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PROLONGATIONS OF GOLDEN STRUCTURES TO TANGENT
BUNDLES OF ORDER r

MUSTAFA ÖZKAN AND FATMA YILMAZ

Abstract. Our purpose in this paper is to focus on some applications in dif-
ferential geometry of golden structure. We study r−lift of the golden structure
in tangent bundle of order r and we obtain integrabilitiy conditions of golden
structure in TrM .

1. Introduction

In differential geometry, the lift method has an important role. This method
allows to generalize differentiable structures on any manifold. The extended ma-
nifold is significant since geometric structures of an extended manifold has coin-
cided more knowledge than geometric structures of a manifold. The lifts from M
(n−dimensional differentiable manifold) to its tangent bundle of order r are found
in the literature [1, 5, 9, 10, 17].
We give some information about references which are the basis of our paper.

Hretcanu [6] studied the golden structure on a manifoldM in 2007. Then, Hretcanu
and Crasmareanu [2] introduced the geometry of the golden structure on a manifold
M by using a corresponding almost product structure. Golden structures were
studied by various authors [3, 7, 8, 12, 15, 16]. Based on these studies, Özkan [13]
investigated prolongations of golden structure to tangent bundles. The aim of this
paper is to generalize the former prolongations by considering the tangent bundle
of order r (which is the tangent bundle of higher order). In particular, we follow
the spirit of [13].
The outline of this paper is as follows: In section 2, we remind significant defini-

tions and features about the golden structure. In section 3, we introduce the r−lift
of golden structures in tangent bundle of order r. In section 4, integrability and
parallelism of golden structures in tangent bundle of order r are showed. Section 5
deals with golden semi-Riemannian manifold in tangent bundle of order r.
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2. Golden structures on manifolds

Definition 1 ([2, 6]). A tensor field Φ of type (1, 1) onM and of class C∞ providing

Φ2 − Φ− I = 0 (2.1)

is called a golden structure on M .

Recall ([2], Theorem 1.1) that if P is an almost product structure on M , then

Φ =
1

2

(
I +
√

5P
)

(2.2)

is a golden structure on M . Conversely, if Φ is a golden structure on M then

P =
1√
5

(2Φ− I) (2.3)

is an almost product structure on M .
Now we define the operators k and s as follows [2]:

k =
1

2
(I + P ) , s =

1

2
(I − P )

where P is an almost product structure.
By using Φ = 1

2

(
I +
√

5P
)
, we have

k =
1√
5

Φ− 1− φ√
5
I, s = − 1√

5
Φ +

φ√
5
I (2.4)

where φ is a solution of the equation x2 − x − 1 = 0, and it is called the golden
ratio. Then we get

k + s = I, ks = sk = 0, k2 = k, s2 = s. (2.5)

Equation (2.5) shows that there exist two complementary distributions K and S in
M corresponding to the projection operators k and s.
k and s are operators providing following relations [2]:

Φk = kΦ = φk = φ√
5
Φ + 1√

5
I,

Φs = sΦ = (1− φ) s = φ−1√
5

Φ− 1√
5
I.

(2.6)

3. r−lift of Golden structures in tangent bundle

Firstly, we give information about the tangent bundle of order r, which is the
bundle of r−jets.
Let M be a differentiable C∞ manifold, dimM = n, r ≥ 1 be an integer and R

be the real line. C∞(M) is an algebra of all differentiable functions on M .
We introduce an equivalence relation ∼ in the set of all differentiable mappings.

