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SUMMARY

In this paper, our main purpose is to define and to investigate the sequence space
1 (p, s) and to determine the matrices of classes (1 (p, 9), 1, ) and (1 (p, ), ¢} wherel,
and ¢ are respectlvely the spaces of bounded and convergent complex sequences and
for p = (py) with p,_ > 0, the space 1 (p, s) is defined by

L@, o) = {x = (x) :k.g K7 P Pk <o, s > 00

1. Let A = (a,,) be an infinite matrix of complex' numbers
an (n,k =1,2,...) and v, w betwo subsets of the space of com-
plex sequences. We say that the matrix A defines a matrix trans-
formations from v into w and denote it by writing. A € (v, w), if
for every sequence x = (%) gV the sequence Ax = (A,(x) ew,

where A (x) 2 an xk. N

In this paper, our main purpose is to define and to investigate
the sequence space 1 (p, s) and to determine the matrices of classes
(L (p,s), 1) and (1 (p, s), c), where 1 and ¢ are respectively the
spaces of bounded and convergent complex sequences and for
P = (px) with p, > 0, the space 1 (p, s) is defined by

® Px
L(p,s). = {x=(x) :kz k™ x| < 0,820}
y 2 :
Obviously, the sequence éi)éee

L ) Px 2
Fp) = {x =(x) : 2 x| < oo, p >0}

1
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34 E. BULUT - O. CAKAR
which has been investigated by several authors [1,3,5,7,] is a spe-
cial case of 1 (p, s) which corresponds tos = 0. And 1 (p,s) > 1(p).

Throughout the paper the following well-known inequalities
will be used frequently.

For any complex numbers a, b,

la 4+ b[®P < |a|® + {b|? (1
where 0 < p < I; and
la.b| < |a]? + [b|P , 2

wherel < p < oo and p~' + q~! =1. N will denote the set of natu-
ral numbers and R the set of real numbers.

Using the same kind of argument to thatin [4], we get that.
the necessary and sufficient condition for I (p, s ) to be linear is

0 < px <sup, pp = H < 0.
To begin with we can show that the space 1 (p,s) is para-
normed by
5 () = (F k= bl 3)

where H = sup, px < ©,and M = max (1, H). Clearly,g (6) =0
and g (x) = g (~x), where 6 = (0, 0, ...). Takeany x,y el(p, s).
Since p, /M < 1 and M > 1, using the Minkowski’s inequality we
have \ :

(ka k= % + Yk]pk )I/M
< (& e P 4 (E kP
which shows that g is subadditive.

Finally, to chieck that the continuity of multiplication, let
us take any complex A. Then we have

g (A% = (3 k= 14 x| P < supy (217 g ().

k=1
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Now, let A — 0 for any fixed x with g (x) # 0. Since

3 ke [x [pk < o0, there exists an integer N > 0, for |1| <1
k=1 . .

and ¢ > 0, such that

2ok 2 x P < @ < )2 (4)

k=N+1

Taking |A] sufficiently small such that Mlpk < /2 g {x) for
k =1,2, \

..., N; then we have

T 42

k= 14 x, |P% < e)2. (5)
1

(4) and (5) together implies that g (1 x) - 0 as 4 — 0.

It is quite routine to show that (I (p, s), d) is a metric space
with the metric d defined by d (x, y) = g (x — y) providing that
x, y €1(p,s), where gis defined by (3). And using the similar meth-
od to that in [6] one can show that for 0 < m = inf P <P <
supg px = H < o0, I (p, s) is complete under the metric mentioned
above.

We shall also say that (e,) is a Schauder base for 1 (p, s), where
e is a sequence with 1in the k th place and zero elsewhere.

