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INVERSE NODAL PROBLEM FOR p−LAPLACIAN DIFFUSION
EQUATION WITH POLYNOMIALLY DEPENDENT SPECTRAL

PARAMETER

TUBA GULSEN AND EMRAH YILMAZ

Abstract. In this study, solution of inverse nodal problem for one-dimensional
p-Laplacian diffusion equation is extended to the case that boundary condi-
tion depends on polynomial eigenparameter. To find the spectral datas as
eigenvalues and nodal parameters of this problem, we used a modified Prüfer
substitution. Then, reconstruction formula of the potential function is also
given by using nodal lenghts. Furthermore, this method is similar to used in
[1], our results are more general.

(Dedicated to Prof. E. S. Panakhov on his 60-th birthday)

1. Introduction

Let us consider following p−Laplacian diffusion eigenvalue problem [1]

−
(
y
′(p−1)

)′
= (p− 1)

(
λ2 − qm(x)− 2λrm(x)

)
y(p−1), 0 ≤ x ≤ 1, (1.1)

with the boundary conditions

y(0) = 0, y′(0) = 1,

y′(1, λ) + f(λ)y(1, λ) = 0, (1.2)
where p > 1 is a constant, [2]

f(λ) = a1λ+ a2λ
2 + ...+ amλ

m, ai ∈ R, am 6= 0,m ∈ Z+, (1.3)

λ is a spectral parameter and y(p−1) = |y|(p−2) y. Throughout this study, we suppose
that qm(x) ∈ L2(0, 1) and rm(x) ∈W 1

2 (0, 1) are real-valued functions defined in the
interval 0 ≤ x ≤ 1 for all m ∈ Z+. Equation (1.1) becomes following well-known
diffusion equation (or quadratic pencil of differential pencil)

−y′′ + [qm + 2λrm] y = λ2y, (1.4)
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for p = 2. Equation (1.4) is extremely important for both classical and quantum
mechanics. For instance, such problems arise in solving the Klein-Gordon equations,
which describe the motion of massless particles such as photons. Diffusion equations
are also used for modelling vibrations of mechanical systems in viscous media (see
[3]). We note that in this type of problem the spectral parameter λ is related to the
energy of the system, and this motivates the terminology ‘energy-dependent’used
for the spectral problem of the form (1.4). Inverse problems of quadratic pencil
have been studied by numerous authors (see [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20]).
Inverse spectral problem consists in recovering differential equation from its spec-

tral parameters like eigenvalues, norming constants and nodal points (zeros of eigen-
functions). These type problems divide into two parts as inverse eigenvalue problem
and inverse nodal problem. They play important role and also have many appli-
cations in applied mathematics. Inverse nodal problem has been firstly studied by
McLaughlin in 1988. She showed that the knowledge of a dense subset of nodal
points is suffi cient to determine the potential function of Sturm-Liouville problem
up to a constant [21]. Also, some numerical results about this problem were given
in [22]. Nowadays, many authors have given some interesting results about inverse
nodal problems for different type operators (see [23], [24], [25], [26], [27]).
In this study, we concern ourselves with the inverse nodal problem for p−Laplacian

diffusion equation with boundary condition polynomially dependent on spectral pa-
rameter. As far as we know, this problem has not been considered before. Fur-
thermore, we give asymptotics of eigenparameters and reconstructing formula for
potential function. Note that inverse eigenvalue problems for different p−Laplacian
operators have been studied by several authors (see [28], [29], [30], [31], [32], [33],
[34], [35], [36]).
The zero set Xn =

{
xnj,m

}n−1
j=1

of the eigenfunction yn,m(x, λ) corresponding to

λn,m is called the set of nodal points where 0 = x
(n)
0,m < x

(n)
1,m < ... < x

(n)
n−1,m <

x
(n)
n,m = 1 for all m ∈ Z+. And, lnj,m = xnj+1,m−xnj,m is referred to the nodal length
of yn,m. The eigenfunction yn,m(x) has exactly n− 1 nodal points in (0, 1).
Firstly, we need to introduce generalized sine function Sp which is the solution

of the initial value problem

−
(
S
′(p−1)
p

)′
= (p− 1)S(p−1)p , (1.4)

Sp(0) = 0, S
′
p(0) = 1.