We denote these mappings by S(M). If the mappings ϕ : R→M and ψ : R→M
satisfy the following conditions

ϕh (0) = ψh (0) ,
dϕh (0)

dt
=
dψh (0)

dt
, ...,

drϕ (0)

dtr
=
drψ (0)

dtr
,
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where ϕ and ψ are indicated respectively by xh = ϕh (t) and xh = ψh (t) (t ∈ R)
with respect to local coordinates xh in a coordinate neighborhood of

{
U, xh

}
con-

taining the point ϕ (0) = ψ (0) = p ∈ U, then we say that the mapping ϕ is
equivalent to ψ and denoted by ϕ ∼

r
ψ. Each equivalence relation is called r−jet of

M and shown by jrP (ϕ). The set of all r−jets of M is called the tangent bundle of
order r and denoted by TrM .
Let

{
U, xh

}
be a coordinate neighborhood of M . The local coordinates of TrM

are indicated by the set
(
xh, y(1)h, y(2)h, ..., y(r)h

)
, xh being coordinates of p in U,

and y(1)h, y(2)h, ..., y(r)h are defined respectively by

y(1)h =
dϕh (0)

dt
, y(2)h =

1

2!

d2ϕh (0)

dt2
, ..., y(r)h =

1

r!

drϕh (0)

dtr
,

where ϕ has the local expression xh = ϕh (t) (t ∈ R) with the point p = ϕ (0) . In
such a way TrM becomes a differentiable manifold of dimension (r + 1)n [1, 9, 17].
The r−lift of a tensor field Φ of type (1, 1) with local components Φhi in M to

TrM has components in the following form [17]

Φ(r) :



0 0 0 ... ... ... ... 0
0 0 0 ... ... ... ... 0
... ... ... ... ... ... ... ...(

Φhi
)(0)

0 0 ... ... ... ... 0(
Φhi
)(1) (

Φhi
)(2)

0 ... ... ... ... 0
... ... ... ... ... ... ... ...(

Φhi
)(r) (

Φhi
)(r−1)

... ...
(
Φhi
)(0)

0 ... 0


.

Let Φ and G be tensor fields of type (1,1) on M . We get [17]

(ΦG)
(r)

= Φ(r)G(r). (3.1)

For the case G = Φ in (3.1), we have(
Φ2
)(r)

=
(

Φ(r)
)2

. (3.2)

By using equation (2.1), we obtain
(
Φ2 − Φ− I

)(r)
= 0. By the help of (3.2) and

I(r) = I, we get (
Φ(r)

)2

− Φ(r) − I = 0. (3.3)

Then we have the following proposition.

Proposition 1. Let Φ ∈ =1
1 (M). Φ is a golden structure if and only if the r−lift

Φ(r) of Φ is a golden structure in TrM .

Let Φ be a golden structure on a manifold M . The r− lifts of k, s are k(r) and
s(r), respectively, which are complementary projection tensors in TrM . Thus, there
are complementary distributions K(r) and S(r), which are defined by k(r) and s(r),
respectively.
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Proposition 2. i) If Φ is a golden structure on M , then the golden structure Φ(r)

is an isomorphism on the tangent space of the tangent manifold, Tq (TrM) for every
q ∈ TrM .
ii) Φ(r) is invertible and its inverse Φ̂(r) =

(
Φ(r)

)−1
satisfies(

Φ̂(r)
)2

+ Φ̂(r) − I = 0.

Proposition 3. If Φ is a golden structure on M , then Φ(r) is a golden structure,
and Φ̃(r) = I − Φ(r) is also a golden structure in TrM .

Remark 1. a) If T is an almost tangent structure on M , then T (r) is an almost
tangent structure in TrM , and −T (r) is also an almost tangent structure [17].
b) If P is an almost product structure on M , then P (r) is an almost product

structure in TrM , and −P (r) is also an almost product structure [11].
c) If J is an almost complex structure on M , then J (r) is an almost complex

structure in TrM , and −J (r) is also an almost complex structure [17].

By using (2.2), (2.3) and taking into account Remark 3, we have the following
theorem.

Theorem 1. If P is an almost product structure on M , then almost product struc-
ture P (r) yields a golden structure in TrM as follows:

Φ(r) =
1

2

(
I +
√

5P (r)
)
. (3.4)

Contrarily, let Φ be a golden structure on M , then golden structure Φ(r) induces an
almost product structure in TrM

P (r) =
1√
5

(
2Φ(r) − I

)
.

