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ABSTRACT

In this paper, the discrete sets and corresponding dual ideals and principal maximal ideals in B(X)
are studied, where X is an n-dimensional complex manifold and B(X) is a ring (algebra) of holomorphic
functions defined on X.

1. INTRODUCTION

a) Let us denote the open unit disc in C by U and the unit disc bounding U by T.
Similary, in C”, the open unit disc and its boundary are defined by

Ut={zeC"z;x1, 1<i<n}
and
T ={zeC"|z|=1 1<i<n}
respectively.
U" is the cartesian product of U by itself n times and T" is the cartesian product
of T by itself n times. For n > 1, T" is a subset of the topological boundary SU". If
n=1, then U=U and T'= &T.

b) More generally, an open polydisc in C" is the cartesian product of n open
discs. The polydisc with radius r = (11,5.......1,) and center z° =(z{,25,.....z5) 18

Pl ={zeC": |z —z? J<r,1g1<n}

and the boundary of P is defined by
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Ty ={zeC": |z; -z} |=1;, 1<i<n}
The closure of U” defined by U” . Then U™ = U"UT™ ie.

Ut ={zeC: |z; —2z) |s1,1<i<n}

The problem of discarding the slower is of great importance in practice, [6].

1.1. Definition. Let X be a topological space and let DcX. If D has no limit
points, then it is called a discrete subset (of X)

Let G be a region (open connected set) in C, and let A(G) be the ring (or
complex alcebra) of complex valued analytic functions in G. The set of zeros of f
in G, S(={zeG: f(z)=0} for feA(G), is a discrete set.

Here S(f) is thought algebraically. That is, the zeros are counted by multiplicity
in S(f) and also in the union and intersection. If K is a subset of A(G), then

S(K)= US(f ) . The following lemmas are well-known from [3]
feK

1.2. Lemma. Let {xk }::1 be a discrete sequence, {my} be a discrete sequence
of positive integers and PrpP=0L....m - k=12,..} be a sequence of
complex numbers. Then there exists an feA(G) so that f (")(ock):ﬁk,p.
(p=0l,..m_;: k=12.).

1.3. Lemma. Let f;,£,c A(G) and let S(f;)~S(f.) =¢. Then for every heA(G),
there exist g;,2,€ A(G) so that h=T1; gthe .

14. Lemma. If fi, f, € A(G), then there exists g, £ € A(G) so that
S(fig + frg2) = S(fi) S(f) .

2. DUAL IDEALS

Let I be an ideal of A(G). If there exists a point zZyeG so that f(z,)=0 for every
fel, then Lis called an ideal of type I, and in general it is denoted by IZO . Then

L, ={feAG): f(z0)=0}
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Other ideals of A(G) are called of type II.

2.1. Definition. Let us denote a family of nonempty discrete subsets of G by
H. If the following conditions are satisfied , then H is called the dual ideal (of G).

1) If D], DzEH then DlszeH
2)IfDyeHand D, is a discrete subset of G such that D,cD,, than D,eH.

By Zorn lemma there exists a maximal dual ideal. (Let B be a dual ideal of G.
If there is not a dual ideal B' of B so that B' contains B as a proper subset then B is
called maximal dual ideal.) If B is a maximal dual ideal, then there exists a discrete
set DeH such that D~D'=¢ for every discrete subset D' not belonging to H.

Let B be the maximal dual ideal of discrete subsets of G. If there exists a point

zogG such that z,eD for every DeH then B is called a maximal dual ideal of
type 1. All other maximal dual ideals of discrete subsets of G are called maximal
dual ideals of type II .

2.2. Theorem. 1) For every maximal dual ideal B of discrete subsets of G
IB)={f: fe A(G), S(f)eB} is a maximal dual ideal of A(G).

2) Conversely, for every maximal ideal I of A(G), BI)={S(f): fel} is a
maximal dual ideal of discrete subsets of G.

3) Let us denote the set of maximal ideals of A(G) by M and the set of
maximal dual ideals of discrete subsets of G by N. Then the maps ¢ and  defined
by ¢:N—-M, ¢(B)=I(B) and yw:M—N, y(I(B))=B are one to one and onto. B is a
maximal dual ideal of type I or II according as the corresponding I(B) is a maximal
ideal of type Tor IT [3] .

