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ABSTRACT

In this study, the idea of the conjugate of a surface in E given by TH. Hasanis and
D. Koutroufiotis [3] has been generalized for a hypersurface in E". A necessary and
sufficient condition for having the conjugate of a hypersurface has been given. Gauss and
mean curvatures of the conjugate hypersurface have also been calculated.

1. INTRODUCTION

Let M be a smooth immersed regular hypersurface in E™, which is

™1 as an origin. We denote

connected and oriented. Let us choose O € E
by x the position vector of a point in M, and set [x| = r for the
corresponding distance function. Let N be the unit normal vector field of
M. The support function f of M with respect to O is defined as f=-(x,N),
which is also differentiable, where ( , ) is the inner product on E™. Let
(@', .., u") be a local coordinate system on M. We denote the
components of the first, second and third fundamental forms, rcspccti\gI:\l]y,
by gﬁ:(xi, xj), bij= -(xi, N,-> and n, =(Ni,Nj), where X, = g? and N, = g .

Let V be the standard connection of En+1, V be the induced
connection on M. The equations of Gauss and Weingarten are,

respectively,

VY = V.Y + (AX, V) N, 1.y
and

VN = - AX (12)

where X and Y are vector fields tangent to M and A is the Weingarten
mapping of M. The eingenvalues of A are the principal curvatures
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kl, kz’ kn. The llGauss curvature is K = klkz"'kn and the mean
curvatures is H = % >k .

i=l
Suppose now that there exist a point O with the property that it lies
on no tangent hyperplane of M. If we choose such a point as origin, the
corresponding support function clearly never vanishes. So, either f > 0 or
f < 0. We can always choose an orientation of M which makes f > 0.
Thus, M is obviously star-shaped.

We decompose the position vector x of a point of M into two parts
a component normal to M, and a component tangent to M such that

x =x. - N (1.3)
Let X be a tangent vector of M. Since zx = X,

X = Vex = Vyfx, - (N) = V,x, - (XN - fV,N
or

X = VxxT + (AX, xT)N -(XON + f AX.
Taking the tangential component of this equation, we obtain

VxxT = (I - fA)X, (14)

where 1 is the identity transformation, and taking the normal component
we obtain

(AX, x )N = (XDN
or
X, AxT)= X, grad f).
So that
AxT = grad f, (15)

Furthermore, since
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X% = X(x, x))

= 2(Vxx, x)
= X, xT),
or
X = 2rX(r)
= 2r(X, grad r),
then
grad 1 = % (16)

2. THE CHARACTERISTIC MAPPING OF A HYPERSURFACE

Let M be oriented hypersurface and S" be the unit hypersphere
centered at O. We define the smooth mapping { : M — S” by
= X+ 2fN
L) = 2+

Further, we define the mapping n : M — S" by

—e=X
nx =e==>,

that is, m is a diffeomorphism of M onto the open subset A = M(M) of
S". Then we can define the characteristic mapping T : A — S of M,
where T : {0 n'l by. Obviously, the position vector ¢ of a point in A
with respect to O can be written as

T(e) = ¢ + Lffli . 2.1)
Let (ul, .., U") be a local coordinate system of A, so we write ¢ = _a_ci
and T, = —T . From (2.1) du
u 2
1- e, ¢ = - 22

T

Then, T can have no fixed points. Instead of 1(e), we write simply T and
using ¢ = X after a brief calculation we obtain

" of
(t, e) = g— i (logr), 1<i<n. 2.3)

T T3
£ ou
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From (2.2) and (2.3), we find the first-order system of differential
equations

i(logr)=£ej—, 1<i<n. (2.4)
ou’ 1-ft ¢

The integrability conditions for this system, can be written as

i[_<_>]i{_ﬁ_t]1]

' ll-fre) gfll-fud
o) o ELETEIBD, o

The length of the position vector r of M satisfies the differential
equations system (2.4). If a given mapping T : A — S" without fixed
points is the characteristic mapping of a hypersurface, then the
corresponding hypersurface M is given by its position vector x = re.

3. THE CONJUGATE OF A HYPERSURFACE

Let S" be unit hypersphere centered at O and e be the position
vector of S". The mapping o : S" — S$" , afe) = -e, is called as an
antipodal mapping. If a given the characteristic mapping T of a
hypersurface M, we set T = 0 0 T .

Definition 3.1. Let T be the characteristic mapping of a hypersurface
M in E™'. If T also the characteristic mapping of some hypersurface M,
then M is called the conjugate hypersurface of M.

If T is the characteristic mapping of an M, then T has no fixed
points.

Theorem 3.2. The hypersurface M has the conjugate Mif and only if
grad r # 0 and the vector ficld grad r, grad f on M are linear depended
at every point.