Remark 2. Taking into account Φ(r) ←→ P (r) in Theorem 1, we get

Φ̃(r) = I − Φ(r) ←→ P̃ (r) = −P (r).

Thus we have
I) Let (M,T ) be an almost tangent manifold. The tensor field Φ

(r)
t on TrM

which is defined by

Φ
(r)
t =

1

2

(
I +
√

5T (r)
)

is called tangent golden structure on
(
TrM,T (r)

)
.

II) Let (M,J) be an almost complex manifold. The tensor field Φ
(r)
j on TrM

which is defined by

Φ
(r)
j =

1

2

(
I +
√

5J (r)
)

is called complex golden structure on
(
TrM,J (r)

)
.
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Example 1 (Triple structures in terms of golden structures on TrM). From (3.4)
and Example 2.4 of [2] we get

ΦF (r) =
1

2

(
I +
√

5F (r)
)
, ΦP (r) =

1

2

(
I +
√

5P (r)
)
, ΦJ(r) =

1

2

(
I +
√

5J (r)
)

where F, P ∈ =1
1 (M) and J = P ◦ F . Hence we obtain
√

5ΦJ(r) = 2ΦP (r)ΦF (r) − ΦP (r) − ΦF (r) + φI

and (ΦF (r) ,ΦP (r) ,ΦJ(r)) is:
1) An (ahp)-structure in TrM if and only if (ΦF ,ΦP ,ΦJ) is (ahp)-structure on

M .
2) An (abpc)-structure in TrM if and only if (ΦF ,ΦP ,ΦJ) is (abpc)-structure

on M .
3) An (apbc)-structure in TrM if and only if (ΦF ,ΦP ,ΦJ) is (apbc)-structure

on M .
4) An (ahc)-structure if in TrM and only if (ΦF ,ΦP ,ΦJ) is (ahc)-structure on

M .

4. Integrability and parallelism of Golden structures in tangent
bundle of order r

Let P be an almost product structure and Φ be a golden structure on M . NP
and NΦ are Nijenhuis tensors of P and Φ, respectively, given by [2, 17] as follows

NP (X,Y ) = [PX,PY ]− P [PX, Y ]− P [X,PY ] + P 2 [X,Y ] ,

NΦ (X,Y ) = [ΦX,ΦY ]− Φ [ΦX,Y ]− Φ [X,ΦY ] + Φ2 [X,Y ] (4.1)
for any X,Y ∈ =1

0 (M).
By noticing Φ = 1

2

(
I +
√

5P
)
, the following relations are verified [2]

NP (X,Y ) =
4

5
NΦ (X,Y ) . (4.2)

For Φ ∈ =1
1 (M), we have [17]

(X + Y )
(r)

= X(r) + Y (r),[
X(r), Y (r)

]
= [X,Y ]

(r)
, (4.3)

Φ(r)X(r) = (ΦX)
(r)
.

From (2.4), (2.5), (2.6), (3.1) and (3.2), we obtain

k(r) =
1√
5

Φ(r) − 1− φ√
5
I, s(r) = − 1√

5
Φ(r) +

φ√
5
I,

k(r) + s(r) = I, k(r)s(r) = s(r)k(r) = 0,
(
k(r)

)2

= k(r),
(
s(r)
)2

= s(r),

Φ(r)k(r) = k(r)Φ(r) = φk(r), Φ(r)s(r) = s(r)Φ(r) = (1− φ) s(r). (4.4)
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Let NP (r) , NΦ(r) be the Nijenhuis tensor of Φ(r) and P (r) in TrM , respectively.
By the help of (3.2), we get

NP (r)

(
X(r), Y (r)

)
=
[
P (r)X(r), P (r)Y (r)

]
− P (r)

