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SOME GEOMETRIC PROPERTIES OF THE DOMAIN OF THE
TRIANGLE Ã IN THE SEQUENCE SPACE `(p)*

ESRA SÜMEYRA YILMAZ AND FEYZI BAŞAR

Abstract. The sequence space `(Ã, p) of non-absolute type is the domain of
the triangle matrix Ã defined by the strictly increasing sequence λ = (λn) of
positive real numbers tending to infinity in the sequence space `(p), where `(p)
denotes the space of all sequences x = (xk) such that

∑
k |xk|pk < ∞ and

were defined by Maddox in [Spaces of strongly summable sequences, Quart.
J. Math. Oxford (2) 18 (1967), 345—355]. The main purpose of this paper
is to investigate the geometric properties of the space `

(
Ã, p

)
, like rotundity,

Kadec-Klee property.

1. Introduction

By ω, we denote the space of all sequences with complex elements which contains
φ, the set of all finitely non-zero sequences, that is,

ω := {x = (xk) : xk ∈ C for all k ∈ N} ,
where C denotes the complex field and N = {0, 1, 2, . . .}. By a sequence space, we
understand a linear subspace of the space ω. We write `∞, c, c0 and `p for the clas-
sical sequence spaces of all bounded, convergent, null and absolutely p-summable
sequences which are the Banach spaces with the norms ‖x‖∞ = supk∈N |xk| and
‖x‖p = (

∑
k |xk|p)1/p; respectively, where 1 ≤ p < ∞. For simplicity in notation,

here and in what follows, the summation without limits runs from 0 to ∞. Also by
bs and cs, we denote the spaces of all bounded and convergent series, respectively.
bv is the space consisting of all sequences (xk) such that (xk − xk+1) in `1 and bv0
is the intersection of the spaces bv and c0.
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A linear topological space X over the real field R is said to be a paranormed space
if there is a subadditive function g : X → R satisfying the following conditions for
all x, y ∈ X:

(i) g(θ) = 0.
(ii) g(x) = g(−x).
(iii) Scalar multiplication is continuous, i.e., |αn − α| → 0 and g(xn − x) → 0

imply g(αnxn − αx) → 0 for all α’s in R and all x’s in X, where θ is the
zero vector in the linear space X.

Assume here and after that (pk) be a bounded sequence of strictly positive real
numbers with sup pk = H and M = max{1, H}. Then, the linear space `(p) was
defined by Maddox [2] (see also Simons [3] and Nakano [4]) as follows:

`(p) :=

{
x = (xk) ∈ ω :

∑
k

|xk|pk <∞
}
, (0 < pk ≤ H <∞)

which is complete paranormed space paranormed by

g(x) =

(∑
k

|xk|pk
)1/M

.

We assume throughout that p−1k + (p′k)
−1 = 1 provided inf pk ≤ H <∞ and de-

note the collection of all finite subsets of N by F .
The beta-dual λβ of a sequence space λ is defined by

λβ = {x = (xk) ∈ ω : xy = (xkyk) ∈ cs for all y = (yk) ∈ λ}.
Let λ, µ be any two sequence spaces and A = (ank) be an infinite matrix of

complex numbers ank, where k, n ∈ N. Then, we say that A defines a matrix
transformation from λ into µ and we denote it by writing A : λ → µ, if for every
sequence x = (xk) ∈ λ the sequence Ax = {(Ax)n}, the A-transform of x, is in µ;
where

(Ax)n =
∑
k

ankxk (1.1)

provided the series on the right side of (1.1) converges for each n ∈ N. By (λ : µ),
we denote the class of all matrices A such that A : λ→ µ. Thus, A ∈ (λ : µ) if and
only if Ax exists, i.e. An ∈ λβ for all n ∈ N and is in µ for all x ∈ λ, where An
denotes the sequence in the n-th row of A.
A matrix A = (ank) is called a triangle if ank = 0 for k > n and ann 6= 0 for all

n ∈ N. It is trivial that A(Bx) = (AB)x holds for triangles A,B and any sequence
x. Further, a triangle matrix U uniquely has an inverse U−1 = V which is also a
triangle matrix. Then, x = U(V x) = V (Ux) holds for all x ∈ ω.
The matrix domain λA of an infinite matrix A in a sequence space λ is defined

by

λA :=
{
x = (xk) ∈ ω : Ax ∈ λ

}
.
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If A is triangle, then one can easily observe that the sequence spaces λA and λ are
linearly isomorphic, i.e. λA ∼= λ.
We consider the strictly increasing sequence λ = (λk)∞k=0 of positive reals tending

to ∞, that is

0 < λ0 < λ1 < λ2 < · · · < λk < λk+1 < · · · and lim
k→∞

λk =∞.