Sp and S′p are periodic functions satisfying the identity

|Sp(x)|p +
∣∣S′p(x)∣∣p = 1,

for arbitrary x ∈ R. These functions are p−analogues of classical sine and cosine
functions and are known as generalized sine and cosine functions. It is well known



INVERSE NODAL PROBLEM FOR p−LAPLACIAN DIFFUSION EQUATION 25

that

π̂ =

1∫
0

2

(1− tp)
1
p

dt =
2π

p sin
(
π
p

) ,
is the first zero of Sp in positive axis (See [28], [29]). Note that following lemma is
crucial in our results.

Lemma 1.1. [28]
a) For S′p 6= 0, (

S′p
)′
= −

∣∣∣∣SpS′p
∣∣∣∣p−2 Sp.

b) (
SpS

′(p−1)
p

)′
=
∣∣S′p∣∣p − (p− 1) ∣∣Spp ∣∣ = 1− p |Sp|p = (1− p) + p ∣∣S′p∣∣p .

Using Sp(x) and S′p(x), the generalized tangent function Tp(x) can be defined
by [28]

Tp(x) =
Sp(x)

S′p(x)
, for x 6=

(
k +

1

2

)
π̂.

This study is organized as follows: In Section 2, we give some asymptotic formu-
las for eigenvalues and nodal parameters for p−Laplacian diffusion eigenvalue prob-
lem (1.1)-(1.2) with polynomially dependent spectral parameter by using modified
Prüfer substitution. In Section 3, we give a reconstruction formula of the potential
functions for the problem (1.1)-(1.2). Finally, we expressed some conclusions in
Section 4.

2. Asymptotics of Some Eigenparameters

In this section, we present some important results for the problem (1.1)-(1.2).
To do this, we need to consider modified Prüfer’s transformation which is one of
the most powerful method for solution of inverse problem. Recalling that Prüfer’s
transformation for a nonzero solution y of (1.1) takes the form

y(x) = R(x)Sp

(
λ2/p θ(x, λ)

)
, (2.1)

y′(x) = λ2/pR(x)S′p

(
λ2/p θ(x, λ)

)
,

or

y′(x)

y(x)
= λ2/p

S′p

(
λ2/p θ(x, λ)

)
Sp

(
λ2/p θ(x, λ)

) , (2.2)
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where R(x) is amplitude and θ(x) is Prüfer variable [37]. After some straightforward
computations, one can get easily [1]

θ′(x, λ) = 1− qm(x)

λ2
Spp

(
λ2/p θ(x, λ)

)
− 2
λ
rm(x)S

p
p

(
λ2/p θ(x, λ)

)
. (2.3)

Lemma 2.1. [30]Define θ(x, λn,m) as in (2.1) and φn(x) = Spp

(
λ2/pn,m θ(x, λn,m)

)
−

1

p
. Then, for any g ∈ L1(0, 1)

1∫
0

φn(x)g(x)dx = 0.

Theorem 2.1. The eigenvalues λn,m of the p− Laplacian diffusion eigenvalue
problem given in (1.1)-(1.2) have the form

λ
2/p
n,1 = nπ̂− 1

a1 (nπ̂)
p−2
2

+
1

p (nπ̂)
p−1

1∫
0

q1(x)dx+
2

p (nπ̂)
p−2
2

1∫
0

r1(x)dx+O

(
1

np−2

)
,

(2.4)

λ
2/p
n,2 = nπ̂ − 1

a1 (nπ̂)
p−2
2 + a2 (nπ̂)

p−1
+

1

p (nπ̂)
p−1

1∫
0

q2(x)dx

+
2

p (nπ̂)
p−2
2

1∫
0

r2(x)dx+O

(
1

np−1

)
, (2.5)

λ2/pn,m = nπ̂ − 1

a1 (nπ̂)
p−2
2 + ...+ am (nπ̂)

mp−2
2

+
1

p (nπ̂)
p−1

1∫
0

qm(x)dx

+
2

p (nπ̂)
p−2
2

1∫
0

rm(x)dx+O

(
1

np−1

)
, (2.6)

for m = 1, m = 2 and m ≥ 3, respectively as n→∞.

Proof: Let θ(0, λ) = 0 for the problem (1.1)-(1.2). Integrating both sides of (2.3)
with respect to x from 0 to 1, we get

θ(1, λ) = 1− 1

λ2

1∫
0

qm(x)S
p
p

(
λ2/p θ(x, λ)

)
dx− 2

λ

1∫
0

rm(x)S
p
p

(
λ2/p θ(x, λ)

)
dx.
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By lemma 2.1, one can obtain

1∫
0

qm(x)

{
Spp

(
λ2/pn θ(x, λ)

)
− 1
p

}
dx = o(1), as n→∞.

