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MERCERIAN THEOREM FOR FOUR DIMENSIONAL
MATRICES

MEDİNE YEŞİLKAYAGİL AND FEYZİ BAŞAR

Abstract. Let A = (ank) be an infinite matrix and let c and cA be the space
of all convergent sequences with complex terms and convergence domain of A,
respectively. In 1907, Mercer proved in [On the limits of real variants, Proc.
London Math. Soc. 2 (1) (1907), no. 5, 206—224.] that c = cA which is called
a Mercerian theorem. In this paper, we give the corresponding theorem for a
four dimensional matrix and the space of convergent double sequences in the
Pringsheim’s sense.

1. Introduction

We denote the set of all complex valued double sequences by Ω which is a lin-
ear space with coordinatewise addition and scalar multiplication. Any linear sub-
space of Ω is called as a double sequence space. A double sequence x = (xmn) of
complex numbers is said to be bounded if ‖x‖∞ = supm,n∈N |xmn| < ∞, where
N = {0, 1, 2, . . .}. The space of all bounded double sequences is denoted by Mu

which is a Banach space with the norm ‖·‖∞. Consider the sequence x = (xmn) ∈ Ω.
If for every ε > 0 there exists n0 = n0(ε) ∈ N and l ∈ C such that |xmn − l| < ε
for all m,n > n0, then we say that the double sequence x is convergent in the
Pringsheim’s sense to the limit l and write p − limxmn = l, [1]; where C denotes
the complex field. By Cp, we denote the space of all convergent double sequences
in the Pringsheim’s sense. It is well-known that there are sequences in the space
Cp but not in the space Mu. Indeed following Boos [2, p. 16], if we define the
sequence x = (xmn) by

xmn :=

{
n , m = 0, n ∈ N,
0 , m ≥ 1, n ∈ N,

then it is trivial that x ∈ Cp −Mu, since p− limxmn = 0 but ‖x‖∞ = ∞. So, we
can consider the space Cbp of the double sequences which are both convergent in the
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Pringsheim’s sense and bounded, i.e., Cbp = Cp∩Mu. A sequence in the space Cp is
said to be regularly convergent if it is convergent in the ordinary sense with respect
to each index and denote the space of all such sequences by Cr. Also by Cbp0 and
Cr0, we denote the spaces of all double null sequences contained in the sequence
spaces Cbp and Cr, respectively. Móricz [3] proved that Cbp, Cbp0, Cr and Cr0 are
Banach spaces with the norm ‖ · ‖∞. The reader can refer to [4, 5, 6, 7, 8, 9, 10] for
further details about the double sequences, four dimensional matrices and related
topics.
Boos, Leiger and Zeller [11] introduced and investigated the notion of e−con-

vergence of double sequences, which is essentially weaker than the convergence in
the Pringsheim’s sense. A double sequence x = (xmn) is said to be e−convergent
to a number l if

∀ε > 0 ∃n0 ∈ N ∀n ≥ n0 ∃mn ∈ N such that m ≥ mn ⇒ |xmn − l| ≤ ε.
If x is e−convergent and, in addition, (xmn)m∈N is bounded for every n ∈ N,
or equivalently the limit limm→∞ xmn exists for every fixed n ∈ N, then x is
said to be be−convergent and c−convergent, respectively. Evidently, the be− and
c−convergence generalize the bp− and r−convergence, respectively. Note that in
the case of the c−convergence also the limit limn→∞ limm→∞ xmn exists and is
equal to the e−limit.
The β(ϑ)-dual λβ(ϑ) with respect to the ϑ-convergence of a double sequence

space λ is defined by

λβ(ϑ) :=

(akl) ∈ Ω : ϑ−
∞∑

k,l=0

aklxkl exists for all (xkl) ∈ λ

 .

Let A = (amnkl) be any four dimensional matrix. Then, a double sequence
x = (xkl) is said to be in the application domain of A with respect to ϑ if and only
if

(Ax)mn = ϑ−
∞∑

k,l=0

amnklxkl (1)

exists for each m,n ∈ N. We define the ϑ-summability domain λ(ϑ)A of A in a double
sequence space λ by

λ
(ϑ)
A =

x = (xkl) ∈ Ω : Ax =

ϑ− ∞∑
k,l=0

amnklxkl


m,n∈N

exists and is in λ

 .

