,∞) → [0,∞) be a continuous function for which
the following conditions hold:

• ϕ is convex,
• ϕ(0) = 0, ϕ(u) > 0 for u > 0 and lim

u→+∞
ϕ(u) =∞.

Here, consider the functional ρϕ on X(G) defined by

ρϕ(f) :=

1∫
0

ϕ(|f(x)|)dx, for f ∈ X(G).

In this case, ρϕ is a convex modular on X(G) (see [4]). Consider the Orlicz space
generated by ϕ as follows

Lρϕ(G) := {f ∈ L0(G) : ρϕ(λf) <∞ for some λ > 0}.
Then, consider the following classical Bernstein-Kantorovich operator U := {Uj}
on the space Lρϕ(G) (see [4]) which is defined by

Uj(f ;x) :=

j∑
k=0

(
j

r

)
xk(1− x)j−k(j + 1)

k+1
j+1∫
k

j+1

f(t)dt; x ∈ G.

Observe that the operators Uj map the Orlicz space Lρϕ(G) into itself. Moreover,
it is also known that the property lim sup

j→∞
%(λ(Tjh)) ≤ P%(λh) is satisfied with the

choice of XU := Lρϕ(G) and for every function f ∈ Lρϕ(G)such that f − g ∈ XU for
every g ∈ C∞(G), {Ujf} is modularly convergent to f . Using the operators {Ujf}
define the sequence of positive linear operators V := Vj on Lρϕ(G) as follows:

Vj(f ;x) = (1 + sj)Uj(f ;x), for f ∈ Lρϕ(G), x ∈ [0, 1] and j ∈ N, (4.1)

where {sj} is a sequence of zeros and ones which is not convergent but convergent
to 0 in the sense of power series method. By Lemma 5.1 of [4], for every h ∈ XV :=
Lρϕ(G), all λ > 0 and for an absolute positive constant P , we get

ρϕ(λVjh) = ρϕ[λ(1 + sj)Ujh] ≤ ρϕ(2λUjh) + ρϕ(2λsjUjh)

= ρϕ(2λUjh) + sjρ
ϕ(2λUjh)

= (1 + sj)ρ
ϕ(2λUjh)

≤ (1 + sj)Pρ
ϕ(2λh).

Then, we get

lim sup
t→R−

1

p(t)

∞∑
j=0

pjt
jρϕ(λVjh) ≤ Pρϕ(2λh).

Now, we show that conditions in the Theorem 1 holds. First note that
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Vj(e0;x) = 1 + sj

Vj(e1;x) = (1 + sj){
jx

j + 1
+

1

2(j + 1)
}

Vj(e2;x) = (1 + sj){
j(j − 1)x2

(j + 1)2
+

2jx

(j + 1)2
+

1

3(j + 1)2
}

where ei(t) = ti. So for any λ > 0, we can see, that

λ|Vj(e0;x)− e0(x)| = λ|1 + sj − 1| = λsj ,

which implies

ρϕ[λ(Vj(e0)− e0)] = ρϕ(λsj) =

1∫
0

ϕ(λsj)dx = ϕ(λsj) = sjϕ(λ)

because of the definition of {sj}. Since {sj} is convergent to 0 in the sense of power
series method, for every λ > 0

lim sup
t→R−

1

p(t)

∞∑
j=0

pjt
jρϕ(λVj(e0)− e0) = lim sup

t→R−

1

p(t)

∞∑
j=0

pjt
jsjϕ(λ) = 0.

Also

λ|Vj(e1;x)− e1(x)| = λ

∣∣∣∣x(
j

j + 1
+

jsj
j + 1

− 1) +
1

2(j + 1)
+

sj
2(j + 1)

∣∣∣∣
≤ λ{ 3

2(j + 1)
+ sj(

2j + 1

2(j + 1)
)},

we may write that

ρϕ[λ(Vj(e1)− e1)] ≤ ρϕ
(
λ{sj(

2j + 1

2(j + 1)
) +

3

2(j + 1)
}
)

