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H∞ CONTROL AND INPUT-TO-STATE STABILIZATION FOR
HYBRID SYSTEMS WITH TIME DELAY

TAGHREED G. SUGATI, MOHAMAD S. ALWAN, AND XINZHI LIU

Abstract. This paper addresses the problem of designing a robust reliable
H∞ control and a switching law to guarantee input-to-state stabilization (ISS)
for a class of uncertain switched control systems with time delay not only
when all the actuators are operational, but also when some of them experience
failure. The output of faulty actuators are treated as a disturbance signal that
is augmented with the system disturbance input. Multiple Lyapunov function
with Razumikhin technique, and average dwell-time switching signal are used
to establish the ISS property.

1. Introduction

A switched system is a special class of hybrid systems that consists of a family
of continuous- or discrete-time dynamical subsystems, and a switching rule that
controls the switchings among the subsystems. One may refer to [7, 8, 12] and the
references therein.
The reliable control is the controller that tolerates failures in the control compo-

nents. In reality, such failures are frequently encountered, yet the immediate repair
may be impossible in some critical cases. Consequently, it is necessary to design a
reliable controller that guarantees an acceptable level of performance [3, 11, 15, 18].
In practice, most of the real control systems are subject to some disturbance

inputs. ISS notion, introduced in [13] which addresses the system response to
a bounded disturbance when the unforced system is asymptotically stable, is an
effi cient tool to deal with these disturbances. In [1], a robust reliable H∞ controller
was designed to guarantee ISS with a desired level of performance for stochastic
systems with time delay. In this work, the nonzero output of faulty actuators was
augmented with the system disturbance. Furthermore, Lyapunov function with the
Razumikhin approach were used in that work.
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The novelty of this work is to develop new suffi cient conditions that guarantee
the input-to-state stabilization and H∞ performance of the switched system in the
presence of the disturbance, state uncertainties, time delay, and nonlinear lumped
perturbation not only when all the actuators are operational, but also when some
of them experience failure. While in most of the available literature on reliable
controls, the faulty actuators are modeled as outages (i.e., zero output), in this
work the output signal of these actuators is treated as a disturbance signal that is
augmented with the system disturbance input. The latter case is more practical
because most of the control component failures occur unexpectedly. The method of
multiple Lyapunov functions is utilized to analyze the ISS. It is well known that the
stability of a switched system is not guaranteed by the stability of each individual
mode unless the switching among them is ruled by a logic-based switching signal,
where in this work the average dwell-time condition is used. To the best of our
knowledge, these results have not been studied in the available literature.
This paper is organized as follows. Section 2 involves the problem description,

definitions, and a useful lemma. The main results and proofs are stated in Section
3. A numerical example with simulations is presented in Section 4. The conclusion
is given in Section 5.

2. Problem formulation

Consider a class of uncertain switched systems with time delay given by ẋ = (A%(t) + ∆A%(t))x+ (Ā%(t) + ∆Ā%(t))x(t− r) +B%(t)u+G%(t)w + f%(t)(x(t− r)),
z = C%(t)x+ F%(t)u,
xt0 = φ(t), t ∈ [−r, 0], r > 0,

where x ∈ Rn is the system state, , u ∈ Rl is the control input, and w ∈ Rp
is an input disturbance, which is assumed to be in L2[t0,∞) that is ||w||22 =∫∞
t0
||w(t)||2 dt < ∞, and z ∈ Rr is the controlled output. % is the switching rule

which is a piecewise constant function defined by % : [t0,∞) → S = {1, 2, · · · , N}.
For r > 0, let Cr be the space of all continuous functions that are defined from
[−r, 0] to Rn. For any t ∈ R+, let x(t) be a function defined on [t0,∞]. Then, we
define the functional xt : [−r, 0] → Rn by xt(s) = x(t + s) for all s ∈ [−r, 0], and
its norm by ||xt||r = supt−r≤θ≤t ||x(θ)||, where r > 0 is the time delay. For each
i ∈ S, Ai is a non Hurwitz matrix, Ki ∈ Rl×n is the control gain matrix such that
u = Kix, where (Ai, Bi) is assumed to be stabilizable, fi(·) ∈ Rn is some nonlin-
earity, Ai, Bi, Gi, Ci and Fi are known real constant matrices, and ∆Ai, ∆Āi are
piecewise continuous functions representing system parameter uncertainties. For
any i ∈ S the closed-loop system is ẋ = (Ai + ∆Ai +BiKi)x+ (Āi + ∆Āi)x(t− r) +Giw + fi(x(t− r)),