Via the sequence λ = (λk)k∈N, we define the triangle matrix Ã = (ãnk) by

ãnk (λ) =

{
λk−2λk−1+λk−2

λn−λn−1 , 0 ≤ k ≤ n,
0 , k > n

for all k, n ∈ N. It is easy to show that Ã is a regular matrix and a straightforward
calculation yields that the inverse Ã−1 = {bnk(λ)} of the matrix Ã is given by the
following double band matrix as

bnk(λ) =

{
(−1)n−k λk−λk−1

λn−2λn−1+λn−2 , n− 1 ≤ k ≤ n,
0 , 0 ≤ k < n− 1 or k > n

for all k, n ∈ N. We study some geometric properties of the sequence space `(Ã, p)
of non-absolute type which is the domain of the triangle matrix Ã in the sequence
space `(p), that is

`(Ã, p) :=

(xk) ∈ ω :∑
k

∣∣∣∣∣∣
k∑
j=0

λj − 2λj−1 + λj−2
λk − λk−1

xj

∣∣∣∣∣∣
pk

<∞


which is a complete linear metric space paranormed by the paranorm

g1(x) =

∑
k

∣∣∣∣∣∣
k∑
j=0

λj − 2λj−1 + λj−2
λk − λk−1

xj

∣∣∣∣∣∣
pk1/M

and has the AK property. In the special case pk = p for all k ∈ N, the space `(Ã, p)
is reduced to the space `p(Ã), i.e.,

`p(Ã) :=

(xk) ∈ ω :∑
k

∣∣∣∣∣∣
k∑
j=0

λj − 2λj−1 + λj−2
λk − λk−1

xj

∣∣∣∣∣∣
p

<∞

 , (0 < p <∞)

which is a BK-space with the norm

‖x‖ =

∑
k

∣∣∣∣∣∣
k∑
j=0

λj − 2λj−1 + λj−2
λk − λk−1

xj

∣∣∣∣∣∣
p1/p

, where 1 ≤ p <∞
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and is a complete p-normed space with the p-norm

‖x‖ =
∑
k

∣∣∣∣∣∣
k∑
j=0

λj − 2λj−1 + λj−2
λk − λk−1

xj

∣∣∣∣∣∣
p

, where 0 < p < 1.

One can see from Theorem 2.3 of Jarrah and Malkowsky [5] that the domain µT of
an infinite matrix T = (tnk) in a sequence space µ has a basis if and only if µ has
a basis, if T is a triangle. As an immediate consequence of this fact, we derive the
following result:

Corollary 1. Let 0 < pk ≤ H < ∞ and αk = (Ãx)k for all k ∈ N. Define the
sequence b(k) =

{
b
(k)
n

}
n∈N of the elements of the space `(Ã, p) by

b(k)n :=

{
(−1)n−k λk−λk−1

λn−2λn−1+λn−2 , n− 1 ≤ k ≤ n,
0 , otherwise

(1.2)

for every fixed k ∈ N. Then, the sequence {b(k)}k∈N given by (1.2) is a basis
for the space `(Ã, p) and any x ∈ `(Ã, p) has a unique representation of the form
x :=

∑
k αkb

(k).

Since the algebraic and topological properties of the space rq(p) were studied
by Altay and Başar in [6], we essentially emphasize the geometric properties of the
space `(Ã, p).

2. The rotundity of the space `(Ã, p)

In this section, we focus on the rotundity and some geometric properties of the
space `(Ã, p). For details, the reader may refer to [7], [8] and [9]. The main purpose
of this study is to characterize the rotundity and some other geometric properties
of the space `(Ã, p), the domain of the triangle matrix Ã in the sequence space `(p).