Hence, we obtain

λ2/pθ(1, λ) = λ2/p − 1

pλ2−
2
p

1∫
0

qm(x)dx−
2

pλ1−
2
p

1∫
0

rm(x)dx+O

(
1

λ2−
2
p

)
. (2.7)

Let λn,m be an eigenvalue of the problem (1.1)-(1.2) for all m. Now, we will prove
the lemma for m = 1. By (1.2), we have

λ
2/p
n,1R(1)S

′
p

(
λ
2/p
n,1 θ(1, λn,1)

)
+ a1λn,1R(1)Sp

(
λ
2/p
n,1 θ(1, λn,1)

)
= 0,

or

−
λ
2
p−1
n,1

a1
=
Sp

(
λ
2/p
n,1 θ(1, λn,1)

)
S′p

(
λ
2/p
n,1 θ(1, λn,1)

) = Tp

(
λ
2/p
n,1 θ(1, λn,1)

)
.

As n is suffi ciently large, it follows

λ
2/p
n,1 θ(1, λn,1) = T−1p

−λ 2
p−1
n,1

a1

 = nπ̂ −
λ
2
p−1
n,1

a1
+ o

(
λ
4
p−2
n,1

)
. (2.8)

By considering (2.7) and (2.8) together, we get

λ
2/p
n,1 = nπ̂− 1

a1 (nπ̂)
p−2
2

+
1

p (nπ̂)
p−1

1∫
0

q1(x)dx+
2

p (nπ̂)
p−2
2

1∫
0

r1(x)dx+O

(
1

np−2

)
.

For the case m = 2, by using the similar process as in m = 1, we can easily obtain

λ
2/p
n,2R(1)S

′
p

(
λ
2/p
n,2 θ(1, λn,2)

)
+
(
a1λn,2 + a2λ

2
n,2

)
R(1)Sp

(
λ
2/p
n,2 θ(1, λn,2)

)
= 0,

or

−
λ
2
p

n,2

a1λn,2 + a2λ
2
n,2

=
Sp

(
λ
2/p
n,2 θ(1, λn,2)

)
S′p

(
λ
2/p
n,2 θ(1, λn,2)

) = Tp

(
λ
2/p
n,2 θ(1, λn,2)

)
,

and

λ
2/p
n,2 θ(1, λn,2) = nπ̂ −

λ
2
p

n,2

a1λn,2 + a2λ
2
n,2

+ o

 λ
4
p

n,2(
a1λn,2 + a2λ

2
n,2

)2
 . (2.9)



28 TUBA GULSEN AND EMRAH YILMAZ

Therefore, we have

λ
2/p
n,2 = nπ̂ − 1

a1 (nπ̂)
p−2
2 + a2 (nπ̂)

p−1
+

1

p (nπ̂)
p−1

1∫
0

q2(x)dx

+
2

p (nπ̂)
p−2
2

1∫
0

r2(x)dx+O

(
1

np−1

)
,

by using (2.7) and (2.9). Finally, let us find the asymptotic expansion of λn,m for
m ≥ 3. Similarly, by using (1.2), we have

λ2/pn,mR(1)S
′
p

(
λ2/pn,m θ(1, λn,m)

)
+
(
a1λn,m + ...+ amλ

m
n,m

)
R(1)Sp

(
λ2/pn,m θ(1, λn,m)

)
= 0,

or

− λ
2
p
n,m

a1λn,m + ...+ amλ
m
n,m

=
Sp

(
λ2/pn,m θ(1, λn,m)

)
S′p

(
λ2/pn,m θ(1, λn,m)

) = Tp

(
λ2/pn,m θ(1, λn,m)

)
. (2.10)

By considering (2.7) and (2.10) together and using similar procedure, we deduce
that

λ2/pn,m = nπ̂ − 1

a1 (nπ̂)
p−2
2 + ...+ am (nπ̂)

mp−2
2

+
1

p (nπ̂)
p−1

1∫
0

qm(x)dx

+
2

p (nπ̂)
p−2
2

1∫
0

rm(x)dx+O

(
1

np−1

)
.

