ON THE COHOMOLOGY GROUPS OF COMPLEX ANALYTIC MANIFOLDS

SABAHATTIN BALCI

Dept. of Mathematics, Faculty of Science, Ankara University, ANKARA

SUMMARY

Let X be a connected complex analytic manifold of dimension n with fundamental group $H_X \neq \{1\}$, for any $x \in X$. Let H be the sheaf of the fundamental groups over X, $[H,H] \subset H$ be the commutator subsheaf, Q be the sheaf of Abelian groups [1] determined by [H,H] over X and A be the Restricted sheaf of germs of holomorphic functions on X defined in [4]. It is shown, in this paper, that; The Cohomology group $H^0(X,Q)$ of the structure sheaf Q of X is isomorphic to the Cohomology group $H^0(X,A)$ of the structure restricted sheaf A of X. Moreover, the Cohomology group $H^0(X,Q)$ of the structure sheaf Q of X and the Čech Cohomology group $H^0(Q,Q)$ of the structure sheaf Q of Q equal to zero, for $p \geq 1$.

1- INTRODUCTION

Let X be a connected complex manifold of dimension n with fundamental group $H_x \neq \{1\}$, for any $x \in X$. Let $H = V H_x$. A natural $x \in X$

topology introduced on H in [1]. H is a sheaf with the cannocial projection mapping $\varphi: H \to X$ defined by $\varphi(\sigma_X) = x$, for every $\sigma_X \in H$. H is called the sheaf of the fundamental group. Let $\Gamma(X,H)$ be the group of global sections of X and $D \subset \Gamma(X,H)$ be the commutator subgroup. The subsheaf defined by D is called Commutator subsheaf of H and it is denoted by [H,H]. The Commutator subsheaf [H,H] is a normal subsheaf of H. The quotient sheaf $Q_{[H,H]}$ (or only Q) determined by [H,H] is a sheaf of Abelian groups and it is a regular covering space of X. The sheaf Q is isomorphic to the sheaf \overline{H} of homology groups of X [1]. Hence, we identify the stalk Q_X with the stalk \overline{H}_X , for any $x \in X$, and the section γ $[s] \in \Gamma(X,Q)$ with the section $\tilde{s} \in \Gamma$ (X,\overline{H}) .

We now give the following definition.

Definition 1.1. Let $(G_i)_{i \in IN}$ be a family of Abelian groups. Then,

i) A cochain complex is a sequence of group homomorphisms

with d^i o $d^{i-1} = 0$, for $i \in IN$.

- ii) $Z^p(G^*) = Ker d^p$ is called the p-th group of cocycles.
- iii) $B^p(G^*) = Im \ d^{p-1}$ is called the p-th group of coboundaries. We set $B^0(G^*) = 0$. Then clearly $B^p(G^*) \subset Z^p(G^*)$.
- iv) The quotient group $H^p(G^*) = Z^p(G^*)/B^p(G^*)$ is called the p-th cohomology group of the complex G^* .

Finally, the homomorphism $d=d^p$ with d^p o $d^{p-1}=0$ is called the coboundary operator, for $p\geq 0$.

Definition 1.2. An augmented cochain complex is a triple (E, ε, G^*) with the following properties:

- i) E is an Abelian group.
- ii) G* is a cochain complex.
- iii) $\varepsilon : E \to G_0$ is a monomorphism with Im $\varepsilon = Kerd^0$.

If (E, ε, G^*) is an augmented complex, then

$$E \cong Im \epsilon = Ker d^0 = Z^0 (G^*) \cong H^0 (G^*).$$

From now on, X will be considered as a connected complex manifold of dimension n with fundamental group $H_x \neq \{1\}$, for any $x \in X$.

2. ČECH COHOMOLOGY GROUPS.

Let $\mathcal{U} = (U_i)_i \in I$ be an open covering of X with $U_i \neq \emptyset$ for every $i \in I$. It is shown, in this section, that;

- i) The o-th Čech Cohomology group of U with values in Q is isomorphic to the Homology group \overline{H}_x of X, for any $x \in X$.
- ii) The p-th Čech Cohomology group H^p ($\mathcal U$, Q) of $\mathcal U$ with values in Q equals to 0, for $p \gg 1$.