[
P (r)X(r), Y (r)

]
−P (r)

[
X(r), P (r)Y (r)

]
+
(
P 2
)(r) [

X(r), Y (r)
]
, (4.5)

NΦ(r)

(
X(r), Y (r)

)
=
[
Φ(r)X(r),Φ(r)Y (r)

]
− Φ(r)

[
Φ(r)X(r), Y (r)

]
−Φ(r)

[
X(r),Φ(r)Y (r)

]
+
(
Φ2
)(r) [

X(r), Y (r)
]

(4.6)

for any X,Y ∈ =1
0 (M).

Proposition 4. The r−lift K(r) of a distribution K in TrM is integrable if and
only if K is integrable in M .

Proof. For any X,Y ∈ =1
0 (M), the distribution K is integrable if and only if [2]

s [kX, kY ] = 0. (4.7)

Taking r−lift on both sides of equation (4.7) and using (4.3), we get

s(r)
[
k(r)X(r), k(r)Y (r)

]
= 0 (4.8)

where s(r) = (I − k)
(r)

= I − k(r) is the projection tensor complementary to k(r).
Thus, equations (4.7) and (4.8) are equivalent. This completes the proof. �

So, we have the following proposition.

Proposition 5. Let the distribution K be integrable in M , that is sNΦ (kX, kY ) =
0 [2] for any X,Y ∈ =1

0 (M). Then the distribution K(r) is integrable in TrM if
and only if

s(r)NΦ(r)

(
k(r)X(r), k(r)Y (r)

)
= 0.

Proof. Let NΦ(r) be the Nijenhuis tensor of Φ(r) in TrM . Then in the view of (3.2),
we have

NΦ(r)

(
k(r)X(r), k(r)Y (r)

)
=

[
Φ(r)k(r)X(r),Φ(r)k(r)Y (r)

]
− Φ(r)

[
Φ(r)k(r)X(r), k(r)Y (r)

]
−Φ(r)

[
k(r)X(r),Φ(r)k(r)Y (r)

]
+
(
Φ2)(r) [k(r)X(r), k(r)Y (r)

]
. (4.9)
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According to (4.9) and with the help of (3.3) and (4.4),

NΦ(r)

(
k(r)X(r), k(r)Y (r)

)
= (2φ− 1) Φ(r)

[
k(r)X(r), k(r)Y (r)

]
+ (3− φ)

[
k(r)X(r), k(r)Y (r)

]
.

Multiplying throughout by 1
5s

(r) and from (4.4), we obtain

1

5
s(r)NΦ(r)

(
k(r)X(r), k(r)Y (r)

)
= s(r)

[
k(r)X(r), k(r)Y (r)

]
= (sNΦ (kX, kY ))

(r)
.

By using (4.8) or sNΦ (kX, kY ) = 0, we obtain

s(r)NΦ(r)

(
k(r)X(r), k(r)Y (r)

)
= 0.

Hence Proposition 5 is proved. �

Proposition 6. The r−lift S(r) of a distribution S in TrM is integrable if and
only if S is integrable in M .

Proof. The distribution S is integrable if and only if [2]

k [sX, sY ] = 0 (4.10)

for any X,Y ∈ =1
0 (M).

Taking r−lift on both sides of equation (4.10) and using (4.3), we get

k(r)
[
s(r)X(r), s(r)Y (r)

]
= 0. (4.11)

where k(r) = (I − s)(r)
= I − s(r) is the projection tensor complementary to s(r).

Thus, the equations (4.10) and (4.11) are equivalent. This completes the proof. �

Proposition 7. Let the distribution S be integrable inM , that is kNΦ (sX, sY ) = 0
[2], for any X,Y ∈ =1

0 (M). Then, the distribution S(r) is integrable in TrM if and
only if

k(r)NΦ(r)

(
s(r)X(r), s(r)Y (r)

)
= 0.

