ON THE MEUSNIER'S THEOREM FOR LORENTZIAN SURFACES

E. İYİGÜN — E. ÖZDAMAR

Uludağ University, Sci. and Art. Fac. Maths. Dept. Bursa, Turkey (Received Sep. 1, 1993: Revised March 8, 1994; Accepted March 30, 1994)

ABSTRACT

In the present paper we give an analog of the Meusnier's Theorem for Lorentzian surfaces in the Lorentzian space of the dimension 3.

1. INTRODUCTION

By L³ we denote the space R³ endowed with the inner product <,> of index 1 and call it Lorentzian 3-space. In L³ every tangent space of a surface can be considered as a subspace of L³ in a canonical way. Thus if a surface in L³ has the tangent spaces of index 1 then we call the surface Lorentzian as in [4]. In addition, a curve in a Lorentzian surface called time-like, space-like or null whether its velocity vector is, [1].

In the Riemannian case, it is well known that all the curves pass through a point, say p, and have common and non asymptotic tangents at the point p have their curvature centers on a unique sphere and also have their curvature circles on another unique sphere. This fact known as the Meusnier's Theorem (see [2]). The essential part of this work devoted to give an analog of this fact in L³.

Let $\alpha\colon I\longrightarrow L^3$ be a unit speed curve in L^3 and $X=\dot{\alpha}$, where the notation dot indicates the derivative. If α is a space-like curve then there exist unique orthonormal vectors $X,\ Y,\ Z,$ and the first and the second curvature functions $k_1,\ k_2$ from I to R such that

$$< X, X> = 1, < Y, Y> = 1, < Z, Z> = -1,$$
 $< X, Y> = < Y, Z> = < X, Z> = 0,$

$$D_{x}X = k_{1}Y$$

$$D_{x}Y = -k_{1}X + k_{2}Z$$

$$D_{x}Z = k_{2}Y$$

$$(1.2)$$

where Y is time-like or space-like. If the curve α is time-like then the unique orthonormal frame field $\{X, Y, Z\}$, exists such that

$$< X, X> = -1, < Y, Y> = < Z, Z> = 1,$$
 $< X, Y> = < Y, Z> = < Z, X> = 0,$

$$D_{x}X = k_{1}Y$$

$$D_{x}Y = k_{1}X + k_{2}Z$$

$$D_{x}Z = -k_{2}Y$$
(1.3)

where $\{X, Y, Z\}$ called Frenet frame field of α , [3].

We give the notion of curvature center as the following which is just as in the Euclidean case.

Definition 1. Let $\alpha\colon I\longrightarrow L^3$ be a non-null curve and $\{X,\,Y,\,Z\}$, k_1 are the Frenet frame field on α and the first curvature function of α . The point

$$C(t) = \alpha(t) + \frac{1}{k_1(t)} Y$$

is called the curvature center of α at the point α (t) and the pseudo 1-sphere centered at the point C (t) that lay on the plane spanned by X and Y called *curvature circle* of α at the point p.

Now, we recall a definition about plane sections, just as in the case of E³, [2], as follows:

Definition 2. Let M be a Lorentzian surface in L³ and Π a plane which passes through a point $p \in M$. If a tangent vector $X_p \in T_M(p)$ is in Π then the intersection curve $M \cap \Pi$ is called the section curve determined by X_p and if the plane Π is orthogonal to $T_M(p)$ then the section curve determined by X_p is called the *normal section curve* determined by X_p .

Finally,

Definition 3. Let $M \in L^3$ be a Lorentzian surface and X_p is a tangent vector to M at the point p. Let us denote a plane through X_p by π and the curvature center of the intersection curve of π and M, that is $M \cap \pi$, by C_i . The curve obtained by translating the curvature circle of the intersection curve $M \cap \pi$, at the point p, by the vector $\overrightarrow{C_iP}$ called conjugate curvature circle of the intersection curve $M \cap \pi$ at the point P.

