Commun. Fac. Sci. Univ. Ank. Series A1 V. 47. pp. 97-104 (1998)

THE CONJUGATE OF A HYPERSURFACE

E. KILIÇ, S. KELEŞ

Department of Mathematics, İnönü University, Malatya, TURKEY

(Received Feb. 10, 1998; Accepted May 1998)

ABSTRACT

In this study, the idea of the conjugate of a surface in E³ given by TH. Hasanis and D. Koutroufiotis [3] has been generalized for a hypersurface in Eⁿ⁺¹. A necessary and sufficient condition for having the conjugate of a hypersurface has been given. Gauss and mean curvatures of the conjugate hypersurface have also been calculated.

1. INTRODUCTION

Let M be a smooth immersed regular hypersurface in E^{n+1} , which is connected and oriented. Let us choose $O \in E^{n+1}$ as an origin. We denote by x the position vector of a point in M, and set |x| = r for the corresponding distance function. Let N be the unit normal vector field of M. The support function f of M with respect to O is defined as $f = -\langle x, N \rangle$, which is also differentiable, where $\langle \cdot, \cdot \rangle$ is the inner product on E^{n+1} . Let (u^1, \ldots, u^n) be a local coordinate system on M. We denote the components of the first, second and third fundamental forms, respectively, by $g_{ij} = \langle x_i, x_j \rangle$, $b_{ij} = -\langle x_i, N_j \rangle$ and $n_{ij} = \langle N_i, N_j \rangle$, where $x_i = \frac{\partial x}{\partial u^i}$ and $N_i = \frac{\partial N}{\partial u^i}$.

Let $\overline{\nabla}$ be the standard connection of E^{n+1} , ∇ be the induced connection on M. The equations of Gauss and Weingarten are, respectively,

$$\overline{\nabla}_{X}Y = \nabla_{X}Y + (AX, Y) N, \qquad (1.1)$$

and

$$\overline{\nabla}_{X}N = -AX \tag{1.2}$$

where X and Y are vector fields tangent to M and A is the Weingarten mapping of M. The eingenvalues of A are the principal curvatures

 $k_1^{},\ k_2^{},\ ...\ k_n^{}.$ The Gauss curvature is $K=k_1^{}k_2^{}...k_n^{}$ and the mean curvatures is $H=\frac{1}{n}\sum_{i=1}^{n}k_i^{}$.

Suppose now that there exist a point O with the property that it lies on no tangent hyperplane of M. If we choose such a point as origin, the corresponding support function clearly never vanishes. So, either f > 0 or f < 0. We can always choose an orientation of M which makes f > 0. Thus, M is obviously star-shaped.

We decompose the position vector x of a point of M into two parts a component normal to M, and a component tangent to M such that

$$x = x_{T} - fN. (1.3)$$

Let X be a tangent vector of M. Since $\overline{\nabla}_{x} x = X$,

$$X = \overline{\nabla}_X x = \overline{\nabla}_X (x_T - fN) = \overline{\nabla}_X x_T - (Xf)N - f\overline{\nabla}_X N$$

or

$$X = \nabla_{X} x_{T} + \langle AX, x_{T} \rangle N - (Xf)N + f AX.$$

Taking the tangential component of this equation, we obtain

$$\nabla_{\mathbf{x}} \mathbf{x}_{\mathbf{r}} = (\mathbf{I} - \mathbf{f} \mathbf{A}) \mathbf{X}, \tag{1.4}$$

where I is the identity transformation, and taking the normal component we obtain

$$\langle AX, x_T \rangle N = (Xf)N$$

or

$$\langle X, Ax_T \rangle = \langle X, \text{ grad } f \rangle.$$

So that

$$Ax_{T} = grad f. (1.5)$$

Furthermore, since

$$X(r^{2}) = X(\langle x, x \rangle)$$

$$= 2\langle \overline{V}_{X}x, x \rangle$$

$$= 2\langle X, x_{T} \rangle,$$

or

$$X(r^{2}) = 2rX(r)$$

$$= 2r\langle X, \text{ grad } r \rangle,$$

then

$$\operatorname{grad} r = \frac{x_{\mathrm{T}}}{r}, \tag{1.6}$$

2. THE CHARACTERISTIC MAPPING OF A HYPERSURFACE

Let M be oriented hypersurface and Sⁿ be the unit hypersphere centered at O. We define the smooth mapping $\zeta: M \to S^n$ by

$$\zeta(x) = \frac{x + 2fN}{r}$$

Further, we define the mapping $\eta: M \to S^n$ by

$$\eta(x) = e = \frac{x}{r} ,$$

that is, η is a diffeomorphism of M onto the open subset A = $\eta(M)$ of S^n . Then we can define the characteristic mapping $\tau:A\to S^n$ of M, where $\tau : \zeta \circ \eta^{-1}$ by. Obviously, the position vector e of a point in A with respect to O can be written as

$$\tau(e) = e + \frac{2 f N}{r}$$
 (2.1)