Let Q be the sheaf of Abelian groups determined by [H,H] over X and $\mathcal{U} = (U_i)_{i \in I}$ be an open covering of X with $U_i \neq \emptyset$ for every $i \in I$. We define,

$$\mathbf{U_{i_0}} \ldots \mathbf{i_p} = \mathbf{U_{i_0}} \cap \ldots \cap \mathbf{U_{ip}}$$

$$\mathbf{I_p} = \{(\mathbf{i_0}, \ldots, \mathbf{i_p}) : \mathbf{U_{i_0}} \ldots \mathbf{i_p} \neq \emptyset\}.$$

Let τ_n be the set of permutation of the set $\{0,1,2,\ldots,(n-1)\}$. For $\tau\in\tau_n$, let

$$sgn (\tau) = \begin{cases} +1, & \text{if } \tau \text{ is the product of an even number of} \\ & \text{transpozitions} \\ -1, & \text{otherwise} \end{cases}$$

Definition 2.1. An p-dimensional (alternating) cochain over $\mathcal U$ with values in Q is a mapping

$$m{:}I_p \,\rightarrow\, \underset{\left(i_0,\ldots,i_p\right)}{\cup} \,\, \Gamma\,\left(U_{i_0}\,\ldots i_p,\;Q\right)$$

with the following properties:

- $i) \ m(i_o, \ldots, i_p) \ \in \ \Gamma \ (U_{i_o} \ \ldots i_{i_p}, \ Q)$
- ii) $m(i\tau(0),...,i\tau(p)) = sgn(\tau)$. $m(i_0,...,i_p)$, for $\tau \in \tau_{p+1}$

The set of all p-dimensional alternating cochains over U with values in Q denoted by $C^p(\mathcal{U}, Q)$. $C^p(\mathcal{U}, Q)$ becomes an Abelian group by setting

$$(\mathbf{m}_1 + \mathbf{m}_2) (i_0, \ldots, i_p) = \mathbf{m}_1(i_0, \ldots, i_p) + \mathbf{m}_2 (i_0, \ldots, i_p).$$

Let us now define a mapping,

$$d = d^p : C^p (\mathcal{U}, Q) \rightarrow C^{p+1} (\mathcal{U}, Q)$$
 with

$$(\mathrm{dm})(i_0,\ldots,i_{p+1}) \; = \; \overset{p+1}{\overset{\lambda}{\sum}} \; (-1)^{\lambda+1}(\mathrm{m}(i_0,\ldots,\hat{i}_{\lambda},\ldots,i_{p+1}) \; | \; \mathrm{U} \; \; i_0\ldots i_{p+1}),$$

where \hat{i}_{λ} means that the index i_{λ} is delated.

It is easily seen that d is a homomorphism with d^{p+1} od $d^p = 0$.

Definition 2.2. The sequence

$$C^*(\mathcal{U},Q) : C^{0}(\mathcal{U},Q) \xrightarrow{d^{0}} C^{1}(\mathcal{U},Q) \xrightarrow{d^{1}} C^{2}(\mathcal{V},Q) \xrightarrow{d^{2}} \dots$$

is called the čech complex.

Let us now define a mapping $\epsilon: \Gamma(X,Q) \to C^o(\mathcal{U},Q)$ with $(\epsilon \tilde{s})$ $(i) = \tilde{s} | U_i$, for every $\tilde{s} \in \Gamma(X,Q)$. Then we can give,

Theorem 2.1. The triple $(\Gamma(X,Q), \epsilon, C^*(\mathcal{U},Q), is$ an augmented cochain complex.

Proof. Clearly, ϵ is a homomorphism. If ϵ $\tilde{s}=o$, then $\tilde{s}\mid u_i=0$, for every $i\in I$; therefore $\tilde{s}=0$. Hence ϵ is injective.

Let $m \in C^0(\mathcal{U}, Q)$ and dm=0. Since,

$$(dm) (i_0,i_1) = (-m(i_1) + m(i_0)) | U_{i_0i_1}$$

this is equivalent to $m(i_0) \mid U_{i_0i_1} = m(i_1) \mid U_{i_0i_1}$. Therefore there is a section $\tilde{s} \in \Gamma$ (X Q) with $\epsilon \, \tilde{s} = m$ defined by $\tilde{s} \mid U_i = m(i)$. Thus, Im $\epsilon = Ker \, d^o$.