2. Now we are going to give the following theorem by which
the Kothe-Teeplitz dual of 1 (p, s) will be determined.

THEOREM 1. (i). Ifl<p,<sup,p,=H<o andp, ' +¢ "
=1fork =1,2,... then

(ps) =\a = (a) ’k§1 D N g e <o,

’ s > 0, for some integer N > 1
(i) If 0 <m =inf, p, < p, <1 for each k =1,2,... then
lf(p,s) = m (p,s), where
m(ps) = {a = (0] : sup, B la " < o, 5 = 1}. (6)

PROOF. (i). Letl <p, <sup,py =H < oo and p, ! + g,
=1for each k € N. Then take
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(=]

E(Pss) - | az(ak):k§1 kS(qk_l)N_qk/pk lak|qk < o0, =0, (7)
for some ihteger N >1

We now want to show that 17 (p> 8) =E (p,s). Letx el (p.s),
ae E (p,s) and N be the associated number with a, Therefore,
using the inequality (2), we get

lag x| < KNWONWPE g T LN ks |x, [Px,
So = |ag %, | is convergent which implies that ¥ a, x; converges,
lce., a € i\ (p» s). In other words, it (p,5) = E (p, 5).

Conversely, let us suppose that ¥ a, x, is convergent and
xel (p, s), but a ¢ E (p, s). Then we write that

§ ks(qk—l) N Ik Py

Px
" k=1

lag |7 =

for each s >> 0 and for every N > 1. So we can find a sequence
0=n(0) <n(l) <n(2) <...suchthatforv=1,2,...

M =3 ks(qk—l) (V-+~1) ~qy [Pk Iak[qk -~ 1

)
where the sum I is taken over therange n (v—l) +1 <k <mn(v).

I(v)

Now, define a sequence x = (x,) as follows:

. Lo ] . |
X = (sgn a) |ag | Tt (v+) ™% ™ sk el (v)

v
xk =O : :k¢I(V)‘
Then we find that

Tax =2 lap | KO (B Mo
I(v) I(v) _ v

B PR ARSI L | M
I(v)
=@+

but
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sk |Xk Pe — 3 ko la, '(qk 1)py ks(qk I)Pk( _H)“Ik Pk’ M“pk

I(v) I(v

= 3 ]a I‘!k kS‘Ik k-s ( +l) G /Py ’(v__*_l)—l—Pk.M';I’k

1(v) | S
< (V+1)vz M 3 |a, | K@) (V+1)—qk/pk
Vo v
—(v41)

thatis, ¥ a, x; diverges but x €1 (p, s). And this contradicts to our

assumption. So a € E (p, s), i.e., 1t (p, s) < El. (p» s). Then com-
bining these two results we get T S

Tpo) =B (ps)
(i). Let 0 < m = infy p, < p, < 1for each k ¢ N. Now we

want to show that 1T (p, s) = m {p, s) where

m (p, s) = la = (a) : supy k* Ja.|™* < ©, s > 0}.
Suppose that X a, x, converges and x el (p, s) but a ¢ m (p, s}
Then we can choose a sequence I < v (1) < v (2) < ... such that

(v (@) layg!Pvo > q (¢ =1,2, ...).
Then for a sequence (x,) defined by

x, =a' k =y (q), q=12,...
Cox =0 k # v (g
we get ' A
@0 & - -
kT x T =3 () Jayg, | Pye
k=1 q=1 )
< $ q? < ©
q=k
hut_
g a X, = $1=ow
k=1 ) a=1

which is a contradiction. So a € m (p, s).
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. Conversely, let a em (p,s) and a # 0. Let sup, k* |a, |Px =
B, say. Then the series & a, x, is convergent for x €1 (p, s) provid-

“ing that ¥ k% |x; [Pk < 1/B. Because, the assumption

supy k® |a, [P = B gives theresultk®|a, ;" < B foreachk.And

considering the inequality T k- x™* < 1/B, ‘we find that
k™ |xg I?k < 1/B for each k. Then multiplying these two results

we obtain |a, x| < 1 and |a, x| < la, x|[™* < 1, since
0 < px < L. Therefore X a, x, converges, since

2 Ja, x <X [a X Ik'< up kt|a Pk 2 k%x Ik < ©0
— I k kI L k *k =S8 k I k| ’ k .
- K- k=1

But, ifx el (p, s) then, since 1 (p, s) is linear, we can find an integer

N > I such that 3 k= |-—k_

P 1/B. Therefore, the above
k=1

discussion gives the convergence of ¥ a, x, /N and so ¥ a, x, is
convergent, l.e., a € it (p» 8), which completes the proof of the the-
orem.