2. THE MEUSNIER'S THEOREM FOR LORENTZIAN SURFACES

The main theorems are:

Theorem 1. Let M be a Lorentzian surface in L³ and $p \in M$, $X_p \in T_M(p)$. We assume that $X_p \in T_M(p)$ is not an asymptotic direction on M then

- i) The locus of the curvature centers of all the non-null section curves determined by \mathbf{X}_p with space-like second Frenet vectors is a pseudosphere
- ii) The locus of the fourth vertex point of the parallelogram which constructed with one diagonal $[CC_i]$ and three vertices P, C, C_i is a pseudo-sphere where C_i and C are the curvature centers of any section curve and the normal section curve determined by X_p , respectively.
- Theorem 2. Let M be a Lorentzian surface in L³ and p∈M, $X_p \in T_M(p)$. We assume that $X_p \in T_M(p)$ is not an asymptotic direction on M. Let the points C and C_i denote the curvature centers of the normal section curve and a section curve determined by X_p . Then,
- i) All curvature circles of all the non-null section curves determined by \mathbf{X}_p with space-like second Frenet vectors lie on a pseudo-sph ere centered at the point C.
- ii) All the conjugate curvature circles of all non-null section curves determined by X_p with time-like second Frenet vectors lie on a pseudo-sphere or a pseudo-hyperbolic space and the center of the pseudo-sphere or the hyperbolic space is the fourth vertex point of the parallelogram which is determined by the vertex points, p, C and C_i and one diagonal the line segment $[CC_i]$.

First of all we shall give the following Lemma.

Lemma 1. Let h be the second fundamental form of the Lorentzian surface M in L³. If X_p is a tangent vector to M and V and k_1 are

the second Frenet vector and the first curvature function of the section curve determined by X_p , respectively. Then

$$k_2(0) < V_p, N_p > = -h (X_p, X_p)$$
 (2.1)

where Np is the unit normal to M at the point p.

Proof is the same as in the E³, so we don't give it here, (see, [5]).

If we consider the curve mentioned in the Lemma. 1. as the normal section curve determined by X_p then the equation (2.1) becomes

$$k_N(0) < V_p^N, \ N_p > = - \ h \ (X_p, \ X_p)$$

where we denote the curvature of that normal section curve $\alpha_N^{}$ by $k_N^{}(0)$ thus we get

$$k_N(0) \ = \begin{cases} h \ (X_p, \, X_p); \ V_p{}^N \ = - \ N_p; \ (that \ is, \ \alpha_N \ is \ bending \ away \\ from \ N_p) \\ -h \ (X_p, \, X_p); \ V_p{}^N \ = N_p; \ (that \ is, \ \alpha \ is \ bending \ forward \ N_p) \end{cases}$$
 where $V_p{}^N$ denotes the second Frenet vector of α .

Now we use the term curvature radius which is the reciprocal of the curvature. So we conclude the following corollary.

Corollary: Let α : I \longrightarrow M be a curve on the Lorentzian manifold M and X_p is a non-asymptotic tangent vector to M. If g, g are the curvature radii of the normal section curve and a section curve determined by X_p , respectively, then

$$<$$
V₂, N> = $\frac{g}{g_N}$ = $\frac{k_N}{k_1}$ when $<$ V₂N, N> >0 $<$ V₂N, N> = $\frac{-g}{g_N}$ = $\frac{-k_N}{k_1}$ when $<$ V₂N, N> >0

where V is the second Frenet vector of α and N is the unit normal vector field to M and k_1 , k_N denote the curvatures of α and the normal section curve determined by X_p .

Finally we need the following two Lemmas for the proof of the Theorem 1 and the Theorem 2.

Lemma 2. Let A, $B \in L^3$ and the vector \overrightarrow{AB} is space-like. Then the points p on the condition that

$$\langle \overrightarrow{PA}, \overrightarrow{PB} \rangle = 0$$

are lies on a sphere $S_1^2(r)$, where the radius r is a constant and depends on the points A and B.

