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A COMPUTATIONAL METHOD FOR INTEGRO-DIFFERENTIAL
HYPERBOLIC EQUATION WITH INTEGRAL CONDITIONS*

AHCENE MERAD AND ABDELFATAH BOUZIANI

Abstract. The subject of this work is to prove existence, uniqueness, and con-
tinuous dependence upon the data of solution to integrodifferential hyperbolic
equation with integral conditions. The proofs are based on a priori estimates
and Laplace transform method. Finally, the solution by using a numerical
technique for inverting the Laplace transforms is obtained.

1. Introduction

In this paper we are concerned with the following hyperbolic Integro-differential
equation,

∂2v

∂t2
(x, t)− ∂2v

∂x2
(x, t) = g(x, t) +

∫ t

0

a(t− s)v (x, s) ds, (1.1)

0 < x < 1, 0 < t ≤ T,

Subject to the initial conditions

v (x, 0) = Φ(x), 0 < x < 1,

∂v (x, 0)

∂t
= Ψ(x), 0 < x < 1, (1.2)
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and the integral conditions

1∫
0

v(x, t)dx = r (t) , 0 < t ≤ T,

1∫
0

xv(x, t)dx = q (t) , 0 < t ≤ T, (1.3)

where v is an unknown function, r, q, and Φ(x) are given functions supposed to be
suffi ciently regular, a is suitably defined function satisfying certain conditions to be
specified later and T is a positive constant.
Certain problems of modern physics and technology can be effectively described

in terms of nonlocal problems for partial differential equations.The linear case of

our problem, that is
t∫
0

a (t− s) v (x, s) ds, appears, for instance, in the modelling

of the quasistatic flexure of a thermoelastic rod, see [4, 6] and has been studied,
firstly, by the first author with a more general second-order parabolic equation or
a 2m−parabolic equation in [4, 6, 8] by means of the energy-integrals methods
and, secondly, by the Rothe method [22]. For other models, we refer the reader,
for instance,to [3], [6], [7], [9], [10]-[13], [14]-[21], [23]-[28], and references therein.
Problem (1.1)-( 1.3) is studied by the Rothe method [15]. Ang [2] has considered a
one-dimensional heat equation with nonlocal (integral) conditions. The author has
taken the laplace transform of the problem and then used numerical technique for
the inverse laplace transform to obtain the numerical solution.
This paper is organized as follows. In Sect.2, we begin introducing certain func-

tion spaces which are used in the next sections, and we reduce the posed problem to
one with homogeneous integral conditions. In Sect.3, we first establish the existence
of solution by the Laplace transform. In Sect.4, we establish a priory estimates,
wich give the uniquenss and continuous dependence upon the data.

2. Statement of the problem and notation

Since integral conditions are inhomogenous, it is convenient to convert problem
(1.1) − (1.3) to an equivalent problem with homogenous integral conditions. For
this, we introduce a new function u(x, t) representing the deviation of the function
v(x, t) from the function

u(x, t) = v(x, t)− w(x, t), 0 < x < 1, 0 < t ≤ T, (2.1)

where

w(x, t) = 6 (2q (t)− r (t))x− 2 (3q (t)− 2r (t)) . (2.2)
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Problem (1.1)− (1.3) with inhomogenous integral conditions (1.3) can be equiv-
alently reduced to the problem of finding a function u satisfying

∂2u

∂t2
(x, t)− ∂2u

∂x2
(x, t) =

f(x, t) +

t∫
0

a (t− s)u (x, s) ds, 0 < x < 1, 0 < t ≤ T, (2.3)

u (x, 0) = ϕ(x), 0 < x < 1,

∂u (x, 0)

∂t
= ψ(x), 0 < x < 1, (2.4)

1∫
0

u(x, t)dx = 0, 0 < t ≤ T,

1∫
0

xv(x, t)dx = 0, 0 < t ≤ T, (2.5)

where

f(x, t) = g(x, t)−

∂2w
∂t2

(x, t)− ∂2w

∂x2
(x, t)−

t∫
0

a (t− s)w (x, s) ds

 , (2.6)

and

ϕ(x) = Φ(x)− w (x, 0) ,

ψ(x) = Ψ(x)− ∂w (x, 0)

∂t
. (2.7)

Hence, instead of solving for v, we simply look for u.
The solution of problem (1.1)− (1.3) will be obtained by the relation (2.1) and

(2.2). We introduce the appropriate function spaces that will be used in the rest of
the note. Let H be a Hilbert space with a norm ‖.‖H .
Let L2(0, 1) be the standard function space.