Theorem 2.2. Asymptotic estimates of the nodal points for the problem (1.1)-
(1.2) satisfies

xnj,1 =
j

n
− j

a1n
p+2
2 π̂

p
2

+
j

pnp+1π̂p

1∫
0

q1(t)dt+
2j

pn
p
2+1π̂

p
2

1∫
0

r1(t)dt

+
1

(nπ̂)
p

xnj,1∫
0

q1(t)S
p
pdt+

2

(nπ̂)
p
2

xnj,1∫
0

r1(t)S
p
pdt+O

(
j

np

)
, (2.11)
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xnj,2 =
j

n
− j

a1n
p+2
2 π̂

p
2 + a2npπ̂

p
+

j

pnp+1π̂p

1∫
0

q2(t)dt+
2j

pn
p
2+1π̂

p
2

1∫
0

r2(t)dt

+
1

(nπ̂)
p

xnj,2∫
0

q2(t)S
p
pdt+

2

(nπ̂)
p
2

xnj,2∫
0

r2(t)S
p
pdt+O

(
j

np+1

)
, (2.12)

and

xnj,m =
j

n
− j

a1n
p+2
2 π̂

p
2 + ...+ amn

mp
2 +1π̂

mp
2

+
j

pnp+1π̂p

1∫
0

qm(t)dt

+
2j

pn
p
2+1π̂

p
2

1∫
0

rm(t)dt+
1

(nπ̂)
p

xnj,m∫
0

qm(t)S
p
pdt

+
2

(nπ̂)
p
2

xnj,m∫
0

rm(t)S
p
pdt+O

(
j

np+1

)
, (2.13)

for m = 1, m = 2 and m ≥ 3, respectively as n→∞.

Proof: Integrating (2.3) from 0 to xnj,m and letting θ(xnj,m, λ) =
jπ̂

λ2/pn,m

, we have

xnj,m =
jπ̂

λ2/pn,m

+
1

λ2n,m

xnj,m∫
0

qm(t)S
p
pdt+

2

λn,m

xnj,m∫
0

rm(t)S
p
pdt. (2.14)

Now, we will find the asymptotic estimate of nodal points for m = 1. From the
formula (2.4), we deduce

1

λ
2/p
n,1

=
1

nπ̂
− 1

a1 (nπ̂)
p+2
2

+
1

p (nπ̂)
p+1

1∫
0

q1(t)dt+
2

p (nπ̂)
p
2+1

1∫
0

r1(t)dt+O

(
1

np

)
,

(2.15)
and therefore we obtain the formula (2.11) by using (2.14) and (2.15).

In (2.11), if we take
j

n
→ 1 as n→∞, we obtain

xnj,1 =
j

n
− j

a1n
p+2
2 π̂

p
2

+
j

pnp+1π̂p

1∫
0

q1(t)dt+
2j

pn
p
2+1π̂

p
2

1∫
0

r1(t)dt

+
1

p (nπ̂)
p

1∫
0

q1(t)dt+
2

p (nπ̂)
p
2

1∫
0

r1(t)dt+O

(
1

n
p
2+1

)
. (2.16)
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By using (2.5), the asymptotic estimate of eigenvalues 1/λ2/pn,2 for m = 2 is
considered as

1

λ
2/p
n,2

=
1

nπ̂
− 1

a1 (nπ̂)
p+2
2 + a2 (nπ̂)

p+1
+

1

p (nπ̂)
p+1

1∫
0

q2(t)dt

+
2

p (nπ̂)
p
2+1

1∫
0

r2(t)dt+O

(
1

np+1

)
, (2.17)

and, we conclude the formula (2.12) by using (2.14) and (2.17).

In the formula (2.12), if we take
j

n
→ 1 as n→∞, we have

xnj,2 =
j

n
− j

a1n
p+2
2 π̂

p
2 + a2npπ̂

p
+

j

pnp+1π̂p

1∫
0

q2(t)dt+
2j

pn
p
2+1π̂

p
2

1∫
0

r2(t)dt

+
1

p (nπ̂)
p

1∫
0

q2(t)dt+
2

p (nπ̂)
p
2

1∫
0

r2(t)dt+O

(
1

n
p
2+1

)
. (2.18)

For m ≥ 3, from the formula (2.6), it can be easily obtain that

1

λ2/pn,m

=
1

nπ̂
− 1

a1 (nπ̂)
p+2
2 + ...+ am (nπ̂)

mp+2
2

+
1

p (nπ̂)
p+1

1∫
0

qm(t)dt

+
2

p (nπ̂)
p
2+1

1∫
0

rm(t)dt+O

(
1

np+1

)
, (2.19)

and we get the formula (2.13) by using (2.14) and (2.19).