Definition 2.3. Let C* (\mathcal{U} ,Q) be the Čech complex and p ($\geqslant 0$) be an integer.

- i) $Z^p(\mathcal{U},Q)=Ker\ d^p$ is called the group of p-th cocycles over $\mathcal U$ with values in Q
- ii) $B^p(\mathcal{U},Q) = Im(d^{p-1})$ is called the group of p-th coboundaries over \mathcal{U} with values in Q.

Clearly,
$$B^p(\mathcal{U}, Q) \subset Z^p(\mathcal{U}, Q) \subset C^p(\mathcal{U}, Q)$$
.

iii) The quotient group $H^p(\mathcal{U},Q) = Z^p(\mathcal{U},Q)/B^p(\mathcal{U},Q)$ is called the p-th Čech Cohomology group of U with values in Q [2.3].

In particular, $H^o(\mathcal{U},Q) \cong \Gamma(X,Q)$. On the other hand, $\Gamma(X,Q) \cong \Gamma(X,\overline{H}) = \overline{H}_x$. Therefore, $H^o(X,Q) \cong \overline{H}_x$, i.e., the o-th Čech Cohomology group of U with values in Q is isomorphic to the Homology group of X, for any $x \in X$.

Definition 2.3. Let S be a sheaf over X. If the restriction mapping $\gamma_{X,U}$: $\Gamma(X,S) \to \Gamma(U,S)$ is a surjection for any open set $U \subset X$, then S is called a flabby sheaf.

It is easy to see that the sheaves H, [H,H] and Q are flabby sheaves by considering their constructions, respectively.

Let O be zero sheaf or identy sheaf. The sequence,

 $O \to [H,H] \xrightarrow{i} H \xrightarrow{\pi} Q \to O$ is exact, where the mapping i is cannonical injection and the mapping π is cannonical surjection. Let $\gamma[s] \in \Gamma(X,Q)$. Then, there exists a unique element $[s] \in \Gamma(X,H)/\Gamma(X,[H,H])$ such that $\gamma[s] = \tilde{s}$, by means of the isomorphism between Q and H. So, there is at least one section $s \in \Gamma(X,H)$ such that $\gamma[s] \in \Gamma(X,Q)$. Since the mapping $\pi: H \to Q$ is cannonical projection, $(\pi \circ s)(x) = \gamma[s](x)$, for every $x \in X$. Then we may state,

Theorem 2.2. The Sequence,

$$0 \, \rightarrow \, \Gamma(X, \, \, \text{[H,H]}) \, \stackrel{\mathbf{i_*}}{\rightarrow} \, \Gamma(X,\text{H}) \, \stackrel{\pi_*}{\rightarrow} \, \Gamma(X,\text{Q}) \, \rightarrow \, 0$$

is exact.

Theorem 2.3. Let Q be the sheaf of Abelian groups determined by [H,H] over X, $\mathcal{U} = (U_i)_i \in_I$ be an open covering of X with $U_i \neq \emptyset$ and $X \in \mathcal{U}$. Then, $H^p(\mathcal{U},Q) = 0$, for $p \geqslant 1$.

Proof. If $\mathcal{U} = (U_i)_i \in I$, then there is an $\Gamma \in I$ with $X = U_r$. Let $m \in Z^p(\mathcal{U},Q)$, $p \geq 1$. There is an element $n \in C^{p-1}(\mathcal{U},Q)$ defined by $\mathbf{n}(i_0,\ldots,i_{p-1}) = \mathbf{m}(r,i_0,\ldots,i_{p-1})$. Since dm = 0, we have

$$0 = \mathrm{dm} \ (\mathbf{r}, \mathbf{i}_0, \dots, \mathbf{i}_p) = -\mathbf{m}(\mathbf{i}_0, \dots, \mathbf{i}_p) + \sum_{\lambda=0}^{p} (-1)^{\lambda} \ \mathbf{m}(\mathbf{r}, \mathbf{i}_0, \dots, \mathbf{i}_{\lambda}, \dots, \mathbf{i}_p)$$