Definition 2.1. (i) Denote by L2 (0, T,H) the set of all measurable abstract func-
tions u(·, t) from (0, T ) into H equiped with the norm

‖u‖L2(0,T,H) =

 T∫
0

‖u(·, t)‖2H dt

1/2

<∞

(ii) Let C (0, T,H) be the set of all continuous functions u(·, t) : (0, T ) −→ H with

‖u‖C(0,T,H) = max
0≤t≤T

‖u(·, t)‖H <∞



134 AHCENE MERAD AND ABDELFATAH BOUZIANI

We denote by C0(0, 1) the vector space of continuous functions with compact
support in (0, 1). Since such function are Lebesgue integrable with respect to x, we
can define on C0(0, 1) the bilinear form given by

((u,w)) =

1∫
0

Jmx u.J
m
x wdx, m ≥ 1 (2.8)

where

Jmx u =

x∫
0

(x− ζ)m−1

(m− 1)!
u(ζ, t)dζ; for m ≥ 1 (2.9)

The bilinear form (2.8) is considered as a scalar product on C0(0, 1) is not com-
plete.

Definition 2.2. Denote by Bm2 (0, 1), the comletion of C0 (0, 1) for the scalar prod-
uct (2.8), which is denoted (., .)Bm

2 (0,1)
, introduced by [5]. By the norm of function

u from Bm2 (0, 1), m ≥ 1, we inderstand the nonnegative number:

‖u‖Bm
2 (0,1)

=

 1∫
0

(Jmx u)
2
dx

1/2

= ‖Jmx u‖ ; for m ≥ 1 (2.10)

Lemma 2.3. For all m ∈ N∗, the following inequality holds:

‖u‖2Bm
2 (0,1)

≤ 1

2
‖u‖2Bm−1

2 (0,1) . (2.11)

Proof. See[5]. �

Corollary 1. For all mN∗, we have the elementary inequality

‖u‖2Bm
2 (0,1)

≤
(

1

2

)m
‖u‖2L2(0,1) . (2.12)

Definition 2.4. We denote by L2(0, T ;Bm2 (0, 1)) the space of functions which are
square integrable in the Bochner sense, with the scalar product

(u,w)L2(0,T ;Bm
2 (0,1))

=

∫ T

0

(u (., t) , w(·, t))Bm
2 (0,1)

dt. (2.13)

Since the space Bm2 (0, 1) is a Hilbert space, it can be shown that L2(0, T ;Bm2 (0, 1))
is a Hilbert space as well. The set of all continuous abstract functions in [0, T ]
equipped with the norm

sup
0≤t≤T

‖u(·, t)‖Bm
2 (0,1)

is denoted C(0, T ;Bm2 (0, 1)).



A COMPUTATIONAL METHOD FOR INTEGRO-DIFFERENTIAL HYPERBOLIC EQUATION135

Corollary 2. For every u ∈ L2(0, 1), from which we deduce the continuity of the
imbedding L2(0, 1) −→ Bm2 (0, 1), for m ≥ 1.

Lemma 2.5. (Gronwall Lemma) Let f1 (t) , f2 (t) ≥ 0 be two integrable functions
on [0, T ] , f2 (t) is nondecreasing. If

f1 (τ) ≤ f2 (τ) + c

∫ τ

0

f1 (t) dt, ∀τ ∈ [0, T ] , (2.14)

where c ∈ R+, then
f1 (t) ≤ f2 (t) exp (ct) , ∀t ∈ [0, T ] . (2.15)

Proof. The proof is the same as that of Lemma 1.3.19 in [19]. �

3. Existence of the Solution

In this section we shall apply the Laplace transform technique to find solutions
of partial differential equations, we have the Laplace transform