In (2.13), if we take
j

n
→ 1 as n→∞, we obtain

xnj,m =
j

n
− j

a1n
p+2
2 π̂

p
2 + ...+ amn

mp
2 +1π̂

mp
2

+
j

pnp+1π̂p

1∫
0

qm(t)dt

+
2j

pn
p
2+1π̂

p
2

1∫
0

rm(t)dt+
1

p (nπ̂)
p

1∫
0

qm(t)dt

+
2

p (nπ̂)
p
2

1∫
0

rm(t)dt+O

(
1

n
p
2+1

)
. (2.20)
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Theorem 2.3. Asymptotic estimate of the nodal lengths for the problem (1.1)-
(1.2) satisfies

lnj,1 =
1

n
− 1

a1n
p+2
2 π̂

p
2

+
1

pnp+1π̂p

1∫
0

q1(t)dt+
2

pn
p
2+1π̂

p
2

1∫
0

r1(t)dt (2.21)

+
1

(nπ̂)
p

xnj+1,1∫
xnj,1

q1(t)S
p
pdt+

2

(nπ̂)
p
2

xnj+1,1∫
xnj,1

r1(t)S
p
pdt+O

(
1

np

)
,

lnj,2 =
1

n
− 1

a1n
p+2
2 π̂

p
2 + a2np+1π̂

p
+

1

pnp+1π̂p

1∫
0

q2(t)dt+
2

pn
p
2+1π̂

p
2

1∫
0

r2(t)dt

(2.22)

+
1

(nπ̂)
p

xnj+1,2∫
xnj,2

q2(t)S
p
pdt+

2

(nπ̂)
p
2

xnj+1,2∫
xnj,2

r2(t)S
p
pdt+O

(
1

np+1

)
,

and

lnj,m =
1

n
− 1

a1n
p+2
2 π̂

p
2 + ...+ amn

mp
2 +1π̂

mp
2

+
1

pnp+1π̂p

1∫
0

qm(t)dt

+
2

pn
p
2+1π̂

p
2

1∫
0

rm(t)dt+
1

(nπ̂)
p

xnj+1,m∫
xnj,m

qm(t)S
p
pdt

+
2

(nπ̂)
p
2

xnj+1,m∫
xnj,m

rm(t)S
p
pdt+O

(
1

np+1

)
, (2.23)

for m = 1, m = 2 and m ≥ 3, respectively as n→∞.

Proof: For large n ∈ N, integrating (2.3) in [xnj,m, xnj+1,m] and using the definition
of nodal lengths, we have

lnj,m =
π̂

λ2/pn,m

+
1

λ2n,m

xnj+1,m∫
xnj,m

qm(t)S
p
pdt+

2

λn,m

xnj+1,m∫
xnj,m

rm(t)S
p
pdt, (2.24)

or
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lnj,m =
π̂

λ2/pn,m

+
1

pλ2n,m

xnj+1,m∫
xnj,m

qm(t)dt+
2

pλn,m

xnj+1,m∫
xnj,m

rm(t)dt+O

(
1

n
p
2+1

)
.

For m = 1, m = 2 and m ≥ 3, we can obtain easily (2.21), (2.22) and (2.23) by
using the formulas (2.15), (2.17), (2.19), respectively.

3. Reconstruction of the potential function

In this section, we give an explicit formula for the potential functions of the
diffusion equation (1.1) by using nodal lengths. The method used in the proof of the
theorem is similar to classical problems; p−Laplacian Sturm-Liouville eigenvalue
problem and p−Laplacian energy-dependent Sturm-Liouville eigenvalue problem
(see [1], [29], [30], [31]).

Theorem 3.1. Let qm(x) ∈ L2(0, 1) and rm(x) ∈ W 1
2 (0, 1) are real-valued func-

tions defined in the interval 0 ≤ x ≤ 1 for all m. Then

qm(x) = lim
n→∞

pλ 2
p+2
n,m lnj,m
π̂

− pλ2n,m

 , (2.25)

and

rm(x) = lim
n→∞

pλ 2
p+1
n,m lnj,m
2π̂

− pλn,m
2

 ,

for j = jn,m(x) = max
{
j : xnj,m < x

}
and m ∈ Z+.

Proof: We need to consider Theorem 2.3 for proof. From (2.24), we have

pλ2/p+2n,m

π̂
lnj,m = pλ2n,m +

pλ2/pn,m

π̂

xnj+1,m∫
xnj,m

qm(t)S
p
pdt+

2pλ2/p+1n,m

π̂

xnj+1,m∫
xnj,m

rm(t)S
p
pdt.