Definition 2.1. Let S(X) be the unit sphere of a Banach space X. Then a point
x ∈ S(X) is called an extreme point if 2x = y + z implies y = z for every y, z
∈ S(X). A Banach space X is said to be rotund (stricly convex) if every point of
S(X) is an extreme point.

Definition 2.2. A Banach space X is said to have the Kadec-Klee property (or
property(H)) if every weakly convergent sequence on the unit sphere is convergent
in norm.

Definition 2.3. Let X be real vector space. A functional σ : X → [0,∞) is called
a modular if

(i) σ(x) = 0 if and only if x = θ;
(ii) σ(αx) = σ(x) for all scalars α with |α| = 1;
(iii) σ(αx+ βy) ≤ σ(x) + σ(y) for all x, y ∈ X and α, β ≥ 0 with α+ β = 1
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(iv) The modular σ is called convex if σ(αx + βy) ≤ ασ(x) + βσ(y) for all
x, y ∈ X and α, β > 0 with α+ β = 1.
A modular σ on X is called

(a) right continuous if σ(αx)→ σ(x), as α→ 1+ for all x ∈ Xσ.
(b) left continuous if σ(αx)→ σ(x), as α→ 1− for all x ∈ Xσ.
(c) continuous if it is both right and left continuous, where

Xσ :=

{
x ∈ X : lim

α→0+
σ(αx) = 0

}
.

We define σp on the real sequence space `(Ã, p) by

σp(x) =
∑
k

∣∣∣∣∣∣ 1

λk − λk−1

k∑
j=0

(λj − 2λj−1 + λj−2)xj

∣∣∣∣∣∣
pk

.

If pk ≥ 1 for all k ∈ N, by the convexity of the function t 7→ |tk|pk for each k ∈ N,
σp is a convex modular on `(Ã, p).

Proposition 1. The modular σp on `(Ã, p) satisfies the following properties with
pk ≥ 1 for all k, we have M = H :

(i) If 0 < α ≤ 1, then αMσp(x/α) ≤ σp(x) and σp(αx) ≤ ασp(x).
(ii) If α ≥ 1, then σp(x) ≤ αMσp(x/α).
(iii) If α ≥ 1, then σp(x) ≥ ασp(x/α).
(iv) The modular σp is continuous on the space `(Ã, p).

Proof. Consider the modular σp on `(Ã, p).



168 ESRA SÜMEYRA YILMAZ AND FEYZI BAŞAR

(i) Let 0 < α ≤ 1, then αM/αpk ≤ 1. So, we have

αMσp

(x
α

)
= αM

∑
k

∣∣∣∣∣∣ 1α
k∑
j=0

λj − 2λj−1 + λj−2
λk − λk−1

xj

∣∣∣∣∣∣
pk

= αM
∑
k

1

αpk

∣∣∣∣∣∣ 1

λk − λk−1

k∑
j=0

(λj − 2λj−1 + λj−2)xj

∣∣∣∣∣∣
pk

=
∑
k

αM

αpk

∣∣∣∣∣∣ 1

λk − λk−1

k∑
j=0

(λj − 2λj−1 + λj−2)xj

∣∣∣∣∣∣
pk

≤
∑
k

∣∣∣∣∣∣ 1

λk − λk−1

k∑
j=0

(λj − 2λj−1 + λj−2)xj

∣∣∣∣∣∣
pk

= σp(x),

σp(αx) =
∑
k

∣∣∣∣∣∣ α

λk − λk−1

k∑
j=0

(λj − 2λj−1 + λj−2)xj

∣∣∣∣∣∣
pk

=
∑
k

αpk

∣∣∣∣∣∣ 1

λk − λk−1

k∑
j=0

(λj − 2λj−1 + λj−2)xj

∣∣∣∣∣∣
pk

≤ α
∑
k

∣∣∣∣∣∣ 1

λk − λk−1

k∑
j=0

(λj − 2λj−1 + λj−2)xj

∣∣∣∣∣∣
pk

= ασp(x).