Proof. Supposc M has the conjugate M. Then T has no fixed points,
that is, t(e) # -e for every e in the domain of 7. This means that x is

n , X!
never perpendicular to M, and since grad r = ) rii , I = i = (XT’) ,
1

i 1

=l gu' du
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grad r # 0. Considering the integrability condition (2.5) for T and T, we
obtain

(T, ej) = (rj, e) . 3.0
From (3.1), we compute
R =4 Cfr) =
(ti, cj) (‘cj, ei) = 3 (rjfi fji =0,

or

Thus, the vector fields grad r, grad f are linear depended.

Conversely grad r # 0 and the vector fields grad r, grad f are. linear
depended. Since grad r # O the mapping T = o 0 T has no fixed points.
Since the grad r and grad f are linear depended, the equality (3.1) holds.
Hence, the T satisfies the integrability condition (2.5), that is M has the
conjugate M.

Theorem 3.2 holds for a hypersurface M. From (1.5) and (1.6)
= 3 1 g
A)Lr grad f = ¢ grad r rxf’ c#z0, c¢ce IR,
this means the vector X is the eigen vector of A. Thus, M has conjugate
hypersurface if and only if the tangential component X of the position

vector x of M is the eigen vector of A. Setting X = X, in (14), we
obtain

VxTx'r = (1 - &k )x,
where k1 is the principal curvature the corresponding to X =

Since the position vector of M can be written as X = re, we write
X= Te, where X is the position vector of M. Moreover %: X and 7(e) = -T(e). So,
r

-t
e }
-

This relation tells us that N is the hyperplane spanned by x and N. We
compute (N, N) = 0, hence N is parallel to X . For the position vector
of M, we write
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x=f
x=1x=1(-fN),
or
X=%-fN.

From this we_obtain f=- <i, N)_: - %(xr, @ Since N is parallel to X We
choose N = , which makes f positive and

%l
f=Lxl.

=

Theorem 3.3. The natural mapping from M to M preserves principal
directions. Moreover, the corresponding principal curvatures at
corrcspondmg points are related by

El_%k k = ! '_fk

fr f
where kl is the principal curvature in the direction X

,2<i<n,

Proof. Let (ul, uz, ., ") be the local coordinate system in the
neighbourhood of a point of M which is not an umbilic. Let the
parameter curves of M be the curvature lines. Since, M has the conjugate
M, the curves v = sbt. 2 < J £ n, are the integral curves of the

- b,
vectorfield X . Thus g J = 0 and k = -% . Moreover, r = r(ul) and

f= f(ul) because X is parallel X We can wntc the position vector x of
M with respect to the basis {x, .., x , N} of E™,
n
x=20ixi+cn+ N.

1
i=l1

I,
We compute the coefficients, ¢, = ‘) = ; and ¢, = -f. Since r = 0,
i # 1, we obtain B ii
x=—Lx -fN. (32
gll
From (1. 3) and (3.2)
x'1‘_g X, m =vg, Ikl
11
Since Ix I f2 the g, depends on o only. We differentiate (3.2)

with respect to u ,
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I
X, = L

&n
Using Rodrigues formula Ni = -kx., we get

(L-fk) _ 1

X = Xy -
xl Vg,

If we product both sides of the last equation with X, then

(L-fk)_ 1 8

xli-fNi,2_<_iSn.

(og g, 2<i<n.
% 21/311” o i)
Xy - X = _
Since N = —L | we can take as N= —L_ . Set h = L , then X = hx and
%l vg, r
ii hx + hx,
™ 2
where h, = | I and h,=0,2<i<n.Thus,g = lll |g“,'g'ij=0,i;!:j
Xp Xp
— - J
g = , 2 £1i £ n. Similarly b = hf b, .i# Js bii —h g“
xl 2 Yg; o

curvature, so that the natural mapping preserves principal directions.

2 € i £ n. Therefore, the parameter curves of M are the hnes of

For the principal curvatures of M, we obtain

- = 2
E1=2£=f_£.kl,
& 7
and _
— . - fk.
kl=¥=_._‘1___l(ggﬁ)= L,2<i<n
g1 2l‘ligll !

This completes the proof.

Corollary, The Gauss curvature of Mis

__—
- 1 - -
R=—1—11 £k + ki - 3 kkk + -
h ff =2 i=2 2
i<j i<j<l
2
2 N fu
oo f 3 Rk | + —— K,
= .~ hf

in which K is the Gauss curvature of M are k; is meant dropping i-th

curvature function ki of M.
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Corollary 3.5. The mean curvature of M is

2

ﬁ=(n-l)fj-r k, fH,
nf f f

where H is the mean curvature of M.
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