Proof. Taking into account the Nijenhuis tensor Φ(r), we obtain

NΦ(r)

(
s(r)X(r), s(r)Y (r)

)
=

[
Φ(r)s(r)X(r),Φ(r)s(r)Y (r)

]
− Φ(r)

[
Φ(r)s(r)X(r), s(r)Y (r)

]
−Φ(r)

[
s(r)X(r),Φ(r)s(r)Y (r)

]
+
(
Φ2)(r) [s(r)X(r), s(r)Y (r)

]
(4.12)

According to (4.12) and with the help of (3.3) and (4.4),

NΦ(r)

(
s(r)X(r), s(r)Y (r)

)
= (1− 2φ) Φ(r)

[
s(r)X(r), s(r)Y (r)

]
+ (2 + φ)

[
s(r)X(r), s(r)Y (r)

]
.



42 MUSTAFA ÖZKAN AND FATMA YILMAZ

Multiplying throughout by 1
5k

(r) and from (4.4), we obtain,

1

5
k(r)NΦ(r)

(
s(r)X(r), s(r)Y (r)

)
= k(r)

[
s(r)X(r), s(r)Y (r)

]
= (kNΦ (sX, sY ))

(r)
.

By using (4.11) or kNΦ (sX, sY ) = 0, we obtain

k(r)NΦ(r)

(
s(r)X(r), s(r)Y (r)

)
= 0.

Hence Proposition 7 is proved. �

Proposition 8. For any X,Y ∈ =1
0 (M) and Φ(r) = 1

2

(
I +
√

5P (r)
)
, the relation

between NP (r) and NΦ(r) is satisfying

NP (r)

(
X(r), Y (r)

)
=

4

5
NΦ(r)

(
X(r), Y (r)

)
.

Proof. By the help of (4.2), (4.3) and (4.5), we have

NP (r)

(
X(r), Y (r)

)
= (NP (X,Y ))

(r)

=

(
4

5
NΦ (X,Y )

)(r)

.

Using (4.1) and (4.3), we have

NP (r)

(
X(r), Y (r)

)
=

4

5
NΦ(r)

(
X(r), Y (r)

)
.

This proves the proposition. �

Proposition 9. Let P be an almost product structure on M and the r−lift Φ(r) of
Φ is golden structure in TrM . Then, Φ(r) is integrable in TrM if and only if P is
integrable in M .

Proposition 10. Let the golden structure Φ be integrable in M . Then the golden
structure Φ(r) is integrable in TrM if and only if

NΦ(r)

(
X(r), Y (r)

)
= 0.

Proof. In view of equations (4.3) and (4.6), we have

NΦ(r)

(
X(r), Y (r)

)
= (NΦ (X,Y ))

(r)
= 0

because the golden structure Φ is integrable in M . �

Recall ([2], Proposition 4.1) that if the golden structure Φ is integrable, then the
distributions K and S are integrable. Hence we have:

Proposition 11. If the r−lift Φ(r) of Φ is integrable in TrM, then the distributions
K(r) and S(r) are integrable on TrM .
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Let ∇ be a linear connection onM . Then there exists a unique linear connection
∇(r) in TrM which verifies

∇(r)

X(r)Y
(r) = (∇XY )

(r)

for any X,Y ∈ =1
0 (M) [17]. Thus, for the pair

(
Φ(r),∇(r)

)
we obtain two other

linear connections in TrM :
i) The Schouten connection

∇̃(r)

X(r)Y (r) = k(r)
(
∇(r)

X(r)k
(r)Y (r)

)
+ s(r)

(
∇(r)

X(r)s
(r)Y (r)

)
.

ii) The Vrănceanu connection

∇̌(r)

X(r)Y (r) = k(r)
(
∇(r)

k(r)X(r)k
(r)Y (r)

)
+ s(r)

(
∇(r)

s(r)X(r)s
(r)Y (r)

)
+k(r)

[
s(r)X(r), k(r)Y (r)

]
+ s(r)

[
k(r)X(r), s(r)Y (r)

]
.