Therefore,

$$\begin{split} \mathbf{d}(-\mathbf{n})\; (\mathbf{i}_0,\ldots,\mathbf{i}_p) &=\; - \quad \sum\limits_{\lambda=0}^p \; (-1)^{\lambda+1}\; \mathbf{n}(\mathbf{i}_0,\ldots,\hat{\mathbf{i}}_\lambda,\ldots,\mathbf{i}_p) \\ &=\; \sum\limits_{\lambda=0}^p \; (-1)^{\lambda}\; \mathbf{m}(\mathbf{r},\mathbf{i}_0,\ldots,\hat{\mathbf{i}}_\lambda,\ldots,\mathbf{i}_p) \; = \; \mathbf{m}(\mathbf{i}_0,\ldots,\mathbf{i}_p). \end{split}$$

In other words, d(-n)=m, so $m\in B_p$ ($\mathcal U,Q$). Namely, the Čech Cohomology sequence is exact at every location $p\geq 1$, i.e., $H^p(\mathcal U,Q)=0$, for $p\geq 1$.

We now give the following theorem.

Theorem 2.4. Let $\mathcal U$ be an arbitrary covering of X. Then, $H^p(\mathcal U,Q)=0,$ for $p\geq 1.$

Proof. We prove this tehorem by induction on p. Let $p \geq 1$ and $m \in Z^p(\mathcal{U},Q)$. If $U \subset X$ is an open set, then we set $U \cap \mathcal{U} = \{U \cap U_i \neq \varnothing : U_i \in \mathcal{U}\}$ and

$$(m \mid U) \ (i_0, \ldots, i_p) \ = \ m(i_0, \ldots, i_p) \mid U \cap U_{i0} \ \ldots i_p.$$

With this notation we have $m \mid U \in \mathbb{Z}^p(U \cap \mathcal{U}, \mathbb{Q})$.

For arbitrary $x_0 \in X$, there is an $i_0 \in I$ and an open neighborhood $U(x_0) \subset U_{i0}$. But then $U \in U \cap \mathcal{U}$, so $H^p(U \cap \mathcal{U}, Q) = 0$, for $p \geq 1$, and there is an $n \in C^{p-1}(U \cap \mathcal{U}, Q)$ with $dn = m \mid U$.

If $V \subset X$ is an open set with the same property, i.e., there is an $n' \in C^{p-1}(V \cap \mathcal{U},Q)$ with $n' = m \mid V$, we set

$$t=(n-n')\,|U\ \cap\ V\in Z^{p-1}(\ (U\ \cap\ V)\ \cap\ \mathcal{U},Q).$$
 If $p{=}1,$ then t lies in $\Gamma(U\ \cap\ V,Q),$ and since Q is flabby, we can extend

t to a $\hat{t} \in \Gamma(V,Q)$. Then set

$$\mathbf{t^*} \ (\mathbf{x}) = \left\{ \begin{array}{ll} \mathbf{n}(\mathbf{x}), & \mathbf{x} \in \mathbf{U} \\ \\ \mathbf{n}'(\mathbf{x}) \ + \ \hat{\mathbf{s}}(\mathbf{x}) \ \mathbf{x} \in \mathbf{V}. \end{array} \right.$$

Clearly $t^* \in \Gamma(U \cup V, Q)$ and $dt^* = m \mid U \cup V$, because $d\hat{s} = 0$.

If p>1, then by the induction hypothesis there is a $\gamma\in C^{p-2}$ (U \cap V \cap \mathcal{U},Q) with $d\gamma=t$. Since Q is flabby:

$$\gamma(i_0,\ldots,i_{p-2})\in\Gamma(U\,\cap V\,\cap U_{i\,0}\,\ldots i_{p-2},\!Q)$$

can be extended to an element

$$\widehat{\gamma}(i_0,\ldots,i_{p-2})\,\in\,\Gamma(V\,\cap\,U_{i\,0}\,\,\ldots\,i_{p-2},Q).$$

Let

$$\mathbf{n}^*(i_0,\ldots,i_{p-1})\;(x) = \left\{ \begin{array}{ll} \mathbf{n}(i_0,\ldots,i_{p-1})\;(x) & \text{for } x{\in}U \;\cap U_{i0}\;\ldots i_{p-1} \\ \\ (\mathbf{n}' {+} \mathrm{d}\hat{\gamma})(i_0,\ldots,i_{p-1})(x) \text{for } x{\in}V \;\cap U_{i0}\ldots i^{p-1} \end{array} \right.$$

Then $n^* \in C^{p-1}$ ($(U \cup V) \cap \mathcal{U}, Q$) and $dn^* = m | U \cup V$.