Proof: We choose an orthonormal basis $\{e_0, e_1, e_2\}$ for L^3 such that e_0 is a unit time-like vector. Thus, for any point $p \in L^3$ we have the following coordinate expression

$$\overrightarrow{OP} = \mathbf{x}_0 \mathbf{e}_0 + \mathbf{x}_1 \mathbf{e}_1 + \mathbf{x}_2 \mathbf{e}_2$$

and we can identify the point p and the vector \overrightarrow{OP} as well as

$$x_0e_0 + x_1e_1 + x_2e_2$$

and (x_0, x_1, x_2) . Now, take

$$A = (a_0, a_1, a_2)$$

$$B = (b_0, b_1, b_2)$$

$$P = (x_0, x_1, x_2)$$

so

$$\langle \overrightarrow{AB}, \overrightarrow{AB} \rangle = -(b_0 - a_0)^2 + (b_1 - a_1)^2 + (b_2 - a_2)^2 > 0.$$
 (2.3)

If the point p satisfies the condition of the Lemma then; a direct computation shows that;

$$(x_0 - (1/2)(a_0 + b_0))^2 + (x_1 - (1/2)(a_1 + b_1))^2 + (x_2 - (1/2)(a_2 + b_2))^2 = c$$
 where

 $c = (1/4) (-(b_0 - a_0)^2) + (b_1 - a_1)^2 + (b_2 - a_2)^2) + (1/2) (a_0 + b_0)^2$ and because of (2.3) the constant c is positive. Thus what we get is that the point p lies on a sphere S_1^2 (\sqrt{c}).

Lemma 3: Let M be a Lorentzian surface in L³. If $p \in M$, $X_p \in T_M(p)$ and α is a section curve determined by X_p such that the second Frenet vector V_2 of α is time-like then the vector \overrightarrow{PQ} is orthogonal to the vector $\overrightarrow{PC_i}$, where C_i is the curvature center of α at the point p and p is the fourth vertex point of the parallelogram determined by the vertices p, C_i and C such that [PQ] and $[CC_i]$ are diagonals of the parallelogram and the point C is the curvature center of the normal section curve determined by X_p at the point p. Furthermore p is a space like vector (Figure. 1).

Figure. 1

Proof:

Let k_1 and k_N denote the first curvature of the section curve α and the normal section curve determined by X_p , respectively. So, in the case of $<\!V_2{}^N,\ N\!>>0$, we have the following

$$C_i = p + \frac{1}{k_1} V_2$$

$$C = p + \frac{1}{k_N} \ N_p$$

where N_p is the unit normal to M at the point p (Figure. 1) (It should be noticed that if $<\!V_2{}^N$, $N\!><\!0$ then we have to take $N_p=-\,V_2{}^N$ that is,

$$C = P - \frac{1}{k_N} \ N_p$$

thus

$$\overrightarrow{PQ} = \frac{1}{k_1} V_2 + \frac{1}{k_N} N_p$$

and

$$<\stackrel{\longrightarrow}{PQ},\;\stackrel{\longrightarrow}{PC_{i}}>\;=\;\frac{1}{k_{1}{}^{2}}\;<\!V_{2},\;V_{2}>\;+\;\frac{1}{k_{1}}\;\;\frac{1}{k_{N}}\;<\!N_{p},\;V_{2}>\;$$

since V2 is a time-like curve and

$$<$$
N $_{\rm p}, \ {
m V}_{2}> = {{
m k}_{
m N} \over {
m k}_{
m 1}}$

by the corollary of Lemma. 1 so what we get is that

$$\langle \overrightarrow{PQ}, \overrightarrow{PC_i} \rangle = 0$$

 \mathbf{or}

$$\overrightarrow{PQ} \perp \overrightarrow{PC_i}$$
.