(ii) Let α ≥ 1. Then, αM/αpk ≥ 1 for all pk ≥ 1. So, we have

σp(x) ≤
αM

αpk
σp(x) = αMσp

(x
α

)
.

(iii) Let α ≥ 1. Then, α/αpk ≤ 1 for all pk ≥ 1. So, we have

σp(x) ≥
α

αpk
σp(x) = ασp

(x
α

)
.

(iv) One can immediately see by Part (ii) for α > 1 that

σp(x) ≤ ασp(x) ≤ σp(αx) ≤ αMσp(x). (2.1)

By passing to limit as α → 1+ in (2.1), we have σp(αx) → σp(x). Hence, σp is
right continuous. If 0 < α < 1, we have by Part (i) that

αMσp(x) ≤ σp(αx) ≤ ασp(x). (2.2)

By letting α → 1− in (2.2), we observe that σp(αx) → σp(x). Hence, σp is left
continuous and so, it is continuous. �
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Now, we consider the space `(Ã, p) equipped with the Luxemburg norm given by

‖x‖ = inf
{
α > 0 : σp

(x
α

)
≤ 1
}
.

Proposition 2. For any x ∈ `(Ã, p), the following statements hold:
(i) If ‖x‖ < 1, then σp(x) ≤ ‖x‖.
(ii) If ‖x‖ > 1, then σp(x) ≥ ‖x‖.
(iii) ‖x‖ = 1 if and only if σp(x) = 1.
(iv) ‖x‖ < 1 if and only if σp(x) < 1.
(v) ‖x‖ > 1 if and only if σp(x) > 1.

Proof. Let x ∈ `(Ã, p).
(i) Let ε > 0 be such that 0 < ε < 1 − ‖x‖. By the definition of ‖ · ‖, there

exists an α > 0 such that ‖x‖+ ε > α and σp(x) ≤ 1. From Parts (i) and
(ii) of Proposition 1, we obtain

σp(x) ≤ σp
[
(‖x‖+ ε)x

α

]
≤ (‖x‖+ ε)σp

(x
α

)
≤ ‖x‖+ ε.

Since ε is arbitrary, we have (i).
(ii) If we choose ε > 0 such that 0 < ε < 1−(1/‖x‖), then 1 < (1−ε)‖x‖ < ‖x‖.

By the definition of ‖ · ‖ and Part (i) of Proposition 1, we have

1 < σp

[
x

(1− ε)‖x‖

]
≤ 1

(1− ε)‖x‖σp(x).

So (1− ε)‖x‖ < σp(x) for all ε ∈ (0, 1− (1/‖x‖)). This implies that ‖x‖ <
σp(x).

(iii) Since σp is continuous, we directly have (iii).
(iv) This follows from Parts (i) and (iii).
(v) This follows from Parts (ii) and (iii).

�

Theorem 2.4. `(Ã, p) is a Banach space with the Luxemburg norm.

Proof. Let Sx = {α > 0 : σp(x/α) ≤ 1} and ‖x‖ = inf Sx for all x ∈ `(Ã, p). Then,
Sx ⊂ (0,∞). Therefore, ‖x‖ ≥ 0 for all x ∈ `(Ã, p).
For x = θ, σp(θ) = 0 for all α > 0. Hence, S0 = (0,∞) and ‖θ‖ = inf S0 =

inf(0,∞) = 0.
Let x 6= θ and Y = {kx : k ∈ C and x ∈ `(Ã, p)} be a non-empty subset of `(Ã, p).

Since Y  S[`(Ã, p)], there exists k1 ∈ C such that k1x /∈ S[`(Ã, p)]. Obviously
k1 6= 0. We assume that 0 < α < 1/k1 and α ∈ Sx. Then, (x/α) ∈ S[`(Ã, p)]. Since
|k1α| < 1, we get

k1x = k1α
x

α
∈ S[`(Ã, p)]
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which contradicts the assumption. Hence, we obtain that if α ∈ Sx, then α > 1/|k1|.
This means that ‖x‖ ≥ 1/|k1| > 0. Thus, we conclude that ‖x‖ = 0 if and only if
x = θ.
Now, let k 6= 0 and α ∈ Skx. Then, we have

σp

(
kx

α

)
≤ 1 and

kx

α
∈ S[`(Ã, p)].