≤ sjρϕ(λ(
2j + 1

(j + 1)
)) + ρϕ(

3

(j + 1)
)

by the definitions of {sj} and ρϕ. Since { 2j+1(j+1)} is convergent, there exists a constant
M > 0 such that { 2j+1(j+1) ≤ M}, for every j ∈ N. Then using the monotonicity of
ρϕ, we have

ρϕ[λ
2j + 1

(j + 1)
] ≤ ρϕ(λM)

for any λ > 0, which implies

ρϕ[λ(Vj(e1)− e1)] ≤ sjρϕ(λM) + ρϕ(
3λ

j + 1
) = sjϕ(λM) + ϕ(

3λ

j + 1
).
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Since ϕ is continuous, we have lim
j
ϕ( 3λ

j+1 ) = ϕ(lim
j

3λ
j+1 ) = ϕ(0) = 0. So we get

ϕ( 3λ
j+1 ) is convergent to 0 in the sense of power series method. Using this and by

the definition of {sj}, we obtain

lim sup
t→R−

1

p(t)

∞∑
j=0

pjt
jρϕ(λVj(e1)− e1)

≤ lim sup
t→R−

1

p(t)

∞∑
j=0

pjt
j [sjϕ(λM) + ϕ(

3λ

j + 1
)]

= ϕ(λM) lim sup
t→R−

1

p(t)

∞∑
j=0

pjt
jsj + lim sup

t→R−

1

p(t)

∞∑
j=0

pjt
jϕ(

3λ

j + 1
)

= 0

Finally, since

λ|Vj(e2;x)− e2(x)|

= λ

∣∣∣∣x2 j(j − 1)

(j + 1)2
+

2jx

(j + 1)2
+

1

3(j + 1)2
+ sj

j(j − 1)x2

(j + 1)2
+ sj

2jx

(j + 1)2

+ sj
1

3(j + 1)2
− x2

∣∣∣∣
≤ λ{ 15j + 4

3(j + 1)2
+ sj(

3j2 + 3j + 1

3(j + 1)2
)}.

Since { 3j
2+3j+1
3(j+1)2 } is convergent, there exists a constantK > 0 such that | 3j

2+3j+1
3(j+1)2 | ≤

K, for every j ∈ N. Then using the monotonicity of ρϕ and the definition of {sj},
we have

ρϕ[λ(Vj(e2)− e2)] ≤ ρϕ
(

2λ(
15j + 4

3(j + 1)2
)

)
+ ρϕ

(
2λsj(

3j2 + 3j + 1

3(j + 1)2
)

)
≤ ρϕ(λ(

30j + 8

3(j + 1)2
)) + ρϕ(2λsjK),

where which yields

ρϕ[λ(Vj(e2)− e2)] ≤ ϕ(λ(
30j + 8

3(j + 1)2
)) + sjϕ(2λK).

Since ϕ is continuous, we have lim
j
ϕ(λ 30j+8

3(j+1)2 ) = ϕ(λ lim
j

30j+8
3(j+1)2 ) = ϕ(0) = 0. So

we get ϕ(λ 30j+8
3(j+1)2 ) is convergent to 0 in the sense of power series method. Using

this and by the definition of {sj}, we obtain

lim sup
t→R−

1

p(t)

∞∑
j=0

pjt
jρϕ(λVj(e2)− e2) = 0, for every λ > 0.
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So we can say that our sequence V := {Vj} satisfies all assumptions of Theorem 1.
Therefore we conclude that

lim sup
t→R−

1

p(t)

∞∑
j=0

pjt
jρϕ(λ0Vj(f)− f) = 0, for some λ0 > 0

holds for every f ∈ Lρϕ(G) such that f−g ∈ XV for every g ∈ C∞(G). However since
{sj} is not convergent to zero, it is clear that {Vj(f)} is not modularly convergent
to f .
Note that

• in the case of R = 1, p (t) =
1

1− t and for j ≥ 0, pj = 1 the power

series method coincides with Abel method which is a sequence-to-function
transformation,

• in the case of R = ∞, p (t) = et and for j ≥ 0, pj =
1

j!
the power series

method coincides with Borel method.

We can therefore give all of the theorems of this paper for Abel and Borel con-
vergences.
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