For the second assertion of the Lemma, since $\overrightarrow{PC_i}$ is a time-like vector and we proved that $\overrightarrow{PV} \perp \overrightarrow{PC_i}$ as above, so \overrightarrow{PQ} is a space-like vector that completes the proof.

Proof of the Theorem 1. We will take the figure. 2 into account and assume that $<\!V_2{}^N\!,\ N_p\!>>\!0$, thus

$$\stackrel{\longrightarrow}{PC} = \frac{1}{k_N} \ N_p$$
 .

In the case of $\langle V_2^N, N_p \rangle \langle 0$, we have to take the vector \overrightarrow{PC} as $-(1/k_N) N_p$. We would not deal with this possibility because, it makes no difference between the proofs that involving the signature of the number $\langle V_2^N, N_p \rangle$. So we proceed the proof as follows

i) If V2 is space-like then by the corollary we obtain

$$<\!gV_2$$
 – g_N $N_p,\;gV_2> \;=g^2$ – $gg_N\left(g\left/\right.g_N\right)\;=0.$

On the other hand

$$\overrightarrow{PC}_i = gV_2$$

$$\overrightarrow{CC_i} = gV_2 - g_NN_p$$

so

$$< \overrightarrow{PC}_i, \ \overrightarrow{CC}_i > = 0$$

that completes the proof of the assertion i) because of the Lemma. 2 (see. Fig. 1).

ii) If the second Frenet vector V2 is time-like then;

$$\begin{split} \overrightarrow{PQ} &= \overrightarrow{PC} + \overrightarrow{PC_i} = gV_2 + g_NN_p \\ \overrightarrow{CQ} &= \overrightarrow{CP} + \overrightarrow{PQ} = gV_2 \end{split}$$

and by the corollary we obtain

so

$$<\!gV_2+\,g_N\;N_p,\;gV_2\!>\;=-\,g\;(g\!-\!g_N\;(g\,/\,g_N)\,)\\ =\;0$$

$$\langle \overrightarrow{PQ}, \overrightarrow{OC} \rangle = 0$$

which completes the proof for the assertion ii) because of the Lemma 2.

Proof of the Theorem 2: Since C_i and C are curvature centers, we can write

$$C_i = p + \frac{1}{k_1} V_2$$

and

$$C = p + \frac{1}{k_N} N_p$$

where, k_1 and k_N are first curvature function of the section and the normal section curve determined by X_p . V_2 denotes the second Frenet vector of the section curve and N_p is the unit normal to M at the point p. On the other hand, X_p is orthogonal to both \overrightarrow{PC} and \overrightarrow{PC}_i so the vector \overrightarrow{CC}_i orthogonal to the vectors X_p and \overrightarrow{PC}_i (figure. 3). Thus \overrightarrow{CC}_i orthogonal to the plane spanned by the vectors \overrightarrow{PC}_i and X_p at the point p.

Figure. 3

(i) Let Z be a point that lies on the curvature circle at the point p of the section curve determined by X_p , Since \overrightarrow{CC}_i is orthogonal to the plane spanned by \overrightarrow{PC}_i and X_p and

$$\overrightarrow{ZC}_i \in S_p \{X_p, \overrightarrow{PC}_i\}$$

thus

$$\langle \overrightarrow{ZC}, \overrightarrow{ZC} \rangle = \langle \overrightarrow{PC_i}, \overrightarrow{PC_i} \rangle + \langle \overrightarrow{C_iC}, \overrightarrow{C_iC} \rangle.$$
 (2.4)

On the other and;

$$\overrightarrow{PC} = \overrightarrow{PC_i} + \overrightarrow{C_iC}$$

and so

$$<\overrightarrow{PC}, \overrightarrow{PC}> = <\overrightarrow{PC_i}, \overrightarrow{PC_i}> + <\overrightarrow{C_iC}, \overrightarrow{C_iC}> + 2 <\overrightarrow{PC_i}, \overrightarrow{C_iC}>$$

since; $\overrightarrow{C_iC} \perp \overrightarrow{PC_i}$ thus the right hand side of the above equation is the same as the right hand side of the equation (2.4) so

$$<\overrightarrow{PC}, \overrightarrow{PC}> = <\overrightarrow{ZC}, \overrightarrow{ZC}>$$

which means that, the point Z lies on the pseudo-sphere centered at the point C. Since Z is arbitrary that completes the proof of the assertion (i).