Therefore, we obtain

|k|x
α

=
|k|
k
× kx

α
∈ S[`(Ã, p)] and

α

|k| ∈ Sx.

That is, ‖x‖ ≤ α/|k| and |k|‖x‖ ≤ α for all α ∈ Skx. So, |k|‖x‖ ≤ ‖kx‖. If we take
1/k and kx instead of k and x, respectively, then we obtain that∣∣∣∣1k

∣∣∣∣ ‖kx‖ ≤ ∥∥∥∥1kkx
∥∥∥∥ = ‖x‖ and ‖kx‖ ≤ |k|‖x‖.

Hence, we see ‖kx‖ = |k|‖x‖ which also holds when k = 0.
To prove the triangle inequality, let x, y ∈ S[`(Ã, p)] and ε > 0 be given. Then,

there exist α ∈ Sx and β ∈ Sy such that α < ‖x‖ + ε and β < ‖y‖ + ε. Since
S[`(Ã, p)] is convex,

x

α
∈ S[`(Ã, p)], y

β
∈ S[`(Ã, p)], x+ y

α+ β
=

α

α+ β

(x
α

)
+

β

α+ β

(
y

β

)
∈ S[`(Ã, p)].

Therefore, α+ β ∈ Sx+y. Then, we have ‖x+ y‖ ≤ α+ β < ‖x‖+ ‖y‖+ 2ε. Since
ε > 0 was arbitrary, we obtain ‖x + y‖ ≤ ‖x‖ + ‖y‖. Hence, ‖x‖ = inf{α > 0 :

σp(x/α) ≤ 1} is a norm on `(Ã, p).
Now, we show that every Cauchy sequence in `(Ã, p) is convergent with respect

to the Luxemburg norm. Let
{
x
(n)
k

}
be a Cauchy sequence in `(Ã, p) and ε ∈ (0, 1).

Thus, there exists n0 such that ‖x(n) − x(m)‖ < ε for all n,m ≥ n0. By Part (i) of
Proposition 2, we have

σp

(
x(n) − x(m)

)
≤
∥∥∥x(n) − x(m)∥∥∥ < ε (2.3)

for all n,m ≥ n0. This implies that∑
k

∣∣∣[Ã(x(n) − x(m))]
k

∣∣∣pk < ε. (2.4)

Then, for each fixed k and for all n,m ≥ n0,∣∣∣[Ã(x(n) − x(m))]
k

∣∣∣pk = ∣∣∣(Ãx(n))
k
−
(
Ãx(m)

)
k

∣∣∣ < ε.

Hence, the sequence {(Ãx(n))k} is a Cauchy sequence in R. Since R is complete,
there is (Ãx)k ∈ R such that

(
Ãx(m)

)
k
→ (Ãx)k, asm→∞. Therefore, asm→∞
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by (2.4) we have ∑
k

∣∣∣[Ã(x(n) − x)]
k

∣∣∣pk < ε

for all n ≥ n0.
Now, we have to show that (xk) is an element of `(Ã, p). Since

(
Ãx(m)

)
k
→

(Ãx)k, as m→∞, we have

lim
m→∞

σp

(
x(n) − x(m)

)
= σp

(
x(n) − x

)
. (2.5)

Then, we see by (2.3) that σp
(
x(n) − x

)
≤ ‖x(n) − x‖ < ε for all n ≥ n0. This

implies that x(n) → x, as n → ∞. So, we have x = x(n) −
(
x(n) − x

)
∈ `(Ã, p).

Therefore, the sequence space `(Ã, p) is complete with respect to Luxemburg norm.
This completes the proof. �

Theorem 2.5. The space `(Ã, p) is rotund if and only if pk > 1 for all k ∈ N.

Proof. Let `(Ã, p) be rotund and choose k ∈ N such that pk = 1. Consider the
following sequences given by

x =

(
1,

−λ0
λ1 − 2λ0

, 0, 0, . . .