2.3. Theorem. Let R be an open Riemann surface, A(R) be ring of analytic
functions defined on R and B be a dual ideal of R then I(B)={fe A(R): S(HeB} is an
ideal of A(R).

Proof. If f;.f,cI(B) then S(f;), S(f;)eB. Since B is a dual ideal S(f;)~S(f,)eB.
As S(f)S(E2) < S(fi-67) , S(f;-f>)eB and therefore f-L,el(B).

Let fel(B) and ge A(R) be arbitrary. As S(f)eB and S(f) < S(fg) we have S(fg)eB.

Then fgel(B) and therefore I(B) is an ideal of A(R). Also if B,cB, then I(B;)
I(By) is obvious.

2.4. Theorem. A} ={fcA(G): for every zeD, f'(z)=0} is a subring of
A(G) for a discrete subset D of G. (Here f denotes the derivative of f)
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Proof. If fgeAl, then as (f-g)(z)=(f ~g Xz)=0 for every zeD,
f-ge AL, Similary as (fg) (z)=0 for every zeD, A}, isa subring of A(G).

Corollary. If A([;l) ={ge Ag‘gl) - g™W(2)=0 zeD,n>2} then Ag) is a
o
subring of AS™ . Further (A =C.
N=1

Proof. If fe ﬂAg) then f%(2)=0 for n=1,2,.... (zeD) This implies that fis a
N=1
constant.

3. COVERING SPACES

3.1. Definition. Let X and X be two topological spaces and let p: X —>X be a

continuous map. If the following conditions are satisfied then X is called the
covering space of X.

1) For every xeX, there exists an open neighbourhood W of x so that p'1 (W) is
union of some open sets W, in X (ael).
2) p\WOL is a local homeomorphism of W, onto W (xel).

If X is a covering space of X, the map p is called a covering map. If p(X)=X
then X is called the projection of X .

3.2. Definition. Let X be a covering space of X, p: X —X a covering map
and g: X —X be a homeomorphism. If pog = p i.e. p(e®X) =pX) then g is called
a covering map of X .

Hence a covering map permutes the points with the same projections. The
covering transformations form a group under combination. This group is called the
group of covering transformations, [2], [4].

Let p: X -X be a covering map and xeX where X is a Hausdorff space. Let
W be a neighbourhood of x in the meaning of Definition 3.1. Let us take a
neighbourhood U of x so that T cW. If we form a set K={k,} for each W, where
kye(Wonp ' (U)) then the following lemma can be given.

3.3. Lemma. K is a discrete set.

Proof. Conversely let us suppose k is a limit point of K. Let V be a
neighbourhood of p(k). Since p is continuous, there exists a neighbourhood V; of k
so that p(V1) V. Let k,e(Vi-k)~K then p(k,)eU. Hence VU=¢. That is the
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intersection of a neighbourhood of p(k) with U is nonempty. Hence p(k) is a limit
point of U. That is p(k) e U . Since U c W, there exists a W,, so that keW,. But
there can only be k, in W, by hypothesis. Therefore k can not be a limit point 6f K

Notice that if X is a covering space of X and p: X —X is a covering map then
p(x) has a discrete topology for every xeX. Because the intersection of the open
set W,, with p?(x) consist of one point. Therefore this point is open in the subspace
topology on p (x). Further for x,yeX the cardinalities of p(x) and p’' (v) are equal.

3.4. Definition. Let R be a Riemann surface and D be a discrete subset of R.
The ideal Ip={feA(R): f(p)=0, for peD} is called discrete ideal of A(R). For
I={ fe A(R): f(q)=0} we can give the following theorem.

3.5. Theorem. Let R and R be two Riemann surfaces, R be a covering
surface of R, p:R >R be a covering map and g R >R be a covering
transformation. Then

a) Let A={1: qep’(x)} for xeR. Then the map ¢ : A>A, Hq) =Ly, i8
one-to-onc and onto.

b) Let B={ . xeR}. Then y : R5B, y(x) =1 is one-to-one and

I_ B
i )

onto.