z = Cicx, Cic = Ci + FiKi

xt0 = φ(t), t ∈ [−r, 0], r > 0,
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To analyze the reliable stabilization with respect to actuator failures, for any
i ∈ S, we write Bi = BiΣ + BiΣ̄, where Σ ⊆ {1, 2, ..., l} the set of actuators that
are susceptible to failure, and Σ̄ ⊆ {1, 2, ..., l} − Σ the other set of actuators which
are robust to failures and essential to stabilize the given system, moreover, the
matrices BiΣ, BiΣ̄ are the control matrices associated with Σ, Σ̄ respectively, and
are generated by zeroing out the columns corresponding to Σ̄ and Σ, respectively.
The pair (Ai, BiΣ̄) is assumed to be stabilizable. For a fixed i ∈ S, let σ ⊆ Σ
corresponds to some of the actuators that experience failure, and assume that the
output of faulty actuators is any arbitrary energy-bounded signal which belongs to
L2[t0,∞). Then, the decomposition becomes Bi = Biσ + Biσ̄, where Biσ and Biσ̄
have the same definition of BiΣ and BiΣ̄, respectively. Furthermore, the augmented
disturbance input to the system becomes wFσ = (wT (uFσ )T )T , where uFσ ∈ Rl is the
failure vector whose elements corresponding to the set of faulty actuators σ, and F
here stands for “failure". Thus, the closed-loop system becomes ẋ = (Ai + ∆Ai +Biσ̄Ki)x+ (Āi + ∆Āi)x(t− r) +Gicw

F
σ + fi(x(t− r)),

z = Cicx,
xt0 = φ(t), t ∈ [−r, 0], r > 0,

(1)

where Gic = (Gi Biσ).
Definition 1. System (2) is said to be robustly globally exponentially ISS if there
exist λ > 0, λ̄ > 0 and a function ρ ∈ K such that the solution x(t) exists ∀t ≥ t0
and satisfies

||x|| ≤ λ̄||xt0 ||re−λ(t−t0) + ρ
(

sup
t0≤τ≤t

||w(τ)||
)
.

Definition 2. Given a constant γ > 0, system (2) is said to be ISS-H∞ if there
exists a state feedback law u(t) = Kix(t), such that, for any admissible parameter
uncertainties ∆Ai and ∆Āi, the closed-loop system (2) is globally exponentially
ISS, and the controlled output z satisfies

||z||22 =

∫ ∞
t0

||z||2 dt ≤ γ2||w||22 +m0, for some m0 > 0.

Assumption A. For any i ∈ S and ∀ t ∈ R+, ∆Ai(t) = DiUi(t)Hi and ∆Āi(t) =
D̄iŪi(t)H̄i, with Di, Hi, D̄i, H̄i being known real matrices with appropriate di-
mensions, and Ui(t), Ūi(t) being unknown real time-varying matrices and satisfying
||Ui(t)|| ≤ 1 and ||Ūi(t)|| ≤ 1.

Lemma. For any ξj > 0 (j = 1, · · · , 5), and a positive- definite matrix P , we have
(i) 2xTP (∆A)x ≤ xT (ξ1PDD

TP + 1
ξ1
HTH)x.

(ii) 2xTPGw ≤ xT (ξ2PGG
TP )x+ 1

ξ2
wTw.

Moreover, for x ∈ Cr, if ||x(t− r)||2r ≤ q||x||2 with q > 1, then
(iii) 2xTPĀx(t− r) ≤ xT (ξ3PĀ(Ā)TP + q

ξ3
I)x.

(iv) 2xTP (∆Ā)x(t− r) ≤ xT (ξ4PD̄D̄
TP + q

ξ4
||H̄||2)x.
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(v) 2xTPf(x(t − r)) ≤ xT (ξ5P
2 + 1

ξ5
δqI)x, where δ > 0 such that ||f(x(t −

r))||2 ≤ δ||x(t− r)||2r.
Average Dwell Time Condition. The number of switchesN(t0, t) in the interval
(t0, t) for a finite t satisfies N(t0, t) ≤ N0 + t−t0

τa
, where N0 is the chatter bound,

and τa is the average dwell time.