)
and y =

(
0,

λ1 − λ0
λ1 − 2λ0

,− λ1 − λ0
λ2 − 2λ1 + λ0

, 0, 0, . . .

)
.

Then, obviously x 6= y and σp(x) = σp(y) = σp
(
x+y
2

)
= 1. By Part (iii) of

Proposition 2, x, y, (x+ y)/2 ∈ S[`(Ã, p)] which leads us to the contradiction that
the sequence space `(Ã, p) is not rotund. Hence, pk > 1 for all k ∈ N. Conversely,
let x ∈ S[`(Ã, p)] and v, z ∈ S[`(Ã, p)] with x = (v + z)/2. By convexity of σp and
Part (iii) of Proposition 2, we have

1 = σp(x) ≤
σp(v) + σp(z)

2
≤ 1
2
+
1

2
= 1

which gives that σp(v) = σp(z) = 1 and

σp(x) = σp((v + z)/2) =
σp(v) + σp(z)

2
. (2.6)

Also, we obtain from (2.6) that∣∣∣∣∣∣ 1

λk − λk−1

k∑
j=0

λi
(vj + zj)

2
− 2λj−1

(vj + zj)

2
+ λj−2

(vj + zj)

2

∣∣∣∣∣∣
pk

(2.7)

=
1

2

∣∣∣∣∣∣
k∑
j=0

λj − 2λj−1 + λj−2
λk − λk−1

vj

∣∣∣∣∣∣
pk

+
1

2

∣∣∣∣∣∣
k∑
j=0

λj − 2λj−1 + λj−2
λk − λk−1

zj

∣∣∣∣∣∣
pk
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for all k ∈ N. Since the function t 7→ |t|pk is strictly convex for all k ∈ N, it follows
by (2.7) that vk = zk for all k ∈ N. Hence, v = z. That is, the sequence space
`(Ã, p) is rotund. �

Theorem 2.6. Let x ∈ `(Ã, p). Then, the following statements hold:
(i) 0 < α < 1 and ‖x‖ > α imply σp(x) > αM .
(ii) α ≥ 1 and ‖x‖ < α imply σp(x) < αM .

Proof. Let x ∈ `(Ã, p).
(i) Suppose that ‖x‖ > α with 0 < α < 1. Then, ‖x/α‖ > 1. By Part

(ii) of Proposition 2, ‖x/α‖ > 1 implies σp(x/α) ≥ ‖x/α‖ > 1. That
is, σp(x/α) > 1. Since 0 < α < 1, by Part (i) of Proposition 1, we get
αMσp(x/α) ≤ σp(x). Thus, we have αM < σp(x).

(ii) Let ‖x‖ < α with α ≥ 1. Then ‖x/α‖ < 1. By Part (i) of Proposition 2,
‖x/α‖ < 1 implies σp(x/α) ≤ ‖x/α‖ < 1. That is, σp(x/α) < 1. If α = 1,
then σp(x/α) = σp(x) < 1 = αM . If α > 1, then by Part (ii) of Proposition
1, we have σp(x) ≤ αMσp(x/α). This means that σp(x) < αM .

�

Theorem 2.7. Let (xn) be a sequence in `(Ã, p). Then, the following statements
hold:

(i) ‖xn‖ → 1, as n→∞ implies σp(xn)→ 1, as n→∞.
(ii) σp(xn)→ 0, as n→∞ implies ‖xn‖ → 0, as n→∞.

Proof. Let (xn) be a sequence in `(Ã, p).

(i) ‖xn‖ → 1, as n → ∞ and ε ∈ (0, 1). Then, there exists n0 ∈ N such that
1 − ε < ‖xn‖ < ε + 1 for all n ≥ n0. By Parts (i) and (ii) of Theorem
2.6, 1 − ε < ‖xn‖ implies σp(xn) > (1 − ε)M and ‖xn‖ < ε + 1 implies
σp(xn) < (1 + ε)

M for all n ≥ n0. This means ε ∈ (0, 1) and for all n ≥ n0
there exists n0 ∈ N such that (1− ε)M < σp(xn) < (1+ ε)

M for all n ≥ n0.
That is, σp(xn)→ 1, as n→∞.