Proof. a) First we show that ¢ is a map. If I, ={feA®R):f(g)=0}=
Iy, ={8€ A(R):g(qy) =0} then there exists fe I, so that S()={q} by [1] and
I, =<f>={gf: geAR)}. Since fe qu, f(qz)=0 . Then q,=qy. Therefore since
g8@)=g@) ., ¢(g)=0(,,). That is ¢ is a map. If ¢(y)=9(,,), then
Lo =Leqy = g@)g@ = q@=¢ = Iql = qu, i.e. ¢ is one-to-one. Finally
let Iql € A . Since g is onto there exists a qjep'l(x) so that g(g)=q. Then
0dg;) =1y

b) It is easy to see that  is a map. To show that it is one-to-one let W(x)=
y(y), ie. , Ip_1 . Ip‘l o Then since p'(x) is a discrete set, by generalized
Weierstrass theorem there exists a fe A(R) so that S(D= p'(x) [5]. But since

fel 1, S@=p'(y). Let x=y, where xep'(x) and yep'(x). Then

x=p(x;)=p(y.)=y. This shows that y is one-to-one. By the definition v is onto.
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4. n- DIMENSIONAL COMPLEX MANIFOLDS

4.1. Definition. . Let X be a topological space, U be an open subset of X, and
v be a topological map from U to C". The pair (U, ) is called coordinate card or
cardin X. If a €U then (U, ) is said to contain a.

4.2. Definition. Let X be a connected Hausdorff space and ¢ = {(U,,y;):iel}

be set of cards in X. If the following conditions are satisfied then X=(X.¢) is called
an n-Dimensional Complex Manifold.

1) Every xeX is in only one card. That is the family {U;: iel} forms an open
cover of X

DI Upwp), (Upwy) €pand UinUpx#¢ then

Viz =905y, (U AU, » wi (U nU,)
is a topological map.
When vy, is analytic, the manifold X=(X,$) is called n- Dimensional Analytic
Manifold. Here the family ¢ is called an analytic structure (or atlas) on X. Every

xel; is determined uniquely by wi(x). These v s are called local parameters or
local variables, [7].

Let X=(X, ¢) be an analytic mantfold and WcX be an open set. Further
suppose that xoeW and f is a complex valued function on W. If there exists a
neighbourhood Uy, of Xo S0 that U,y « WAU; where fO\]Ii_l is holomorphic in

yi(U) B, then f is called holomorphic at x,. ( B; is an open set in C%) If { is
holomorphic at every point of W then f is called holomorphic on W. In particular if
W=X then { is holomorphic on X.

4.3. Theorem. Let X be an analytic manifold of dimension n and B(X) be a
ring of bounded, holomorphic functions (or complex algebra) defined on X. Also
suppose that

1) For every xeX there exists an fe B(X) having a simple zero at x and no other
ZE10S.

2)For every discrete sequence (x,) in X there exists feB(X) so that lim f(x,)
does not exist.

Then the necessary and sufficient contition for a maximal ideal in B(X) to be
essential is that it is of the first type.
Proof. First we suppose that IeB(X) is essential, i.e. [=<f >={gf :ge BX)}.

fhas a zero. Then inf {] f(x)| :xeX} = 0. In this case there exists a sequence (x,,) in
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X so that lim f(x,)=0. If gel then there exists heB(X) so that g=fh. Since h is
bounded lim g(x,)=0. Then for every geB(X) lim g(x,) exists. By hypothesis (x;)
can not be discrete. That is x,—> xeX. Therefore the necessary and sufficient
condition for geB(X) to be gel=<Tf > is that g(x)=0, i.e. =1,

Conversely let IeB(X) be of the first type, i.e. I= I, = {feB(X): f(x0)=0} then
by hypothesis there exists an feB(X) having a simple zero at x, but no other zeros.
Now let us think the essential ideal <f>. It is clear that f is a proper ideal. If ¢:
BX)—C, ¢(g)=g(xo) is defined then the kernel of ¢ is <f > and the ideal <f> is
maximal. But as IXO is maximal, Ix0=<f>‘ That is the first type maximal ideal of
B(X) is essential maximal ideal.
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