Let $(u^1, ..., u^n)$ be a local coordinate system of A, so we write $e_i = \frac{\partial e}{\partial u^i}$ and $\tau_i = \frac{\partial \tau}{\partial u^i}$. From (2.1) $1 - \langle \tau(e), e \rangle = \frac{2f^2}{r^2}. \tag{2.2}$

$$1 - \langle \tau(e), e \rangle = \frac{2f^2}{r^2} . \tag{2.2}$$

Then, τ can have no fixed points. Instead of $\tau(e)$, we write simply τ and using $e = \frac{x}{r}$, after a brief calculation we obtain

$$\langle \tau, e_i \rangle = \frac{2f^2}{r^2} \frac{\partial}{\partial u^i} (\log r), \quad 1 \le i \le n .$$
 (2.3)

From (2.2) and (2.3), we find the first-order system of differential equations

$$\frac{\partial}{\partial \mathbf{u}^{i}} (\log \mathbf{r}) = \frac{\langle \tau, e_{i} \rangle}{1 - \langle \tau, e_{i} \rangle}, \quad 1 \le i \le n.$$
 (2.4)

The integrability conditions for this system, can be written as

$$\frac{\partial}{\partial u^{i}} \left[\frac{\langle \tau, e_{j} \rangle}{1 - \langle \tau, e \rangle} \right] = \frac{\partial}{\partial u^{j}} \left[\frac{\langle \tau, e_{j} \rangle}{1 - \langle \tau, e \rangle} \right] , 1 \le i , j \le n ,$$
or

$$\langle \tau_{j}, e_{j} \rangle - \langle \tau_{i}, e_{j} \rangle = \frac{\langle \tau, e_{j} \rangle \langle \tau_{i}, e \rangle - \langle \tau, e_{i} \rangle \langle \tau_{j}, e \rangle}{1 - \langle \tau, e \rangle}. \tag{2.5}$$

The length of the position vector r of M satisfies the differential equations system (2.4). If a given mapping $\tau:A\to S^n$ without fixed points is the characteristic mapping of a hypersurface, then the corresponding hypersurface M is given by its position vector x=re.

3. THE CONJUGATE OF A HYPERSURFACE

Let S^n be unit hypersphere centered at O and e be the position vector of S^n . The mapping $\alpha: S^n \to S^n$, $\alpha(e) = -e$, is called as an antipodal mapping. If a given the characteristic mapping τ of a hypersurface M, we set $\overline{\tau} = \alpha$ o τ .

Definition 3.1. Let τ be the characteristic mapping of a hypersurface M in E^{n+1} . If $\overline{\tau}$ also the characteristic mapping of some hypersurface \overline{M} , then \overline{M} is called the conjugate hypersurface of M.

If $\overline{\tau}$ is the characteristic mapping of an \overline{M} , then $\overline{\tau}$ has no fixed points.

Theorem 3.2. The hypersurface M has the conjugate \overline{M} if and only if grad $r \neq 0$ and the vector field grad r, grad f on M are linear depended at every point.

Proof. Suppose M has the conjugate \overline{M} . Then $\overline{\tau}$ has no fixed points, that is, $\tau(e) \neq -e$ for every e in the domain of τ . This means that x is never perpendicular to M, and since grad $r = \sum_{i=1}^n r_i \frac{\partial}{\partial v_i}$, $r_i = \frac{\partial r}{\partial v_i} = \frac{\langle x, x_i \rangle}{r}$,

grad $r \neq 0$. Considering the integrability condition (2.5) for τ and $\overline{\tau}$, we obtain

$$\langle \tau_{i}, e_{i} \rangle = \langle \tau_{i}, e_{i} \rangle$$
 (3.1)

From (3.1), we compute

$$\langle \tau_i, e_j \rangle - \langle \tau_j, e_i \rangle = \frac{4f}{3} \left(r_j f_i - f_j r_i \right) = 0$$
,

or

$$f_i r_j = f_i r_i$$
.