Proposition 12. The projectors k(r) and s(r) are parallels with respect to Schouten
and Vr̆anceanu connections for every linear connection ∇(r) on TrM . Similarly,
Φ(r) is parallel with respect to Schouten and Vr̆anceanu connections.

We know from [2] that a distribution D on M is called parallel with respect to
the linear connection ∇ if X ∈ =1

0 (M) and Y ∈ D imply ∇XY ∈ D.
By the help of this knowledge, a distribution D(r) on TrM is called parallel with

respect to the linear connection ∇(r) if X(r) ∈ =1
0 (TrM) and Y (r) ∈ D(r) imply

∇(r)

X(r)Y
(r) ∈ D(r).

Proposition 13. For the linear connection ∇(r) in TrM, the distributions K(r)

and S(r) are parallel with respect to Schouten and Vr̆anceanu connections.

Proof. Let X ∈ =1
0 (M) and Y ∈ K. Thus, X(r) ∈ =1

0 (TrM) and Y (r) ∈ K(r).

Since s(r)Y (r) = (sY )
(r)

= 0, k(r)Y (r) = (kY )
(r)

= Y (r), we have

∇̃(r)

X(r)Y (r) = k(r)
(
∇(r)

X(r)Y
(r)
)
∈ K(r),

∇̌(r)

X(r)Y (r) = k(r)
(
∇(r)

k(r)X(r)Y
(r)
)

+ k(r)
[
s(r)X(r), Y (r)

]
∈ K(r).

Similar relations are satisfied for S(r). �

5. Golden semi-Riemannian metrics in tangent bundle of order r

Definition 2 ([4, 14]). A semi-Riemannian almost product structure is a pair (g, P )
with g a semi-Riemannian metric on M, and P is an almost product structure
related by

g (PX,PY ) = g (X,Y )
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or equivalently, P is a g−symmetric endomorphism
g (PX, Y ) = g (X,PY )

for every X,Y ∈ =1
0 (M).

Proposition 14 ([17]). If g is a semi-Riemannian metric in M , then g(r) is a
semi-Riemannian metric in TrM .

Let g be a semi-Riemannian metric and P is an almost product structure on M ,
then the pair

(
g(r), P (r)

)
is a semi-Riemannian almost product structure on TrM

if and only if (g, P ) is so in M . So, we get

g(r)
(
P (r)X(r), P (r)Y (r)

)
= g(r)

(
X(r), Y (r)

)
or equivalently,

g(r)
(
P (r)X(r), Y (r)

)
= g(r)

(
X(r), P (r)Y (r)

)
.

From equations (2.2) and (3.4), we have:

Proposition 15. The almost product structure P is a g−symmetric endomorphism
if and only if golden structure Φ(r) is a g(r)−symmetric endomorphism.

Definition 3 ([2], Definition 5.1.). A golden Riemannian structure on M is a pair
(g,Φ) with

g (ΦX,Y ) = g (X,ΦY ) .

The triple (M, g,Φ) is a golden Riemannian manifold.

Definition 4 ([13]). A golden semi-Riemannian structure on M is a pair (g,Φ)
with

g (ΦX,Y ) = g (X,ΦY ) .

The triple (M, g,Φ) is a golden semi-Riemannian manifold.

Proposition 16. Let Φ ∈ =1
1 (M) then the r−lift Φ(r) of Φ is a golden semi-

Riemannian structure in TrM if Φ is a golden semi-Riemannian structure in M .