Then, we can use similar procedure as those in [29] for j = jn,m(x) = max{j :
xnj,m < x} to show

λ2/pn,m

π̂

xnj+1,m∫
xnj,m

qm(t)dt→ qm(x),

and

pλ2/pn,m

π̂

xnj+1,m∫
xnj,m

qm(t)

(
Spp −

1

p

)
dt→ 0,
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pointwise almost everywhere. Hence, we get

qm(x) = lim
n→∞

pλ 2
p+2
n,m lnj,m
π̂

− pλ2n,m

 .

By using similar way, we can easily get the asymptotic expansion of rm(x).

Theorem 3.2. Let
{
l
(n)
j,m : j = 1, 2, ..., n− 1

}∞
n=2

be a set of nodal lengths of the

problem (1.1)-(1.2) where qm(x) and rm(x) are real-valued functions on 0 ≤ x ≤ 1
for all m. Let us define

Fn,1(x) = p (nπ̂)
p
(
nl
(n)
j,1 − 1

)
− p

a1
(nπ̂)

p/2
+

1∫
0

q1(t)dt+2 (nπ̂)
p/2

1∫
0

r1(t)dt, (2.26)

Fn,2(x) = p (nπ̂)
p
(
nl
(n)
j,2 − 1

)
− p (nπ̂)

p/2

a1 + a2 (nπ̂)
p/2

+

1∫
0

q2(t)dt+ 2 (nπ̂)
p/2

1∫
0

r2(t)dt,

(2.27)

Fn,m(x) = p (nπ̂)
p
(
nl
(n)
j,m − 1

)
− p (nπ̂)

p/2

a1 + ...+ am (nπ̂)
mp−p

2

+

1∫
0

qm(t)dt+ 2 (nπ̂)
p/2

1∫
0

rm(t)dt. (2.28)

and

Gn,1(x) =
p (nπ̂)

p
2

2

(
nl
(n)
j,1 − 1

)
− p

2a1
+

1

2 (nπ̂)
p/2

1∫
0

q1(t)dt+

1∫
0

r1(t)dt, (2.29)

Gn,2(x) =
p (nπ̂)

p
2

2

(
nl
(n)
j,2 − 1

)
− p

2
(
a1 + a2 (nπ̂)

p
2

)
+

1

2 (nπ̂)
p/2

1∫
0

q2(t)dt+

1∫
0

r2(t)dt (2.30)



34 TUBA GULSEN AND EMRAH YILMAZ

Gn,m(x) =
p (nπ̂)

p
2

2

(
nl
(n)
j,m − 1

)
− p

2
(
a1 + ...+ am (nπ̂)

mp−p
2

)
+

1

2 (nπ̂)
p
2

1∫
0

qm(t)dt+

1∫
0

rm(t)dt (2.31)

for m = 1, m = 2 and m ≥ 3, respectively. Then, {Fn,m(x)} and {Gn,m(x)}
converge to qm and rm pointwise almost everywhere in L1(0, 1), respectively, for all
cases.

Proof: We will prove this theorem only for Fn,1. Other cases can be shown
similarly. By the asymptotic formulas of eigenvalues (2.4) and nodal lengths (2.21),
we get

pλ2n,1

(
λ
2/p
n,1 l

n
j,1

π̂
− 1
)
= pλ2n,1

(
nl
(n)
j,1 − 1

)
− p

a1π
(nπ̂)

p/2+1
l
(n)
j,1 + nl

(n)
j,1

1∫
0

q1(t)dt

+ 2n (nπ̂)
p/2

l
(n)
j,1

1∫
0

r1(t)dt+ o(1).

Considering nl(n)j,1 = 1 + o(1), as n→∞, we have

p (nπ̂)
p
(
nl
(n)
j,1 − 1

)
− p

a1
(nπ̂)

p/2 → q1(x)−
1∫
0

q1(t)dt− 2 (nπ̂)p/2
1∫
0

r1(t)dt

pointwise almost everywhere in L1(0, 1). By using similar way, it is not diffi cult
to show that {Gn,m(x)} converges to rm pointwise almost everywhere in L1(0, 1),
respectively, for all m ∈ Z+.

4. Conclusion

In this study, we give some asymptotic estimates for eigenvalues, nodal parame-
ters and potential function of the p−Laplacian diffusion eigenvalue problem (1.1)-
(1.2) with polynomially dependent spectral parameter. We show that the obtained
results are generalizations of the classical problem.
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