3. Main results

In this section, we shall state and prove our main results. The following theorem
gives robust global exponential ISS property of the system.
Theorem 1. For any i ∈ S, let Ki and γi > 0 be given. Assume that Assumption
A holds and there exist positive constants ξji > 0 (j = 1, · · · , 5), a positive-definite
matrix Pi, and Vi : Rn → R+ such that

(i) V̇i(ψ(0)) ≤ 0 whenever Vi(ψ) ≤ qiVi(ψ(0)), and γ(suptk−1≤s≤tk |w(s)|) ≤
Vi(ψ(0)) for ψ ∈ Cr and t ∈ [tk−1, tk), where qi > 1;

(ii) for all k, τa ≤ tk − tk−1 ≤ β holds where τa is the average dwell time, and
β > 0;

(iii) the following algebraic Riccati-like equation holds

(Ai +BiKi)
TPi + Pi(Ai +BiKi) + Pi(ξ1iDiD

T
i + ξ2iGiG

T
i + ξ3iĀi(Āi)

T + ξ4iD̄i(D̄i)
T

+ ξ5iI)Pi +
1

ξ1i

HT
i Hi + (

qi
ξ3i

+
qi
ξ4i

||H̄i||2 +
δiqi
ξ5i

)I + CTicCic + αiPi = 0 (2)

where δi > 0 such that ||fi(ψ)||2 ≤ δi||ψ||2r.
Then, system (2) is robustly globally exponentially ISS-H∞.

Proof. For all t ∈ [−r,∞), let x(t) = x(t, t0, φ) be the solution of system (2). For
any i ∈ S, define Vi(x) = xTPix. Then, λmin(Pi)||x||2 ≤ Vi(x) ≤ λmax(Pi)||x||2
and

V̇i(x) = xT [(Ai +BiKi)
TPi + Pi(Ai +BiKi)]x+ 2xTPi(∆Ai)x+ 2xTPiGiw

+ 2xTPifi((t− r)) + 2xTPi(∆Āi)x(t− r) + 2xTPiĀix(t− r).
Claim. For any i ∈ S, and k ∈ N, t ∈ [tk−1, tk), conditions (i) and (ii) imply that

||x(t)||2 ≤Mi||φ||2re−λi(t−tk−1) + γ( sup
tk−1≤s≤t

||w(s)||), λi > 0, Mi > 1.

Proof of the claim. Choose Mi > 1 such that

c2i||xtk−1 ||2r ≤Mic2i||xtk−1 ||2re−λi(tk−tk−1) + γ̄(t) (3)

where γ̄(t) = γ(suptk−1≤s≤t(||w(s)||)) and c2i = λmax(Pi). Let v(t) = Vi(x(t)), for
all t ∈ [tk−1 − r, tk), k = 1, 2, · · · . From (3), we have for t ∈ [tk−1 − r, tk),

v(t) ≤ c2i||x(t)||2 ≤ c2i||xtk−1 ||2r ≤Mic2i||xtk−1 ||2re−λi(tk−tk−1) + γ̄(t)

If (3) is not true, then there exists t̄ ∈ (tk−1, tk) such that

v(t̄) > Mic2i||xtk−1 ||2re−λi(tk−tk−1) + γ̄(t) ≥ c2i||xtk−1 ||2r ≥ v(t+ s), s ∈ [−r, 0]
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From the continuity, there exists t∗ ∈ (tk−1, t̄) such that

v(t∗) = Mic2i||xtk−1 ||2re−λi(tk−tk−1) + γ̄(t∗)

and for all t ∈ [tk−1 − r, t∗], we have

v(t) ≤Mic2i||xtk−1 ||2re−λi(tk−tk−1) + γ̄(t)

Also, there exists t∗∗ ∈ [tk−1, t
∗) such that v(t∗∗) = c2i||xtk−1 ||2r and for t ∈ [t∗∗, t∗],

v(t) ≥ c2i||xtk−1 ||2r. Hence, from (??), for all t ∈ [t∗∗, t∗], and s ∈ [−r, 0], we have

v(t+ s) ≤Mic2i||xtk−1 ||2re−λi(tk−tk−2)eλi(tk−1−tk−2) + γ̄(t)

≤Miv(t)eλi(tk−1−tk−2) + γ( sup
tk−1≤s≤t

(||w(s)||))

≤ (Mie
λi(tk−1−tk−2) + 1)v(t) ≤ (Mie

λiβ + 1)v(t) = qiv(t)

where we used condition (i) to get the second last inequality. Therefore, we have
v̇(t) ≤ 0 for t ∈ [t∗∗, t∗] which is a contradiction. Now by the claim, the lemma,
and condition (2), we have