V (x, s) = L {v(x, t); t −→ s} =

∫ ∞
0

v(x, t) exp (−st) dt, (3.1)

where s is positive reel parameter. Taking the Laplace transforms on both sides of
(1.1) , we have(

s2 −A(s)
)
V (x, s)− d2

dx2
V (x, s) = G (x, s) + sΦ(x) + Ψ (x) , (3.2)

where G(x, s) = L {g(x, t); t −→ s}. Similarly, we have∫ 1

0

V (x, s) dx = R(s),∫ 1

0

xV (x, s) dx = Q(s), (3.3)

where

R(s) = L {r(t); t −→ s} ,
Q(s) = L {q(t); t −→ s} .

Now, we have the following three cases:

Case 1. s2 −A(s) > 0.
Case 2. s2 −A(s) < 0.
Case 3. s2 −A(s) = 0.

We only consider Cases 2 and 3, as Case 1 can be dealt with similarly as in [2].
For

(
s2 −A(s)

)
= 0, we have

d2

dx2
V (x, s) = −G (x, s)− sΦ (x)−Ψ(x), (3.4)
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The general solution for case 3 is given by

V (x, s) = −
∫ x

0

∫ y

0

[G (x, s) + sΦ(x) + Ψ(x)] dzdy + C1 (s)x+ C2(s), (3.5)

Putting the integral conditions (3.3) in (3.5) we get

1

2
C1(s) + C2(s)

=

∫ 1

0

∫ x

0

∫ y

0

[G (x, s) + sΦ(x) + Ψ(x)] dzdy +R(s),

1

3
C1(s) +

1

2
C2(s)

=

∫ 1

0

∫ x

0

∫ y

0

x [G (x, s) + sΦ(x) + Ψ(x)] dzdy +Q(s), (3.6)

and

C1(s) = 12

∫ 1

0

∫ x

0

∫ y

0

x [G (x, s) + sΦ(x) + Ψ(x)] dzdy −

6

∫ 1

0

∫ x

0

∫ y

0

[G (x, s) + sΦ(x) + Ψ(x)] dzdy +

12Q(s)− 6R(s),

C2(s) = 4

∫ 1

0

∫ x

0

∫ y

0

[G (x, s) + sΦ(x) + Ψ(x)] dzdy −

6

∫ 1

0

∫ x

0

∫ y

0

x [G (x, s) + sΦ(x) + Ψ(x)] dzdy −

6Q(s) + 4R(s). (3.7)

For case 2, that is,
(
s2 −A(s)

)
< 0,using the method of variation of parameter,

we have the general solution as

V (x, s) =
1√

A(s)− s2

∫ x

0

(G (x, s) + sΦ(x) + Ψ (x)) sin
(√

A(s)− s2
)

(x− τ) dτ

+d1(s) cos
√

(A(s)− s2)x+ d2(s) sin
√

(A(s)− s2)x (3.8)
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From the integral conditions (3.3) we get

d1(s)

∫ 1

0

cos
√

(A(s)− s2)xdx+ d2(s)

∫ 1

0

sin
√

(A(s)− s2)xdx

= R(s)− 1√
A(s)− s2

∫ 1

0

∫ x

0

(G (x, s) + sΦ(x) + Ψ(x))×

sin
(√

A(s)− s2
)

(x− τ) dτdx,

d1(s)

∫ 1

0

x cos
√

(A(s)− s2)xdx+ d2(s)

∫ 1

0

x sin
√

(A(s)− s2)xdx

= Q(s)− 1√
A(s)− s2

∫ 1

0

∫ x

0

x (G (x, s) + sΦ(x) + Ψ(x))×

sin
(√

A(s)− s2
)

(x− τ) dτdx. (3.9)

Thus d1, d2 are given by(
d1(s)
d2(s)

)
=

(
a11(s) a12(s)
a21(s) a22(s)

)−1
×
(
b1(s)
b2(s)