By Zorn's lemma there must be a maximal element (U_o,t_o) for p=1, resp. (U_o,n_o) for p>1 with $t_o\in\Gamma(U_o,Q)$ and $dt_o=m\mid U_o$, resp. $n_o\in C^p(\mathcal{U},Q)$ and $dn_o=m\mid U_o$. But an element is only maximal if $U_o=X$; therefore $m\in B^p(\mathcal{U},Q)$. Hence, $H^p(\mathcal{U},Q)=0$.

3 FLABBY COHOMOLOGY GROUPS

In this section, it is shown that;

- i) The o-th Cohomology group $H^o(X,Q)$ of X with values in Q is isomorphic to the Homology group \overline{H}_x of X for any $x \in X$.
- ii) The p-th Cohomology group $H^p(X,Q)$ of X with values in Q equals to zero for $p\geq 1$.

Let Q be the sheaf of Abelian groups determined by [H,H] over X and $U \subset X$ be an open set. Let $\widehat{\Gamma}(U,Q)$ denote the set of all mappings $f\colon U \to Q$ with ψ of $=1_U$, where $\psi\colon Q \to X$ is the sheaf projection. We

call these not necessarily continuous functions generalized sections. Clearly $\Gamma(U,Q)$ is a subgroup of $\hat{\Gamma}(U,Q)$. We set $M_U = \hat{\Gamma}(U,Q)$. If $U, V \subset X$ are open with $V \subset U$, then we define $\gamma_{U,V} \colon M_U \to M_V$ by $\gamma_{U,V}(f) = f | V$. Then $\{X,M_U, \gamma_{U,V}\}$ is a pre-sheaf and we denote the corresponding sheaf by W(Q) [2].

Theorem 3.1.

- 1. The cannonical mapping $\gamma:M_U\to\Gamma$ (U,W(Q) is a group homomorhism.
- 2. The cannonical injection i_U : $\Gamma(U,Q) \subset \hat{\Gamma}(U,Q)$ induces an injective sheaf homomorphism $\epsilon \colon Q \to W(Q)$ with $\epsilon_* \mid \Gamma(U,Q) = \gamma \circ i_U$, where γ is the inductive limit operator.

Proof. 1. A similar proof can be found for 1 in [1].

2. Clearly $i_U(\hat{s}) \mid V = i_V(\hat{s}) \mid V$) for $\hat{s} \in \Gamma(U,Q)$. If we identify the sheaf induced by $\{X,M_U,^{\gamma}_{U,V}\}$ with the sheaf Q, then there exists exactly one sheaf morphism $\epsilon\colon Q \to W(Q)$ with $\epsilon_*(\hat{s}) = \gamma o i_U(\hat{s})$ for $\hat{s} \in \Gamma(U,Q)$ [1]. If $\tilde{\sigma} \in Q_x$ and $\epsilon(\tilde{\sigma}) = O_x$, then there exists a neighborhood $U(x) \subset X$ and an $\hat{s} \in \Gamma(U,Q)$ with $\hat{s}(x) = \tilde{\sigma}$. Therefore, $O_x = \epsilon(\tilde{\sigma}) = \epsilon o \hat{s}(x) = \epsilon_*(\hat{s})$ (x) $= \gamma_o i_U(\hat{s})$ (x) with $\gamma i_U(\hat{s}) \in \Gamma(U,W(Q))$. Then there exists a neighborhood $V(x) \subset U$ with $\gamma i_U(\hat{s}) \mid V = O$; thus $i_U(\hat{s}) \mid V = O$ and then clearly $\hat{s} \mid V = O$. Hence $\tilde{\sigma} = \hat{s}(x) = O_x$.