(ii) We will take the figure. 4 into account so we proceed the proof as follows

Figure. 4

Let Z be a point that lies on the special translated curvature circle of the section curve at the point p determined by X_p.

By Lemma. 3; \overrightarrow{PQ} is orthogonal to \overrightarrow{PQ} . Since \overrightarrow{PQ} is a vector in the plane spanned by N_p and V_2 then \overrightarrow{PQ} is orthogonal to the vectors V_2 and X_p so we obtain

$$\langle \overrightarrow{PQ}, \overrightarrow{PZ} \rangle = 0$$
 (2.5)

so we get

$$\langle \overrightarrow{QZ}, \overrightarrow{QZ} \rangle = \langle \overrightarrow{QP}, \overrightarrow{QP} \rangle + \langle \overrightarrow{PZ}, \overrightarrow{PZ} \rangle.$$
 (2.6)

By the Definition. 3, there exists a point Y on the curvature circle at the point p determined by X_p , such that

$$\overrightarrow{YZ} = \overrightarrow{C_iP}$$

thus

$$\overrightarrow{C_iY} = \overrightarrow{PZ}. \tag{2.7}$$

Taking (2.7) into (2.6) we get

$$\langle \overrightarrow{QZ}, \overrightarrow{QZ} \rangle = \langle \overrightarrow{QP}, \overrightarrow{QP} \rangle + \langle \overrightarrow{C_iY}, \overrightarrow{C_iY} \rangle$$
 (2.8)

and since Y is a point on the curvature circle centered at Ci then

$$<\overrightarrow{C_{i}Y},\ \overrightarrow{C_{i}Y}>=<\overrightarrow{PC_{i}},\ \overrightarrow{PC_{i}}>$$

so by (2.8) we obtain

$$\langle \overrightarrow{QZ}, \overrightarrow{QZ} \rangle = \langle \overrightarrow{QP}, \overrightarrow{QP} \rangle + \langle \overrightarrow{PC_i}, \overrightarrow{PC_i} \rangle$$
 (2.9)

we recall that \overrightarrow{QP} is a space-like, $\overrightarrow{PC_i}$ is a time-like so (2.9) can be written as the following form

$$<\overrightarrow{QZ}, \ \overrightarrow{QZ}> = || \ \overrightarrow{QP} \ ||^2 - || \ \overrightarrow{PC_i} \ ||^2$$

which completes the proof of the assertion (ii) since the pointz Z are lies on a pseudo-sphere or on a pseudo-hyperbolic space according to the sign of the number

$$||\overrightarrow{QP}||^2 - ||\overrightarrow{PC_i}||^2$$
.

REFERENCES

- O'NEILL, B., "Semi-Riemannian Geometry with Applications to Relativity" Academic Press, Inc., 1983 ISBN 0-12-526740-1.
- [2] BLASCHKE, W., "Diferensiyel Geometri Dersleri" İst. Ünv. Yayını. No: 433, 1949 Çeviren: K. Erim.
- [3] IKAWA, T., "On Curves and Submanifolds in an Indefinite Riemannian Manifold" Tsukuba J. Math. Vol. 9 No: 2, 353-371, 1985.
- [4] GRAVES, L, K., "Codimension one Isometric Immersions Between Lorentz Spaces" American Mathematical Society, Volume 252, 1979.
- [5] O'NEILL, B., "Elementary Differential Geometry" Academic Press Inc. LCCCN: 66-14468, New York, 1967.