(ii) We assume that ‖xn‖ 9 0, as n → ∞ and ε ∈ (0, 1). Then, there exists
a subsequence (xnk) of (xn) such that ‖xnk‖ > ε for all k ∈ N. By Part
(i) of Theorem 2.6, 0 < ε < 1 and ‖xnk‖ > ε imply σp(xnk) > εM . Thus,
σp(xn) 9 0, as n → ∞. Hence, we obtain that σp(xn) → 0, as n → ∞
implies ‖xn‖ → 0, as n→∞.

�

Theorem 2.8. Let x ∈ `(Ã, p) and
(
x(n)

)
⊂ `(Ã, p). If σp

(
x(n)

)
→ σp(x), as

n→∞ and x(n)k → xk, as n→∞ for all k ∈ N, then x(n) → x, as n→∞.
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Proof. Let ε > 0 be given. Since σp(x) =
∑
k

∣∣∣(Ãx)k∣∣∣pk < ∞, x ∈ `(Ã, p) there

exists k0 ∈ N such that
∞∑

k=k0+1

∣∣∣(Ãx)k∣∣∣pk < ε

3(2M+1)
. (2.8)

It follows from the equality

lim
n→∞

[
σp(x

(n))−
k0∑
k=0

∣∣∣(Ãx(n))
k

∣∣∣pk] = σp(x)−
k0∑
k=0

∣∣∣(Ãx)
k

∣∣∣pk
that there exists n0 ∈ N and for all k ∈ N

σp(x
(n))−

k0∑
k=0

∣∣∣(Ãx(n))
k

∣∣∣pk < σp(x)−
k0∑
k=0

∣∣∣(Ãx)
k

∣∣∣pk + ε

3(2M )
(2.9)

and for all k ∈ N
k0∑
k=0

∣∣∣(Ã(x(n) − x))
k

∣∣∣pk < ε

3
. (2.10)

Therefore, we obtain from (2.8), (2.9) and (2.10) that

σp(xn − x) =

∞∑
k=0

∣∣∣{Ã(x(n) − x)}k∣∣∣pk
<

k0∑
k=0

∣∣∣{Ã(x(n) − x)}k∣∣∣pk + ∞∑
k=k0+1

∣∣∣{Ã(x(n) − x)}k∣∣∣pk
<

ε

3
+ 2M

[ ∞∑
k=k0+1

∣∣∣(Ãx(n))k∣∣∣pk + ∞∑
k=k0+1

∣∣∣(Ãx)k∣∣∣pk]

<
ε

3
+ 2M

[
σp(x

(n))−
k0∑
k=0

∣∣∣(Ãx(n))k∣∣∣pk + ∞∑
k=k0+1

∣∣∣(Ãx)k∣∣∣pk]

<
ε

3
+ 2M

[
σp(x)−

k0∑
k=0

∣∣∣(Ãx)k∣∣∣pk + ε

3(2M )
+

∞∑
k=k0+1

∣∣∣(Ãx)k∣∣∣pk]

<
ε

3
+
ε

3
+ 2M

[
2

∞∑
k=k0+1

∣∣∣(Ãx)k∣∣∣pk]

<
2ε

3
+

2M+1ε

3(2M+1)
= ε.
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This means that σp
(
x(n) − x

)
→ 0, as n → ∞. By Part (i) of Theorem 2.7,

σp
(
x(n) − x

)
→ 0, as n→∞ implies ‖xn − x‖ → 0, as n→∞. Hence, xn → x, as

n→∞. �

Theorem 2.9. The sequence space `(Ã, p) has the Kadec-Klee property.

Proof. Let x ∈ S
[
`(Ã, p)

]
and

(
x(n)

)
⊂ `(Ã, p) such that ‖x(n)‖ → 1 and x(n) w→ x

be given. By Part (ii) of Theorem 2.7, we have σp
(
x(n)

)
→ 1 as n → ∞. Also

x ∈ S
[
`(Ã, p)

]
implies ‖x‖ = 1. By Part (iii) of Proposition 2, we obtain σp(x) = 1.