)
, (3.10)

where

a11(s) =

∫ 1

0

cos
√

(A(s)− s2)xdx,

a12(s) =

∫ 1

0

sin
√

(A(s)− s2)xdx,

a21(s) =

∫ 1

0

x cos
√

(A(s)− s2)xdx,

a22(s) =

∫ 1

0

x sin
√

(A(s)− s2)xdx,

b1(s) = R(s)− 1√
A(s)− s2

∫ 1

0

∫ x

0

(G (x, s) + sΦ(x) + Ψ(x))×

sin
(√

A(s)− s2
)

(x− τ) dτdx,

b2(s) = Q(s)− 1√
A(s)− s2

∫ 1

0

∫ x

0

x (G (x, s) + sΦ(x) + Ψ(x))×

sin
(√

A(s)− s2
)

(x− τ) dτdx. (3.11)

If it is not possible to calculate the integrals directly, then we calculate it numeri-
cally. We approximate similarly as given in [2]. If the laplace inversion is possible
directly for (3.5) and (3.8), in this case we shall get our solution. In another case
we use the suitable approximate method and then use the numerical inversion of
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the Laplace transform. Considering A(s) − s2 = k(s) and using Gauss’s formula
given in [1] we have the following approximations of the integrals:∫ 1

0

(
1

x

)
cos
√
k(s)xdx

' 1

2

N∑
i=1

wi

(
1

1
2 [xi + 1]

)
cos

(√
k(s)

1

2
[xi + 1]

)
,

∫ 1

0

(
1

x

)
sin
√
k(s)xdx

' 1

2

N∑
i=1

wi

(
1

1
2 [xi + 1]

)
sin

(√
k(s)

1

2
[xi + 1]

)
,∫ x

0

(G (x, s) + sΦ(x) + Ψ (x)) sin
(√

k(s)
)

(x− τ) dτ

' x

2

N∑
i=1

wi

[
G
(x

2
[xi + 1] ; s

)
+ sΦ

(x
2

[xi + 1]
)

+ Ψ
(x

2
[xi + 1]

)]
sin
(√

k(s)
[
x− x

2
[xi + 1]

])
,∫ 1

0

[
[G (τ , s) + sΦ (τ) + Ψ (τ)]

∫ 1

τ

(
1

x

)
sin
(√

k(s)
)

(x− τ) dx

]
dτ

' 1

2

N∑
i=1

wi

[
G

(
1

2
[xi + 1] ; s

)
+ sΦ

(
1

2
[xi + 1]

)
+ Ψ

(
1

2
[xi + 1]

)]
(

1− 1
2 [xi + 1]

2

) N∑
i=1

wj

(
1

1− 1
2 [xi+1]

2 xj +
1− 1

2 [xi+1]

2

)
×

sin

(√
k(s)

[
1− 1

2 [xi + 1]

2
xj +

1 + 1
2 [xi + 1]

2
− 1

2
(xi + 1)

])
, (3.12)

where xi and wi are the abscissa and weights, defined as

xi : ith zero of Pn(x), ωi = 2/
(
1− x2i

) [
P
′

n(x)
]2
.

Their tabulated values can be found in [1] for different values of N .
Numerical inversion of Laplace transform. Sometimes, an analytical inversion of
a Laplace domain solution is diffi cult to obtain; therefore, a numerical inversion
method must be used. A nice comparison of four frequently used numerical Laplace
inversion algorithms is given by Hassan Hassanzadeh, Mehran Pooladi-Darvish [18].
In this work we use the Stehfest’s algorithm [28] that is easy to implement. This
numerical technique was first introduced by Graver [16] and its algorithm then
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offered by [28]. Stehfest’s algorithm approximates the time domain solution as

v(x, t) ≈ ln 2

t

2m∑
n=1

βnV

(
x;
n ln 2

t

)
, (3.13)

where, m is the positive integer,

βn = (−1)
n+m

min(n,m)∑
k=[n+12 ]

km (2k)!

(m− k)!k! (k − 1)! (n− k)! (2k − n)!
, (3.14)

and [q] denotes the integer part of the real number q.

4. Uniqueness and Continuous dependence of the Solution

We establish an a priori estimate, the uniqueness and continuous dependence of
the solution with respect to the data are immediate consequences.