Let us now determine the continuous dual of 1 (p, s) by the
following theorem.

THEOREM 2. (i). If1 < p, < sup, p, = H < oo for k =

1,2, ... then I* (p, s). i.e.. the continuous dual of | (p, s), is iso-
morphic to E (p, s) which is defined by (7).

(i). IfO < m = inf, p, < p, < 1foreachk =1,2, ... then
I* (p, s) is isomorphic to m (p, s) which is defined by (6).

PROOF. (i). Since e, k = 1, 2, ... are the unit vectors

of I(p,s) then, for every x in l(p.s), we can write x=02° Xy €o
k=1

whence f (x) z:i a, x; for any fin 1* (p, s), where f (¢,) = a,.
=1
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By Theorem 1 (i), the convergence of ) a, x; for every x
k=1
in 1 (p, s) implies that a ¢ E (p, s). -
If x €1 (p, s) and if we take a ¢ E (p, s) then, vy Theorem 1 (i),
k§ a; x; converges and clearly defines a linear functional on1(p,s).
1 .

Using the same kind of argument to that in Theorem 1 (i) it is
easy 1o check that

Li ag x| < (gj lay | % N I /Pe oG + N) g(x)

=1 K=1

whenever g(x) < 1, ‘Where g(x) _ ( f: k- [Xklpk )I/M and
k=1

P g = 1. Hence ;%1 a, %, defines an element of 1* (p, s).

Obviously, the map T : 1* (p, s) > E (p, s) given by T (f) =a is
linear and bijective.

(ii) Since the sequence (e, ) is a Schauder base for 1 (p, s), we

© .
can write x = X X, e for every x €1 (p, s). Then, for every f in
k=1

*(p, s), f (x) = b a, x,, where a, =1 (e;). S0, by Theorem 1 (ii),
k=t
the convergence of ) ay X, for every x e 1 (p, s) implies that
k=1

a em(p,s). Now, if x € I(p,s) and a € m(p,s) then by a, X, con-
k=t

verges by Theorem I(ii) and, of course, defines a linear functional
on 1 (p, s).

- .
Now, we must show thai f (x) = X a, x, is continuous.
k=1

Let x el (p,s)and ¢ > Ois given and d (6, x) = g (x) <
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min (1, ¢)

B where B = sup, k* |a, i"* < 0. Then, by the

same method used in Theorem 1 (ii), we see that |f (x)| =

. ® & . . . . )

|2 a x] < X lag x| < ¢ which implies the continuity of f
k=1 k=1

at the origin. So, f is continuous at every point of l(p,s), since f is a

=3
linear functional on 1 (p,s). Hence X a, x, defines an element
k=1

of 1* (p,s). It is now evident that the map T 1* (p,s) - m (p,s) given
by T (f) = a is a linear bijection.

3. In the following theorems we are going to characierized
the matrix classes (I (p,s), 1) and (1 (p, s), ¢).

THEOREM 3. (i). If1 < p, < sup, p, =H < oo for every
k eNthen A € (1(p,s), 1, ) if and only if there exists an integer
D > 1 such that

sup, £ lay |™ D KO < o ®)
=1
(i) If 0 < m =inf, p, < p, < 1 for each k € N, then
Ae (1l (p,s), 1, )if and only if
K = sup,, la, "™ K < oo. - (9)

PROOF. (i). Sufficiency. By using the inequality (2) we
get ' ‘ :

o Xl < D [lage (™ KO DL Pk

for every n. Then, if we take the sum ip both sides over k from 1
to o and consider the hypothesis, we obtain, for every n,

o0 =]
[kz ax XK!SkE lag X | << o0,
=1 =1

ie., (A, (x)) €l,, whenever x €1 (p, s).
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Necessity. Suppoée that A e (1 (p, s), 1, ) but that

supy £ Jag % N ROD o

. <
for every integer N > 1. Then¥ a_, x, converges for every n
k=t

and for every x €1 (p, s), whence (a)i.,,,,-.. € 1t (p, s) for every
n. By Theorem 2 (i), it follows _hat each A, defined by A, (x) =

$ an X is an element of 1 (p, s). Since I (p, s) is complete and
k=1

since sup, |A; (x)| < oo on 1 (p, s), there exists by the uniform
boundedness principle a number L independent of n and x, and a
number 3 < 1 such that

A, (x| < L (10)

for every x € S [0, 8] and every n, where by S [0, 8] we denote
the closed sphere in 1 (p, s) with centre at the origin = (0, 0, ...)
and radius §.