Therefore, we have σp(x(n))→ σp(x), as n→∞.
Since x(n) w→ x, as n → ∞ and qk : `(Ã, p) → R defined by qk(x) = xk is

continuous, x(n)k → xk, as n→∞ for all k ∈ N. Therefore, x(n) → x, as n→∞.
Because of any weakly convergent sequence in `(Ã, p) is convergent, the sequence

space `(Ã, p) has the Kadec-Klee property. �

Conclusion

Let 0 < r < 1, q = (qk) be a sequence of non-negative reals with q0 > 0 and
Qn =

∑n
k=0 qk for all n ∈ N, r̃ = (rk) and s̃ = (sk) be the convergent sequences.

Suppose that the sequences u = (uk) and v = (vk) consist of non-zero entries;
u, s ∈ R, and λ = (λn) be the strictly increasing sequence of positive real numbers
tending to infinity with λn+1 ≥ 2λn.
Let us define the Riesz matrix Rq = (rqnk) with respect to the sequence q = (qk),

the double band matrix F = (fnk) defined by the sequence (fn) of Fibonacci num-
bers, the matrix Ar = (arnk), the generalized difference matrixB(u, s) = {bnk(u, s)},
the matrix Au = (aunk), the double sequential band matrix B(r̃, s̃) = {bnk (rk, sk)},
the matrix Ã = {ank(λ)} and the Nörlund matrix Nq = (aqnk) with respect to the
sequence q = (qk) by

rqnk :=

{ qk
Qn

, 0 ≤ k ≤ n,
0 , k > n,

fnk :=


− fn+1fn

, k = n− 1,
fn
fn+1

, k = n,

0 , 0 ≤ k < n− 1 or k > n,

arnk :=

{
1+rk

n+1 uk , 0 ≤ k ≤ n,
0 , k > n,

bnk(u, s) :=

 u , k = n,
s , k = n− 1,
0 , 0 ≤ k < n− 1 or k > n,

aunk :=

{
(−1)n−kuk , n− 1 ≤ k ≤ n,

0 , 0 ≤ k < n− 1 or k > n,

bnk (rk, sk) =

 rk , k = n,
sk , k = n− 1,
0 , 0 ≤ k < n− 1 or k > n,
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ank(λ) :=

{
λk−2λk−1+λk−2

λn−λn−1 , 0 ≤ k ≤ n,
0 , k > n,

aqnk =

{ qn−k
Qn

, 0 ≤ k ≤ n,
0 , k > n,

for all k, n ∈ N.
For concerning literature about the geometric properties of the domain of the

infinite matrix A in the sequence space `(p), the following table may be useful:

A the space λ geometric properties of λA refer to:
Ar `(p) ar(u, p) [10]

B(u, s) `(p) ̂̀(p) [11]
Au `(p) bv(u, p) [12]

B(r̃, s̃) `(p) `(B̃, p) [13, 14]
F `(p) `(F, p) [15]
Nq `(p) Nq(p) [16]

Table 1: The domains of some triangle matrices in the spaces `(p).
In the special case qk = λk − 2λk−1 + λk−2 and Qn = λn − λn−1, Rq is reduced

to Ã. So, the space `(Ã, p) can be seen as a special case of the space rq(p), the
domain of the Riesz mean Rq in the Maddox’space `(p) introduced by Altay and
Başar [6]. Since the geometric properties of the space rq(p) was not investigated
the main results of the present paper are not contained in Altay and Başar [6]. So,
the main results of the present study can be seen as the complementary results for
Altay and Başar [6].
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[15] E. Uçar, F. Başar, Some geometric properties of the domain of the double band matrix defined
by Fibonacci numbers in the sequence space `(p), AIP Conference Proceedings 1611 (2014),
316—324, doi: 10.1063/1.4893854.

[16] M. Yeşilkayagil, F. Başar, On the paranormed Nörlund sequence space of non-absolute type,
Abstr. Appl. Anal. 2014, Article ID 858704, 9 pages, 2014. doi:10.1155/2014/858704.

[17] E.E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J.
Inequal. Appl. 2013, 15 pages, 2013. doi:10.1186/1029-242X-2013-38.
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