V̇i(x) ≤ xT [(Ai +BiKi)
TPi + Pi(Ai +BiKi) + Pi(ξ1iDiD

T
i + ξ2iGiG

T
i + ξ3iĀi(Āi)

T

+ ξ4iD̄i(D̄i)
T + ξ5iI)Pi +

1

ξ1i

HT
i Hi + (

qi
ξ3i

+
qi
ξ4i

||H̄i||2 +
δiqi
ξ5i

)I]x+
1

ξ2i

wTw

≤ − αiVi(x) +
1

ξ2i

wTw,

Hence, ∀ t ∈ [tk−1, tk), we have V̇i(x) ≤ −ᾱiVi(x) − θiVi(x) + 1
ξ2i
wTw, where

ᾱi = αi− θi and 0 < θi < αi. The foregoing inequality implies that, ∀t ∈ [tk−1, tk),
V̇i(x) ≤ −ᾱiVi(x), provided that Vi(x) > 1

θiξ2i
||w||2, or ||x|| > ||w||√

θic2ξ2i
=: ρi(||w||),

where c2 = maxi∈S λmax(Pi). Then, for all t ∈ [tk−1, tk),

Vi(x(t)) ≤ Vi(x(tk−1))e−ᾱi(t−tk−1)

provided that ||x|| > ρ(||w||), where ρ(||w||) = maxi∈S{ρi(||w||)}. As for the switch-
ing, we have for any i, j ∈ S,

Vj(x(t)) ≤ µVi(x(t)), µ =
c2
c1
,

where c1 = mini∈S{λmin(Pi)} and c2 = maxi∈S{λmax(Pi)}. Then, for i ∈ S and
t ∈ [tk−1, tk),

Vi(x(t)) ≤ µk−1e−ᾱi(t−tk−1)e−ᾱi−1(tk−1−tk−2) · · · e−ᾱ1(t1−t0)V1(x0)

provided that ||x|| > ρ(||w||). Letting α∗ = min{ᾱi; i ∈ S}, one may get

Vi(x(t)) ≤ µk−1e−α
∗(t−t0)V1(x0) = e(k−1) lnµ−α∗(t−t0)V1(x0),

provided that ||x|| > ρ(||w||).
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Using ADTC with N0 = η
lnµ , τa = lnµ

α∗−ν , (ν < α∗), for some η > 0, we get

Vi(x(t)) ≤ eη−ν(t−t0)V1(x0), provided that ||x|| > ρ(||w||).

This implies that [5] ||x|| ≤ b||xt0 ||re−ν(t−t0)/2 + γ(supt0≤τ≤t ||w(τ)||), ∀ t ≥ t0,

where b =
√
eηc2/c1, and γ(s) =

√
c2
c1
ρ(s). This completes the proof of exponential

ISS.
To prove the upper bound on ||z||, for any i ∈ S, let Ji =

∫∞
t0

(zT z − γ2
iw

Tw)dt.
Then,

Ji =

∫ ∞
t0

(zT z − γ2
iw

Tw) dt+

∫ ∞
t0

V̇i dt− Vi(∞) + Vi(x0)

≤
∫ ∞
t0

(zT z − γ2
iw

Tw) dt+ Vi(x0) +

∫ ∞
t0

{xT [(Ai +BiKi)
TPi + Pi(Ai +BiKi)

+ Pi(ξ1iDiD
T
i + ξ3iĀi(Āi)

T + ξ4iD̄i(D̄i)
T + ξ5iI)Pi +

1

ξ1i

HT
i Hi

+ (
qi
ξ3i

+
qi
ξ4i

||H̄i||2 +
δiqi
ξ5i

)I + γ−2
i PiGiG

T
i Pi − γ−2

i PiGiG
T
i Pi]x+ 2xTPiGiw} dt

= Vi(x0) +

∫ ∞
t0

{xT [(Ai +BiKi)
TPi + Pi(Ai +BiKi) + Pi(ξ1iDiD

T
i + ξ3iĀi(Āi)

T

+ ξ4iD̄i(D̄i)
T + ξ5iI)Pi +

1

ξ1i

HT
i Hi + (

qi
ξ3i

+
qi
ξ4i

||H̄i||2 +
δiqi
ξ5i

)I + γ−2
i PiGiG

T
i Pi

+ CTicCic]x} dt−
∫ ∞
t0

γ2
i (w − γ−2

i GTi Pix)T (w − γ−2
i GTi Pix) dt.