Let λ and µ be two spaces of double sequences, and A be a four dimensional matrix.
Then, we say with the notation (1) that A maps the space λ into the space µ if
λ ⊂ µ

(ϑ)
A and we denote the set of all four dimensional matrices, transforming the

space λ into the space µ, by (λ : µ). Thus, A = (amnkl) ∈ (λ : µ) if and only if the
double series on the right side of (1) converges in the sense of ϑ for each m,n ∈ N,
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i.e, Amn ∈ λβ(ϑ) for all m,n ∈ N and every x ∈ λ, and we have Ax ∈ µ for all
x ∈ λ; where Amn = (amnkl)k,l∈N for all m,n ∈ N. In the special case λ = Cϑ the
set

(Cϑ)A = {x = (xkl) ∈ Ω : Ax ∈ Cϑ}

is called the ϑ−convergence domain of A. Here and after, unless stated otherwise
we assume that ϑ denotes any of the symbols p, bp, r, e, be or c. We say that
A is Cϑ-conservative if Cϑ ⊂ (Cϑ)A, and is Cϑ-regular if it is Cϑ-conservative and
ϑ− limA x = ϑ− lim

m,n→∞
(Ax)mn = ϑ− lim

m,n→∞
xmn, where x = (xmn) ∈ Cϑ.

For all m,n, k, l ∈ N, we say that A = (amnkl) is a triangular matrix if amnkl = 0
for k > m or l > n or both, [12]. By following Adams [12], we can say that a
triangular matrix A = (amnkl) is called a triangle if amnmn 6= 0 for all m,n ∈ N.
Referring to Cooke [13, Remark (a), p. 22], one can conclude that every triangle
matrix has an unique inverse which is also a triangle.
Following Zeltser [14], we define the double sequence ekl =

(
eklmn

)
by

eklmn :=

{
1 , (k, l) = (m,n),
0 , otherwise

for all k, l,m, n ∈ N.
We use the notation ∼ as in [19], that is, "f ∼ g" means "f/g → 1".

Definition 1.1. [15, Definition 1.7.4, p. 12] If cB ⊇ cA, then B is said to be
stronger than A.

Definition 1.2. [15, Definition 1.7.13, p. 14] A matrix A is said to be Mercerian
if cA = c.

Definition 1.3. [16, 17] Any four dimensional matrix is said to be RH−regular if
it maps every bounded p−convergent sequence into a p−convergent sequence with
the same p−limit.
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Theorem 1.1. [16, 17] A four dimensional matrix A = (amnkl) is RH − regular
if and only if

RH1 : p− lim
m,n→∞

amnkl = 0 for each k, l ∈ N,

RH2 : p− lim
m,n→∞

∞∑
k,l=0

amnkl = 1,

RH3 : p− lim
m,n→∞

∞∑
k=0

|amnkl| = 0 for each l ∈ N,

RH4 : p− lim
m,n→∞

∞∑
l=0

|amnkl| = 0 for each k ∈ N,

RH5 :

∞∑
k,l=0

|amnkl| is p-convergent,

RH6 : there exist finite positive integers M and N such that
∑
k,l>N

|amnkl| < M.

Now, we give our definitions for four dimensional matrices.

Definition 1.4. Let A = (amnkl) and B = (bmnkl) be two four dimensional ma-
trices. If every A summable sequence is also B summable, then B is said to be
stronger than A and we write (Cϑ)B ⊇ (Cϑ)A.

Definition 1.5. A four dimensional matrix A = (amnkl) is said to be Mercerian if
(Cϑ)A = Cϑ.

Let A = (ank) be an infinite matrix and let c and cA be the space of all convergent
sequences with complex terms and convergence domain of A, respectively. The
result given by Mercer for the space c which proves that c = cA, is called aMercerian
theorem, [18]. Hardy [19], Maddox [20] described Mercer’s result as follows. Let
x = (xk) be an ordinary sequence and consider the transformation A defined by

(Ax)n = αxn +
1− α
n+ 1

n∑
k=0

xk

for all n ∈ N, where α > 0 is a real number. Then, (Ax)n → l implies xk → l.
It is well-known that if the four dimensional matrix A = (amnkl) is in the class

(Cϑ : Cϑ), then the inclusion Cϑ ⊂ (Cϑ)A holds. Note that the question "When
does Cϑ = (Cϑ)A hold?" is still open problem. In this paper, we essentially study
to solve this problem with referring Hardy [19].

2. Main Results

In this section, we give the Mercerian theorem for four dimensinal matrices and
the space of convergent double sequences in the Pringsheim’s sense together with
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the results on the associativity of the products t(Ax) and B(Ax), where t, x ∈ Ω
and A,B are the four dimensional matrices.

Theorem 2.1. Let x = (xmn) be a double sequence and consider the double se-
quence s = (smn) defined by smn =

∑m,n
k,l=0 xkl/[(m + 1)(n + 1)] for all m,n ∈ N.

If α > 0, {αxmn + (1− α)smn} bounded and

ϑ− lim
m,n→∞

[αxmn + (1− α)smn] = l, (2)

then ϑ− lim
m,n→∞

xmn = l.