Thus, the vector fields grad r, grad f are linear depended.

Conversely grad $r \neq 0$ and the vector fields grad r, grad f are linear depended. Since grad $r \neq 0$ the mapping $\overline{\tau} = \alpha$ o τ has no fixed points. Since the grad r and grad f are linear depended, the equality (3.1) holds. Hence, the $\overline{\tau}$ satisfies the integrability condition (2.5), that is M has the conjugate \overline{M} .

Theorem 3.2 holds for a hypersurface M. From (1.5) and (1.6)

$$Ax_T = grad \ f = c \ grad \ r = \frac{c}{r} \ x_T$$
, $c \neq 0$, $c \in IR$,

this means the vector \mathbf{x}_T is the eigen vector of A. Thus, M has conjugate hypersurface if and only if the tangential component \mathbf{x}_T of the position vector x of M is the eigen vector of A. Setting $\mathbf{X} = \mathbf{x}_T$ in (1.4), we obtain

$$\nabla_{\mathbf{X}_{\mathbf{T}}}\mathbf{x}_{\mathbf{T}} = (1 - \mathbf{f}\mathbf{k}_{\mathbf{1}})\mathbf{x}_{\mathbf{T}},$$

where k_1 is the principal curvature the corresponding to x_T .

Since the position vector of M can be written as x = re, we write $\overline{x} = \overline{r}e$, where \overline{x} is the position vector of \overline{M} . Moreover $\frac{x}{r} = \frac{\overline{x}}{\overline{z}}$ and $\overline{\tau}(e) = -\tau(e)$. So,

$$\frac{x}{r} + \frac{2 f N}{r} = - \frac{x}{r} - \frac{2 \overline{f} \overline{N}}{\overline{r}} .$$

This relation tells us that \overline{N} is the hyperplane spanned by x and N. We compute $\langle \overline{N}, N \rangle = 0$, hence \overline{N} is parallel to x_T . For the position vector of \overline{M} , we write

$$\overline{x} = \frac{\overline{r}}{r} x = \frac{\overline{r}}{r} (x_T - f N)$$
,

or

$$\overline{\mathbf{x}} = \overline{\mathbf{x}}_{\mathbf{T}} - \overline{\mathbf{f}} \ \overline{\mathbf{N}} \ .$$

From this we obtain $\bar{f} = -\langle \overline{x}, \overline{N} \rangle = -\frac{\bar{r}}{r} \langle x_T, \overline{N} \rangle$. Since \overline{N} is parallel to x_T , we choose $\overline{N} = \frac{-x_T}{|x_T|}$, which makes \bar{f} positive and

$$\bar{f} = \frac{\bar{r}}{r} |x_T|.$$

Theorem 3.3. The natural mapping from M to \overline{M} preserves principal directions. Moreover, the corresponding principal curvatures at corresponding points are related by

$$\overline{k}_1 = \frac{\overline{f} r^2}{f \overline{r}^2} k_1$$
, $\overline{k}_i = \frac{1 - f k_i}{\overline{f}}$, $2 \le i \le n$,

where k_1 is the principal curvature in the direction x_T .

Proof. Let $(u^1, u^2, ..., u^n)$ be the local coordinate system in the neighbourhood of a point of M which is not an umbilic. Let the parameter curves of M be the curvature lines. Since, M has the conjugate \overline{M} , the curves $u^j = \operatorname{sbt}$. $2 \le j \le n$, are the integral curves of the vectorfield x_T . Thus $g_{ij} = b_{ij} = 0$ and $\overline{k}_i = \frac{b_{ii}}{g_{ii}}$. Moreover, $r = r(u^1)$ and $f = f(u^1)$ because x_T is parallel x_1 . We can write the position vector x of M with respect to the basis $\{x_1, ..., x_n, N\}$ of E^{n+1} ,

$$x = \sum_{i=1}^{n} c_i x_i + c_{n+1} N.$$

We compute the coefficients, $c_i = \frac{\langle x, x_i \rangle}{g_{ii}} = \frac{r_i}{g_{ii}}$ and $c_{n+1} = -f$. Since $r_i = 0$, $i \neq 1$, we obtain

$$x = \frac{r_1}{g_{11}} x_1 - f N. ag{3.2}$$

From (1.3) and (3.2)

$$x_{T} = \frac{m_{1}}{g_{11}} x_{1}, m_{1} = \sqrt{g_{11}} |x_{T}|.$$

Since $|x_T|^2 = r^2 - f^2$, the g_{11} depends on u^1 only. We differentiate (3.2) with respect to u^i ,

$$x_{i} = \frac{m_{1}}{g_{11}} x_{1i} - f N_{i}, 2 \le i \le n$$
.