Where $I_m\left(d^{-1}\right)=Im\,\epsilon$, $W_{p+1}=W(W_p(Q)/Im(d^{p-1})$ and $d=d^p=j$ o q for the cannonical projection $q\colon W_p(Q)\to W_p(Q)/I_m(d^{p-1})$ and the cannonical injection $j\colon W_p(Q)/I_m(d^{p-1})\to W(W_p(Q)/I_m(d^{p-1}))$. Clearly Ker $d^p=Ker\,q=Im(d^{p-1})$. Thus the sequence

is exact and it is called the cannonical resolution of Q.

Theorem 3.2. Let Q be the sheaf of Abelian groups determined by [H,H] over X and W*(Q): $\Gamma(X,W_0(Q)) \to \Gamma(X,W_1(Q)) \to \Gamma(X,W_2(Q))$... Then the triple $(\Gamma(X,Q),\,\epsilon_*,\,W^*(Q))$ is an augmented cochain complex.

Proof. Clearly W*(Q) is a cochain complex. The mapping ϵ_* : $\Gamma(X, Q) \to \Gamma(X, W_0(Q))$ is a group homomorphism and $(d^o)_*$ o $\epsilon_* = O$.

Consider the mapping

$$d^o \colon\thinspace W_o(Q) \overset{q}{\to} \ W_o(Q) \, / \, I_m \epsilon \ \subset \ W(W_o(Q) \, / \, I_m \epsilon) \ = \ W_1(Q).$$

Let $f \in \Gamma(X, W_0(Q))$ and $O = d^o$ of f = joqof. Then qof = O, so $f(x) \in \text{Im } \epsilon$ for every $x \in X$. Since $\text{Im } \epsilon \cong Q$, $\Gamma(X, \text{Im } \epsilon) \cong \Gamma(X, Q)$. Thus there is an element $\tilde{s}^* \in \Gamma(X, Q)$ such that $\epsilon_*(\tilde{s}^*) = \tilde{s}$.

Definition 3.1. Let Q be the sheaf of the Abelian groups determined by [H,H] over X and $(\Gamma(X,Q), \epsilon_*, W^*(Q))$ be the augmented cochain complexs.

- i) $Z^p(X,Q) = Ker d^p$ is called the group of p-th cocycles of X with values in Q.
- ii) $Z^p(X,Q) = Im(d^{p-1})$ is called the group of p-th coboundaries of X with values in Q.
- iii) The quotient group $H^p(X,Q) = Z^p(X,Q)/B^p(X,Q)$ is called p-th cohomology group of X with values in Q.

In particular, $H^o(X,Q) \cong \Gamma(X,Q)$. On the other hand, $\Gamma(X,Q) \cong \overline{H}_x$. Therefore, $H^o(X,Q) \cong \overline{H}_x$, i.e., o-th cohomolony group $H^o(X,Q)$ of X with values in Q is isomorphic to the homology group \overline{H}_x of X for any $x \in X$.

Let us now consider the sequence

 $\begin{array}{ll} 0 \to \Gamma(X,Q) \to \Gamma(X,W_0(Q)) \to \Gamma(X,W_1(Q) \to \dots & \text{ for } p = 0, 1, \\ 2,\dots, \text{ let } B_p = \text{Im } (d^{p-1}) \text{ and } d^{-1} = \epsilon. \text{ By the induction, it is shown} \\ \text{that all } B_p \text{ are flabby. In fact, for } B_0 = Q \text{ this is true. Suppose that} \\ B_0,B_1,\dots,B_{p-1} \text{ are flabby sheaves. Since the sequence } O \to B_{p-1} \to W_{p-1}(Q) \to W_p(Q) \to O \text{ is exact, the sequence } 0 \to \Gamma(U,B_{p-1}) \to \Gamma(U,W_{p-1}(Q)) \to \Gamma(U,W_p(Q)) \to 0 \text{ is exact for the open } U \subset X. \text{ Let } f \in \Gamma(U,B_p). \\ \text{Then there exists a section } f' \in \Gamma(U,W_{p-1}(Q)) \text{ such that } d^po \text{ } f = f'. \text{ Since} \\ \text{the sheaf } W_{p-1}(Q) \text{ is flabby there exists a section } f^* \in \Gamma(X,W_{p-1}(Q)) \\ \text{with } f^* \mid U = f'. \text{ But } d^p \text{ o } f^* \in \Gamma(X,W_p(Q)) \text{ and } d^p \text{ of } * \mid U = f. \text{ Therefore, } B_p \text{ is flabby.} \\ \end{array}$