Now choose an integer Q > 1 such that
Q3 > L.

By our assumption we have
[eo]
q —qy 1 s(qx-1)
supnkZ lage [ % Q kS =
=1
and so two cases are possible: either

E jagl™ QKO <o
=1

for every n > |l or there exists an n > 1 such that
2 - -1
 fam ™ QK = oo,
k=1

In the first case, there exists n > | such that
2 —q 1 S
S fan (™ Q KT oo
K=

and there exists k, > 1 such that



42 E. BULUT - 0. CAKAR

£ fag ™ Q% KW <1
k=k

=k +1
[

whence

k o

S jag % Q% KD o,
"k

In the second case we may choose k, > 1 such that

ko s —
S

so that ir either case there exis! an n > 1 and k, > 1 such that
k 5
V=3 lag|% Q™ k@D - g, (11)
k=1
We now define vsing (10) a sequence x = (x,) as follows:

X, = 5t P lanquk‘l (sgn a,) V! Q_qk/pk @D d<k<k,
Xg = 0 ;k > ko

Then one can easily show that g (x) < §but A (x)| > L, which
contradicts to (10). This completes the proof of Theorem 3 (i).

(ii) The sufficiency and the necessity can be proved respec-
tively by the same kind of argument used in Theorem 2 (ii) and by
the uniform boundedness principle.

THEOREM 4. (i). Let 1 < p, < sup, p, = H < oo for every
keN. Then A (1 (p, s), ¢) if and only if together with (8) the con-
dition :

ay = o (n - o0, k fixed) (12)
hold.

(i) Let O < m =inf, p. <p, < lforever k € N. Then
A e (1 (p.s), ¢) if and only if ihe conditions (9) and (12) hold.

PROOF. (i). The necessity of (12) can easily be obtain
using the unit vector e,. For the sufficiency we have, for every
integer r > 1 and every n

Er — £ . | =) s . s(qu-1
K lag | % D K SUpy, E 2y | D/ql‘ KD oo
=1 - ‘
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N

So,

lim lim ¥ |agy [ D™ Kl < sup, b3 (£ [ D% KD
1> n-eo k=1 k=1

l.e.,

p) [o{,quk D Ik kS(qk—l) < sup, 3 lanquk D % ks(qk—l) ‘
1 o~

Hence (o) € if (p, ) and since also (ap ke, 2, - € ) (p> ) the

series 3 oy X, and by a,, X, converge for every n and for every
k=1 k=1
x el (p,s).
We can choose an integer r > 1 such that
Sk <1
kryl

whenever x €1 (p, s). Then by the proof of Theorem 2 (i) and by the
inequality (2) we have

o2
L lane — ouc| |kl
k=r41

<2D [142 sup, £ fay D KO IR
k=1

k=r4l1
which implies that
lim 3 g X = $ o Xge
n-s kel k-1
(ii) By the proof of Theorem 2 (ii) we get the proof of this
part in a similar way to that in (i).
REMARK. To be able to get the necessary and sufficient
condition for A € (1 (p, s), ¢,), where ¢, is the space of null se-
quences, it would be enough to take o, = 0 in the above theorem.

OZET

1ps) = {x=(x): 2 k* [ |Pk< @, 5 > 0},
P, { W o< o, 8 2

ile tammladigimz | (p. s) dizi uzayim ssmrh p = (p,) icin incelemektir. Aynca l, ve ¢
sirastyla sumrh ve yakinsak kompleks terimli dizilerin olugturdugu dizi uzaylanm gés-
termek iizere (1 (p, 5), leo ) ve (I (p, s), ¢) matris simflart belirlenmistir.
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