Proof. Let the double sequence z = (zmn) be defined by

zmn = αxmn + (1− α)smn

for all m,n ∈ N. We assume that s−1,n = sm,−1 = s−1,−1 = 0 for all m,n ∈ N.
Since

smn =
1

(m+ 1)(n+ 1)

m,n∑
k,l=0

xkl

for all m,n ∈ N, we have

xmn = (m+ 1)(n+ 1)sm,n −m(n+ 1)sm−1,n − (m+ 1)nsm,n−1 +mnsm−1,n−1

for all m,n ∈ N. Thus, we can write

zmn = [(mn+m+ n)α+ 1]smn −m(n+ 1)αsm−1,n

− (m+ 1)nαsm,n−1 +mnαsm−1,n−1. (3)

We choose the sequences q = (qk) and t = (tl) of non-negative numbers which
are not all zero with q0 = t0 = 1 and q1 6= 1 so as to satisfy

[(kl + k + l)α+ 1]qktl − (k + 1)(l + 1)αqktl+1 − (k + 1)(l + 1)αqk+1tl +

(k + 1)(l + 1)αqk+1tl+1 = 0 (4)

for 0 ≤ k ≤ m− 1 and 0 ≤ l ≤ n− 1,

[(kn+ k + n)α+ 1]qktn − (k + 1)(n+ 1)αqk+1tn = 0 (5)

for 0 ≤ k ≤ m− 1, and

[(ml +m+ l)α+ 1]qmtl − (m+ 1)(l + 1)αqmtl+1 = 0 (6)

for 0 ≤ l ≤ n− 1, for all m,n, k, l ∈ N. Therefore, we can write from the relations
(4)-(6) that

tn =
nαq1 − [(n− 1)α+ 1]

nα(q1 − 1)
· · ·
[

3αq1 − (2α+ 1)

3α(q1 − 1)

] [
2αq1 − (α+ 1)

2α(q1 − 1)

] [
αq1 − 1

α(q1 − 1)

]
,

qm =
1

m!
q1(q1 + 1)(q1 + 2) · · · (q1 +m− 1).
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We easily see that qm > 0 for all m ∈ N and it always exists. But if we take either
q1 < 1/α < 1 or 1 < 1/α < q1, we can say that tn > 0 for all n ∈ N and it always
exists, as well.
Then, we derive with a straightforward calculation that

m,n∑
k,l=0

qktl∼[(mn+m+ n)α+ 1]qmtn (7)

for all m,n ∈ N by the relations (4)-(6).
Multiplying the equality (3) by q0t0, q0t1, . . . , q1t0, q1t1, . . . , qmt0, qmt1, . . ., adding,

and using the relation (7) and considering the RH−regularity of the Riesz mean
Rqt (see [21, Theorem 2.8]), we obtain that

ϑ− lim
m,n→∞

smn = ϑ− lim
m,n→∞

m,n∑
k,l=0

qktl
[(mn+m+ n)α+ 1]qmtn

zkl = l (8)

and it follows from (2) and (8) that ϑ − lim
m,n→∞

xmn = l. This completes the

proof. �

Theorem 2.2. Let A = (amnkl) be any four dimensional matrix. Then, A ∈ (Mu :
Mu) if and only if

sup
m,n∈N

∞∑
k,l=0

|amnkl| <∞. (9)

Proof. Let A ∈ (Mu :Mu). Then, Ax exists and belongs toMu for all x ∈ Mu,
and Amn ∈ Mβ(ϑ)

u for all m,n ∈ N. Hence, ϑ − limm,n→∞(Ax)mn exists and
supm,n∈N |(Ax)mn| < ∞ for all x ∈ Mu. Putting Ax = {(Ax)mn} and using the
Banach-Steinhaus theorem, we see that the condition (9) is necessary.
Conversely, suppose that the condition (9) holds and take any x = (xkl) ∈ Mu.

Then, Amn ∈ Mβ(ϑ)
u for each m,n ∈ N which implies the existence of Ax. Let

m,n ∈ N be fixed. Then, since∣∣∣∣∣∣
∞∑

k,l=0

amnklxkl

∣∣∣∣∣∣ ≤
∞∑

k,l=0

|amnklxkl|

=

∞∑
k,l=0

|amnkl||xkl|

≤ ‖x‖∞
∞∑

k,l=0

|amnkl|
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one can obtain by taking supremum over m,n ∈ N that

‖Ax‖∞ ≤ ‖x‖∞ sup
m,n∈N

∞∑
k,l=0

|amnkl| <∞,

which leads us to the fact that Ax ∈Mu, as desired.
This step completes the proof. �

The expressions t(Ax) and (tA)x arise often in summability, where x, t ∈ Ω and
A = (amnkl) is a four dimensional matrix. We define the double sequence b = (bkl)
by

bkl = tAkl =

∞∑
m,n=0

tmnamnkl (10)

for k, l ∈ N, where Akl = (amnkl)
∞
m,n=0. Then,

t(Ax) =

∞∑
m,n=0

∞∑
k,l=0

tmnamnklxkl

and

bx =

∞∑
k,l=0

∞∑
m,n=0

tmnamnklxkl

may be different even if t = (tkl) ∈ Lu, A is a RH−regular triangle, x ∈ (Cϑ)A and
both numbers exists, where Lu is the space of absolutely convergent double series.
Let us define t = (tkl) such that tkl is 1

(k+1)(k+2)(l+1)(l+2) in the first column to
(l − 1)th column and is zero otherwise, that is,

(tkl) =



(l − 1)th column
1
2·2 · · · 1

2·(l−1)·l
1

2·l·(l+1) 0 0 0 · · ·
1

2·3·2 · · · 1
2·3·(l−1)·l

1
2·3·l·(l+1) 0 0 0 · · ·

1
3·4·2 · · · 1

3·4·(l−1)·l
1

3·4·l·(l+1) 0 0 0 · · ·
...

...
...

...
...
...
... · · ·

1
(k+1)(k+2)·2 · · · 1

(k+1)(k+2)(l−1)l
1

(k+1)(k+2)l(l+1) 0 0 0 · · ·
...

...
...

...
...
...
... · · ·


and let A = C1, where C1 = (cmnkl) denotes the four dimensional Cesàro matrix of
order one. The matrix C1 is a RH−regular triangle matrix. Then, we have b = 0.
If we choose x = (xkl) such that C1x = ekl, then we obtain

t(C1x) =

∞∑
m,n=0

∞∑
k,l=0

tmncmnklxkl =

∞∑
m,n=0

tmn = 1− 1

l + 1
6= 0

for all natural numbers l.
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Theorem 2.3. (Associativity of t(Ax)) Let x, t ∈ Ω, A = (amnkl) be an infinite
matrix and b be the double sequence given by the relation (10). Then we have
t(Ax) = bx, if one of the following statements holds:

(i) t ∈ ϕ and x ∈ Ω
(ϑ)
A , where ϕ denotes the space of all finitely non-zero

double sequences.
(ii) t ∈ Lu, A ∈ (Mu :Mu) and x ∈Mu.

Proof. Since the proof is easily obtained in the similar way used in Wilansky [15,
Theorem 1.4.4, p. 8], we omit the detail. �
Theorem 2.4. (Associativity of B(Ax)) Let x = (xkl) ∈ Ω, A = (amnkl) and
B = (bmnkl) be four dimensional infinite matrices. Then B(Ax) and (BA)x exist,
and B(Ax) = (BA)x, if one of the following statements holds:

(i) Bmn ∈ ϕ for each m,n ∈ N and x ∈ Ω
(ϑ)
A .

(ii) Bmn ∈ Lu for each m,n ∈ N, A ∈ (Mu :Mu) and x ∈Mu.

Proof. This is an immediate consequence of Theorem 2.3 by taking Bmn instead of
t. �
Theorem 2.5. Let A and B be four dimensional triangles. Then, B is stronger
than A if and only if B−1A is Cϑ-conservative.

Proof. Let A and B be four dimensional triangles. Then, A−1 and B−1 exist.
We assume that B is stronger than A. Let x ∈ Cϑ be given. We take y = A−1x.

Since x ∈ Cϑ and Ay = A(A−1x) = (AA−1)x = x by Part (i) of Theorem 2.4,
y ∈ (Cϑ)A. Then, we get that y ∈ (Cϑ)B . Hence, By ∈ Cϑ. Also By = B(A−1x) =
(BA−1)x, that is, x ∈ (Cϑ)BA−1 . Therefore, Cϑ ⊂ (Cϑ)BA−1 , as desired.
Conversely, we assume that B−1A is Cϑ-conservative. Let x ∈ (Cϑ)A be given.

Then, we have Ax ∈ Cϑ. Applying by Part (i) of Theorem 2.4, again, and using
the assumption that B−1A is Cϑ-conservative, we conclude Bx = B(A−1A)x =
(BA−1)(Ax) ∈ Cϑ. Hence, x ∈ (Cϑ)B . So, we can say that B is stronger than A
which completes the proof. �
Now, we can give the following result which is the immediate consequence of

Theorem 2.5 with B = I:

Corollary 2.6. A Cϑ-conservative four dimensional triangle matrix A is Mercerian
if and only if A−1 is Cϑ-conservative.
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