The last term is strictly negative, using (2) with γ−2
i = ξ2i, we get Ji ≤ Vi(x0)

which leads to ||z||22 ≤ γ2||w||22 + m0, where m0 = maxi∈S{Vi(x0)}, and γ =
maxi∈S{γi}.

Remark. Theorem 1 provides suffi cient conditions to ensure the robust global
exponential ISS property. The algebraic Riccati-like equation in (2) is to guarantee
the existence of the positive-definite matrix Pi (for all i ∈ S), which implies that
the solution trajectories of the subsystems are decreasing outside a certain neigh-
bourhood of the disturbance w(t). The role of the average dwell time condition is
to organize the switching among the system modes. ξ1, ξ2 are tuning parameters
to reduce the conservativeness of the Riccati-like equation.

Theorem 2. (Reliability) For any i ∈ S, let the constant γi > 0 be given,
and assume that there exist positive constants ξji, (j = 1, · · · , 5), εi, αi, a positive-
definite matrix Pi, and Vi : Rn → R+ such that conditions (i)-(iii) from Theorem 1



H∞ CONTROL AND INPUT-TO-STATE STABILIZATION 35

hold, Ki = − 1
2εiB

T
iσ̄Pi, and the following algebraic Riccati-like equation holds

ATi Pi + PiAi + Pi(ξ1iDiD
T
i + ξ2iGicG

T
ic − εiBiΣ̄BTiΣ̄ + ξ3iĀi(Āi)

T + ξ4iD̄i(D̄i)
T

+ ξ5iI)Pi + (
qi
ξ3i

+
qi
ξ4i

||H̄i||2 +
δiqi
ξ5i

)I +
1

ξ1i

HT
i Hi + CTicCic + αiPi = 0, (4)

where δi > 0 such that ||fi(ψ)||2 ≤ δi||ψ||2r. Then, system (1) is robustly globally
exponentially ISS-H∞.
Proof. Let x(t) = x(t, t0, φ) be the solution of (1). ∀i ∈ S, define Vi(x) = xTPix.
Then,

V̇i(x) ≤ xT [ATi Pi + PiAi + Pi(ξ1iDiD
T
i + ξ2iGicG

T
ic + ξ3iĀi(Āi)

T

+ ξ4iD̄i(D̄i)
T − εiBiΣ̄BTiΣ̄ + ξ5iI)Pi +

1

ξ1i

HT
i Hi + (

qi
ξ3i

+
qi
ξ4i

||H̄i||2

+
δiqi
ξ5i

)I]x+
1

ξ2i

(wFσ )TwFσ

≤ − αiVi(x) +
1

ξ2i

(wFσ )TwFσ ,

where we used the claim proved in Theorem 1, the lemma, the fact that [11]
BiΣ̄B

T
iΣ̄
≤ Biσ̄B

T
iσ̄, and condition (4). Then, for any i ∈ S, V̇i(x) ≤ −ᾱiVi(x) −

θiVi(x) + 1
ξ2i

(wFσ )TwFσ , where ᾱi = αi − θi and 0 < θi < αi. Then, for all

t ∈ [tk−1, tk), V̇i(x) ≤ −ᾱiVi(x), provided that ||x|| > ||wFσ ||√
θic2ξ2i

=: ρi(||wFσ ||),

which implies that Vi(x(t)) ≤ eη−ν(t−t0)V1(x0) provided that ||x|| > ρ(||w||), where
ρ(||w||) = maxi∈S{ρi(||w||)}. This also implies that [5]

||x|| ≤ b||xt0 ||re−ν(t−t0)/2 + γ
(

sup
t0≤τ≤t

||wFσ (τ)||
)
, t ≥ t0,

where b =
√
eηc2/c1, γ(s) =

√
c2
c1
ρ(s). As for the upper bound ||z||, one can follow

the same steps in Theorem 1, where Ji =
∫∞
t0

(zT z − γ2
i (w

F
σ )TwFσ )dt.