Corollary 1. Let (M, g,Φ) be a golden semi-Riemannian manifold, then on a
golden semi-Riemannian manifold

(
TrM, g(r),Φ(r)

)
we have the following results:

i) The projectors k(r), s(r) are g(r)−symmetric endomorphism, i.e.

g(r)
(
k(r)X(r), Y (r)

)
= g(r)

(
X(r), k(r)Y (r)

)
,

g(r)
(
s(r)X(r), Y (r)

)
= g(r)

(
X(r), s(r)Y (r)

)
.

ii) The distribution K(r), S(r) are g(r)−orthogonal, i.e.

g(r)
(
k(r)X(r), s(r)Y (r)

)
= 0.
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iii) The golden structure Φ(r) is NΦ(r)−symmetric, i.e.

NΦ(r)

(
Φ(r)X(r), Y (r)

)
= NΦ(r)

(
X(r),Φ(r)Y (r)

)
.

Proposition 17. If P (r) is parallel with respect to the Levi-Civita connection
g(r)

∇(r)

of g(r), i.e.
g(r)

∇(r)P (r) = 0, then a semi-Riemannian almost product structure is
a locally product structure. If ∇(r) is a symmetric linear connection, then the
Nijenhuis tensor of P (r) satisfies

NP (r)

(
X(r), Y (r)

)
=
(
∇(r)

P (r)X(r)P
(r)
)
Y (r) −

(
∇(r)

P (r)Y (r)P
(r)
)
X(r)

−P (r)
(
∇(r)

X(r)P
(r)
)
Y (r) + P (r)

(
∇(r)

Y (r)P
(r)
)
X(r).

Proposition 18. On a locally product golden semi-Riemannian manifold, the golden
structure Φ(r) is integrable.

By using Proposition 18 and from ([2], Theorem 5.1), we get the following the-
orem.

Theorem 2. If a linear connection

∇(r)

X(r)Y
(r) =

1

5

[
3∇̃(r)

X(r)Y (r) + Φ(r)
(
∇̃(r)

X(r)Φ(r)Y (r)
)
− Φ(r)

(
∇̃(r)

X(r)Y (r)
)

−∇̃(r)

X(r)Φ(r)Y (r)
]

+OP (r)Q(r)
(
X(r), Y (r)

)
where ∇̃(r)

is r−lift of a linear connection ∇̃ and Q(r) is r−lift of an (1, 2)−tensor
field Q for which OPQ is a related Obata operator

OPQ (X,Y ) =
1

2
[Q (X,Y ) + PQ (X,PY )]

for the corresponding almost product structure (2.3), then Φ(r) is parallel with re-
spect to ∇(r) linear connection, i.e. ∇(r)Φ(r) = 0.

From ([2], Example 5.6), we have the following example.

Example 2. 
K(r) = Span

{
r∑

µ=0

(
x1
)(µ) ∂

∂y(µ)1
+ ∂

∂y(0)2

}

S(r) = Span

{
∂

∂y(0)1
−

r∑
µ=0

(
x1
)(µ) ∂

∂y(µ)2

}
where ∂

∂y(µ)1
=
(
∂
∂x1

)(r−µ)
and ∂

∂y(µ)2
=
(
∂
∂x2

)(r−µ)
. K(r) and S(r) are defined com-

plementary distributions orthogonal with respect to r−lift of the Euclidean metric
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of R2. These distributions are related to the golden structure

Φ(r)
((

∂
∂x1

)(r))
=

r∑
µ=0

φ
(
(x1)

(µ)
)2

+(1−φ)

((x1)(µ))
2
+1

∂
∂y(µ)1

+
r∑

µ=0

√
5(x1)

(µ)

((x1)(µ))
2
+1

∂
∂y(µ)2

Φ(r)
((

∂
∂x2

)(r))
=

r∑
µ=0

√
5(x1)

(r)

((x1)(r))
2
+1

∂
∂y(µ)1

+
r∑

µ=0

(1−φ)
(
(x1)

(r)
)2

+φ

((x1)(r))
2
+1

∂
∂y(µ)2

which is integrable since NΦ(r)

((
∂
∂x1

)(r)
,
(
∂
∂x2

)(r))
= 0.
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