Theorem 4.1. If u(x, t) is a solution of problem (2.3)-(2.5) and f ∈ C(D), then
we have a priori estimates:

‖u(·, τ)‖2L2(0,1)
≤ c1

(
‖f(·, t)‖2L2(0,T ; B1

2(0,1))
+ ‖ϕ‖2L2(0,1) + ‖ψ‖2B1

2(0,1)

)
∥∥∥∥∂u(·, τ)

∂t

∥∥∥∥2
L2(0,T ; B1

2(0,1))

≤ c2

(
‖f(·, t)‖2L2(0,T ; B1

2(0,1))
+ ‖ϕ‖2L2(0,1) + ‖ψ‖2B1

2(0,1)

)
, (4.1)

where c1 = exp (a0T ) , c2 = exp(a0T )
1−a0 , 1 < a(x, t) < a0, and 0 ≤ τ ≤ T .

Proof. Taking the scalar product in B12(0, 1) of equation (2.3) and ∂u
∂t , and inte-

grating over (0, τ), we have∫ τ

0

(
∂2u(·, t)
∂t2

,
∂u(·, t)
∂t

)
B1
2(0,1)

dt−∫ τ

0

(
∂2u(·, t)
∂x2

,
∂u(·, t)
∂t

)
B1
2(0,1)

dt

=

∫ τ

0

(
f(·, t), ∂u (., t)

∂t

)
B1
2(0,1)

dt+

∫ τ

0

 t∫
0

a (t− s)u (x, s) ds,
∂u(·, t)
∂t


B1
2(0,1)

dt. (4.2)
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By integrating by parts on the left-hand side of (4.2) we obtain

1

2

∥∥∥∥∂u(·, t)
∂t

∥∥∥∥2
B1
2(0,1)

− 1

2
‖ψ‖2B1

2(0,1)
+

1

2
‖u(·, τ)‖2L2(0,1) −

1

2
‖ϕ‖2L2(0,1)

=

∫ τ

0

(
f(·, t), ∂u (., t)

∂t

)
B1
2(0,1)

dt+

∫ τ

0

 t∫
0

a (t− s)u (x, s) ds,
∂u(·, t)
∂t


B1
2(0,1)

dt. (4.3)

By the Cauchy inequality, the first term in the right-hand side of (4.3) is bounded
by

1

2
‖f(·, t)‖2L2(0,T ; B1

2(0,1))
+

1

2

∥∥∥∥∂u(·, t)
∂t

∥∥∥∥2
L2(0,T ; B1

2(0,1))
(4.4)

and second term in the right-hand side of (4.3) is bounded by

a0
2

t∫
0

‖u (x, s)‖2L2(0,T ; B1
2(0,1))

ds+
a0
2

∥∥∥∥∂u(·, t)
∂t

∥∥∥∥2
L2(0,T ; B1

2(0,1))
(4.5)

Substitution of (4.4) and (4.5) into (4.3) yields

(1− a0)
∥∥∥∥∂u(·, t)

∂t

∥∥∥∥2
L2(0,T ; B1

2(0,1))
+ ‖u(·, τ)‖2L2(0,1) ≤

(
‖f(·, t)‖2L2(0,T ; B1

2(0,1))
+ ‖ϕ‖2L2(0,1) + ‖ψ‖2B1

2(0,1)

)
+

a0
2

t∫
0

‖u (x, s)‖2L2(0,T ; B1
2(0,1))

ds. (4.6)

By Gronwall Lemma we have

(1− a0)
∥∥∥∥∂u(·, t)

∂t

∥∥∥∥2
L2(0,T ; B1

2(0,1))
+ ‖u(·, τ)‖2L2(0,1)

≤ exp (a0T )
(
‖f(·, t)‖2L2(0,T ; B1

2(0,1))
+ ‖ϕ‖2L2(0,1) + ‖ψ‖2B1

2(0,1)

)
. (4.7)

From (4.7), we obtain estimates (4.1). �

Corollary 3. If problem (2.3)-(2.5) has a solution, then this solution is unique
and depends continuously on (f, ϕ, ψ).
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