4. Numerical examples

Consider system (2) with S = {1, 2},

A1 =

[
0.2 0.1
0 −6

]
, B1 =

[
−3 1
0.1 0.2

]
, C1 =

[
2 0.1
0 2

]
, F1 =

[
0.1 −2
0.1 0

]
,

Ā1 =

[
0.1 0.1
0.2 1

]
, D1 =

[
1
0

]
, H1 =

[
0 1

]
, D̄1 =

[
0
1

]
, H̄1 =

[
1 0

]
,

G1 =

[
1 0
0 1

]
, f1 = 0.1

[
sin(x1(t− 1))
sin(x2(t− 1))

]
,U1 = sin(t),
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ε1 = 2, ξ11 = 0.2, γ1 = 0.1, α1 = 2, ξ21 = γ−2
1 , ξ31 = 0.1, ξ41 = 0.3, ξ51 =

0.2, M1 = 2, β = 3, θ1 = 0.05, and δ1 = 0.1. As for the second mode,

A2 =

[
−9 0.2
0 0.1

]
, B2 =

[
0.1 0.5
0.1 −1

]
, C2 =

[
1 0
0 0.5

]
, F2 =

[
0.1 0
−3 0.1

]
,

Ā2 =

[
0.3 0.2
0 0.1

]
, D2 =

[
0
1

]
, H2 =

[
1 0

]
, D̄2 =

[
1
0

]
, H̄2 =

[
0 1

]
,

G2 =

[
0.5 0
0 1

]
, f2 = 0.01

[
sin(x1(t− 1))
sin(x2(t− 1))

]
,U2 = sin(t),

ε2 = 0.5, ξ12 = 0.3, γ2 = 0.15, α2 = 2.5, ξ22 = γ−2
2 , ξ32 = 0.2, ξ42 = 0.09, ξ52 =

0.1, M2 = 1.1, θ2 = 0.15, and δ2 = 0.01. The disturbance wT (t) = 1.2[sin(t) sin(t)].
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1.5
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 Disturbance input ρ(||w||)  (bottom)

(a) Operational actuators.
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σ
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(b) Faulty actuators.

Figure 1. Input-to-statestabilization, φ(s) = 1− s, s ∈ [−1, 0].

Case 1. When all actuators are operational, we have P1 =

[
0.7234 −0.0157
−0.0157 0.5559

]
,

P2 =

[
11.6224 −1.2007
−1.2007 10.6159

]
, with c11 = λmin(P1) = 9.8173, c12 = λmax(P1) =

12.4211, c21 = λmin(P2) = 26.6962, c22 = λmax(P2) = 54.1990, so, c1 = 9.8173, c2 =

54.1990, and K1 =

[
34.9874 −4.6636
−11.3823 −0.9225

]
, K2 =

[
−1.2381 −0.5812
−7.7135 7.3350

]
. Thus,

the matrices Ai + BiKi (i = 1, 2) are Hurwitz and τa = lnµ
α∗−ν = 1.1783, with

ν = 0.5, the upper bound of the disturbance magnitude is 0.1031, and the cheater
bound N0 = 0.5853.
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Case 2. When there is a failure in the first actuator, i.e., B1Σ = {1} and

B1Σ̄ =

[
0 1
0 0.2

]
, and B2Σ = {2} and B2Σ̄ =

[
0.1 0
0.1 0

]
, we have P1 =[

11.7139 −3.1981
−3.1981 11.5155

]
, P2 =

[
53.1251 −4.8927
−4.8927 27.3562

]
, with c11 = λmin(P1) =

8.4151, c12 = λmax(P1) = 14.8144, c21 = 26.4585, c22 = 54.0228, so c1 =

8.4151, c2 = 54.0228, and the control gain matrices K1 =

[
35.4616 −10.7459

0 0

]
,

K2 =

[
0 0

−7.8638 7.4506

]
. Thus, the matrices Ai + BiKi (i = 1, 2) are Hurwitz

and τa = 1.2823, the upper bound of the disturbance magnitude is 0.1033, and the
cheater bound N0 = 0.5378.
Figure 1 shows the simulation results of ||x|| (top) and ρ(s) (bottom) for both

cases, where ρ(s) = max{ρ1(s), ρ2(s)} and ρi(s) = s/
√
c2θiξ2i, τa = 3. The figure

shows the input-to-state stability of the system where the state magnitude ||x|| is
bounded below by the system disturbance magnitude.

5. Conclusion

The system under investigation has been exponentially stabilized by state feed-
back robust reliable controllers. The Razumikhin technique along with average
dwell time approach by multiple Lyapunov functions has been utilized to fulfill our
purpose, which implies that the results are delay independent. The output of the
faulty actuators has been treated as a disturbing signal that has been augmented
with the system disturbance.
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