On the other hand, the following sequences

$$O \, \to \, B_{p-1} \, \to \, W_{p-1}(Q) \, \to \, B_p \, \to \, O$$

$$\begin{split} O \ \rightarrow \ B_p \ \rightarrow \ W_p(Q) \ \rightarrow \ B_{p+1} \ \rightarrow \ O \\ O \ \rightarrow \ B_{p+1} \ \rightarrow \ W_{p+1}(Q) \ \rightarrow \ B_{p+2} \ \rightarrow \ O \end{split}$$

are exact. Thus the corresponding sequences of groups of sections are exact [2]. Therefore the sequence

$$\Gamma(X, W_{p-1}(Q)) \rightarrow \Gamma(X, W_p(Q)) \rightarrow \Gamma(X, W_{p+1}(Q))$$

is exact. Then we may state,

Theorem 3.3. Let Q be the sheaf of Abelian groups determined by [H,H] over X. Then $H^p(X,Q) = 0$ for $p \geq 1$.

4. THE MAIN RESULT

Let X be a connected complex analytic manifold with fundamental group $H_x \neq \{l\}$, for any $x \in X$ and A(X) be the vector space of all holomorphic functions of X. Let $f \in A(X)$ and $x \in X$ a point. f can be expanded into a power series f_x convergent at z the local parameter of x. The totality of such power series at x as f runs through A(X) is denoted by A_x which is again a vector space (or C-Algebra) isomorphic to A(X). The disjoint union A = V A_x is a set over X with a natural $x \in X$

projection $\pi: A \to X$ mapping each f_x onto the point of expansion x.

A natural topology on A was introduced in [4]. In that topology π is locally topological mapping. Hence (A, π) is a sheaf over X. The sheaf A is called the Restricted Sheaf of germs of the totality of holomorphic functions A(X) on X [4]. In paper [4] it is shown that the cohomology group $H^o(X,A)$ of X with values in A is isomorphic to the homology group \overline{H}_x of X. In this paper, we show that \overline{H}_x , is isomorphic to the cohomology group $H^o(X,Q)$ (= $H^o(\mathcal{U},Q)$). Then,

i)
$$H^{o}(X,Q) \cong H^{o}(\mathcal{U},Q) \cong H^{o}(X,A) \cong H^{o}(\mathcal{U},A)$$
.

ii)
$$H^{p}(X,Q) = H^{p}(\mathcal{U},Q) = 0$$
, for $p \geq 1$.

Let $Q' \subset Q$ be a subsheaf. Then there corresponds a subsheaf $A' \subset A$ to Q'. It can be shown, in similar way, that

$$\mathrm{H}^{o}(\mathrm{X},\mathrm{Q}') \cong \mathrm{H}^{o}(\mathcal{U},\mathrm{Q}') \cong \Gamma(\mathrm{X},\mathrm{Q}') \subset \Gamma(\mathrm{X},\mathrm{Q}).$$

Since Q' is flabby

i)
$$H^o(X,Q') \cong H^o(\mathcal{U},Q') \cong H^o(X,A') \cong H^o(\mathcal{U},A')$$
.

ii)
$$H^p(X,Q') \cong H^p(\mathcal{U},Q') = 0$$
 for $p \geq 1$.

REFERENCES

- [1] BALCI, S., On the Restricted Sheaf, Comm. Fac. Sci. Univ. Ankara, Ser. A₁: Mathematiques and Statistics (accepted for publication).
- [2] GRAUERT, H., FRITSCHE, K., Several Complex Variables, Springer-Verlag (1976).
- [3] SERRE, J.-P., FASIC. Eaux Algebraiques Cohéerents, Ann. Math. Vol. 61., pp.197-278 (1955).
- [4] ULUÇAY, C., On the Homology group of the Complex Analytic Manifolds, Comm. Fac. Sci. Univ. Ankara, Ser A₁: Mathematiques, Tome: 30, pp. 37-44 (1981).