Using Rodrigues formula $N_i = -k_i x_i$, we get

$$\frac{(1 - f k_i)}{|x_T|} x_i = \frac{1}{\sqrt{g_{11}}} x_{1i}.$$

If we product both sides of the last equation with x, then

$$\frac{\left(1 - fk_{i}\right)}{|x_{T}|} = \frac{1}{2\sqrt{g_{11}}} \frac{\partial}{\partial u^{i}} \left(\log g_{1i}\right), \ 2 \le i \le n .$$

Since $\overline{N} = \frac{-x_T}{|x_T|}$, we can take as $\overline{N} = \frac{-x_1}{\sqrt{g_{11}}}$. Set $h = \frac{\overline{r}}{r}$, then $\overline{x} = hx$ and $\overline{x}_1 = h_1x + hx_1$,

where
$$h_1 = \frac{-h \sqrt{g_{11}}}{|x_T|}$$
 and $h_i = 0, 2 \le i \le n$. Thus, $\overline{g}_{11} = \frac{h^2 f^2}{|x_T|} g_{11}, \overline{g}_{ij} = 0$, $i \ne j$

$$\overline{g}_{ii} = h^2 g_{ii}$$
, $2 \le i \le n$. Similarly $\overline{b}_{11} = \frac{hf}{|x_T|} b_{11}$, $i \ne j$, $\overline{b}_{ii} = \frac{h}{2 \sqrt{g_{11}}} \frac{\partial g_{ii}}{\partial u^1}$,

 $2 \le i \le n$. Therefore, the parameter curves of \overline{M} are the lines of curvature, so that the natural mapping preserves principal directions.

For the principal curvatures of M, we obtain

$$\overline{k}_{1} = \frac{\overline{b}_{11}}{\overline{g}_{11}} = \frac{\overline{f} r^{2}}{f r^{2}} k_{1} ,$$

and

$$\overline{k}_{i} = \frac{\overline{b}_{ii}}{\overline{g}_{ii}} = \frac{1}{2h} \frac{\partial}{\sqrt{g_{11}}} \frac{\partial}{\partial u^{1}} \left(\log g_{ii} \right) = \frac{1 - fk_{i}}{\overline{f}} , 2 \le i \le n .$$

This completes the proof.

Corollary. The Gauss curvature of \overline{M} is

$$\overline{K} = \frac{k_1}{h^{-2} f^{-n/2}} \left[1 - f \sum_{i=2}^{n} k_i + f^2 \sum_{\substack{i=2\\i < j}}^{n} k_i k_j - f^3 \sum_{\substack{i=2\\i < j < l}}^{n} k_i k_j k_l + \dots \right]$$

... -
$$f^{n-2} \sum_{i=2}^{n} k_{i} ... \hat{k}_{i} ... k_{n} + \frac{f^{n-2}}{h^{2} f^{n-2}} K$$

in which K is the Gauss curvature of M are \hat{k}_i is meant dropping i-th curvature function k_i of M.

Corollary 3.5. The mean curvature of \overline{M} is

$$\overline{H} = \frac{(n-1) f + r^2 k_1}{n f \overline{f}} - \frac{f}{f} H,$$

where H is the mean curvature of M.

REFERENCES

- [1] KILIÇ, E., Bir Hiperyüzeyin Pedalinin Bazı Karakteristik Özellikleri, Doktora Tezi, İnönü Üniversitesi, Fen Bilimleri Enst. Malatya (1996).
- [2] THORPE, J.A., Elementary Topics in Differential Geometry, Springer-Verlag, New York (1979).
- [3] HASANIS, T.H., KAUTROUFIOTIS, D., The Characteristic Mapping of a Reflector, Journal of Geometry, 24 (1985) 131-167.